Clinical Management of New-Onset Atrial Fibrillation in COVID-19 Patients Referred to a Tertiary Cardiac Arrhythmia Center after Hospital Discharge
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Data Collection and Study Outcomes
- -
- Clinical management of new-onset AF in the study cohort;
- -
- AF recurrence after physician intervention in the follow-up period.
2.3. Data Collection and Study Outcomes
3. Results
3.1. Baseline Characteristics
3.2. Patient Management and Clinical Outcomes
4. Discussion
4.1. Arrhythmogenesis in COVID-19 after the Acute Phase
- -
- Apart from hypoxia, SARS-CoV-2’s direct penetration into myocardial cells through the receptors of the angiotensin-converting enzyme-2 (ACE-2), as well as activation of virus-triggered CD8+ T lymphocytes, might result in myocardial injury, remodeling, and adverse cardiac outcomes, seen as subclinical or overt myocarditis [30]. Cellular damage, ionic imbalance, and gap junction dysfunction may result in early afterdepolarizations and delayed afterdepolarizations, along with reduced or increased conduction velocity and decreased refractoriness, increasing the likelihood of circus-type reentry [31]. These mechanisms are also of the utmost importance in triggering AF out of the acute phase since inflammation is known to be associated with recurrent AF through the involvement of cellular degeneration, apoptosis, and subsequent atrial fibrosis, which is extremely difficult to determine clinically [27].
- -
- Myocardial ischemia, mostly due to a hyperinflammatory response, microvascular dysfunction, proatherogenic effects, and vasculitis, might induce significant myocardial sequelae, leading also to a non-transient endothelial dysfunction [32,33]. Indeed, a recent growing body of evidence links AF to atrial and systemic endothelial dysfunction. A postulated liaison between AF and endothelial dysfunction includes inflammatory or oxidative stress as well as common pathway biomarkers, which might feed a vicious cycle resulting in worse endothelial dysfunction and persistent AF [34].
4.2. Long-Term Management of New-Onset AF Detected during COVID-19
- -
- Regarding the antiarrhythmic strategy, a rate versus a rhythm control strategy was chosen depending on the managing physician’s choice and patient preferences as well. When considering patients who were still in AF during the post-discharge evaluation, the vast majority of patients were referred to a rhythm control strategy due to the well-known lower risk of adverse cardiovascular outcomes among patients with early AF treated with a rhythm control strategy, especially in cases of associated cardiovascular conditions [40]. The only case that was treated with a rate control strategy was an elderly patient who refused to be scheduled for an electrical cardioversion. Criteria for CA were based on a shared decision-making process, always summarizing baseline clinical characteristics and patients’ wishes. Age, comorbidities as well as AF burden (whenever possible in patients who were implanted with a loop recorder), and patients’ symptoms were always evaluated prior to CA. CA was offered whenever the managing physician thought CA would be the best treatment option, even in light of recent trials (EAST-AF-4 net, EARLY-AF, and STOP-AF) that have demonstrated the superiority of early rhythm control over rate control [40,41,42]. Of course, patients’ wishes were always taken into account, and only patients who had chosen CA as the best treatment option according to the benefit/risk ratio were treated with CA. Most patients who were treated with direct cardioversion were offered CA too, but they preferred to try to achieve rhythm control with a non-invasive strategy. Regarding the four cases who were referred for CA, physician choice was based on the presence of an underlying cardiac disease and/or on at least one cardiovascular risk factor, in order to improve clinical outcomes. Moreover, 3 out of 4 patients experienced at least one post-discharge AF recurrence (preferably detected with an ILR strategy, allowing a better recognition of arrhythmic episodes [43]), while one case was a persistent AF patient who experienced an early recurrence after an in-hospital electrical cardioversion. If it is indeed true that our small sample size does not allow us to make proper comparisons, no AF recurrences were detected in the post-CA group, while two recurrences were detected in the post-cardioversion group, corroborating recent evidence pointing towards the superiority of CA when compared to a drug-related rhythm control strategy in achieving freedom from AF, even in an early-AF setting [40,41,42,44]. Of note, as per current good clinical practice, all CA procedures were performed out from the infective state, at least 3 months after discharge.
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gattinoni, L.; Coppola, S.; Cressoni, M.; Busana, M.; Rossi, S.; Chiumello, D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2020, 201, 1299–1300. [Google Scholar] [CrossRef] [PubMed]
- Busana, M.; Gasperetti, A.; Giosa, L.; Forleo, G.B.; Schiavone, M.; Mitacchione, G.; Bonino, C.; Villa, P.; Galli, M.; Tondo, C.; et al. Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiol. 2021, 87, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Schiavone, M.; Gasperetti, A.; Mancone, M.; Curnis, A.; Mascioli, G.; Mitacchione, G.; Busana, M.; Sabato, F.; Gobbi, C.; Antinori, S.; et al. Oral anticoagulation and clinical outcomes in COVID-19: An Italian multicenter experience. Int. J. Cardiol. 2021, 323, 276–280. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Schiavone, M.; Gasperetti, A.; Mancone, M.; Kaplan, A.V.; Gobbi, C.; Mascioli, G.; Busana, M.; Saguner, A.M.; Mitacchione, G.; Giacomelli, A.; et al. Redefining the Prognostic Value of High-Sensitivity Troponin in COVID-19 Patients: The Importance of Concomitant Coronary Artery Disease. J. Clin. Med. 2020, 9, 3263. [Google Scholar] [CrossRef]
- Della Rocca, D.G.; Magnocavallo, M.; Lavalle, C.; Romero, J.; Forleo, G.B.; Tarantino, N.; Chimenti, C.; Alviz, I.; Gamero, M.T.; Garcia, M.J.; et al. Evidence of systemic endothelial injury and microthrombosis in hospitalized COVID-19 patients at different stages of the disease. J. Thromb. Thrombolysis 2021, 51, 571–576. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.F.; Huang, F.Y.; Xiong, T.Y.; Liu, Q.; Chen, H.; Wang, H.; Huang, H.; Luo, Y.C.; Zhou, X.; Liu, Z.Y.; et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart 2020, 106, 1154–1159. [Google Scholar] [CrossRef]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J. Am. Coll. Cardiol. 2020, 76, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guan, B.; Su, T.; Liu, W.; Chen, M.; Bin Waleed, K.; Guan, X.; Gary, T.; Zhu, Z. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: A systematic review and meta-analysis. Heart 2020, 106, 1142–1147. [Google Scholar] [CrossRef]
- Mitacchione, G.; Schiavone, M.; Gasperetti, A.; Forleo, G.B. Ventricular tachycardia storm management in a COVID-19 patient: A case report. Eur. Heart J. Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Antwi-Amoabeng, D.; Beutler, B.D.; Singh, S.; Taha, M.; Ghuman, J.; Hanfy, A.; Manasewitsch, N.T.; Ulanja, M.B.; Ghuman, J.; Awad, M.; et al. Association between electrocardiographic features and mortality in COVID-19 patients. Ann. Noninvasive Electrocardiol. 2021, 26, e12833. [Google Scholar] [CrossRef]
- Romero, J.; Alviz, I.; Parides, M.; Diaz, J.C.; Briceno, D.; Gabr, M.; Gamero, M.; Patel, K.; Braunstein, E.D.; Purkayastha, S.; et al. T-wave inversion as a manifestation of COVID-19 infection: A case series. J. Interv. Card. Electrophysiol. 2020, 59, 485–493. [Google Scholar] [CrossRef]
- Gasperetti, A.; Biffi, M.; Duru, F.; Schiavone, M.; Ziacchi, M.; Mitacchione, G.; Lavalle, C.; Saguner, A.; Lanfranchi, A.; Casalini, G.; et al. Arrhythmic safety of hydroxychloroquine in COVID-19 patients from different clinical settings. Europace 2020, 22, 1855–1863. [Google Scholar] [CrossRef]
- Mountantonakis, S.E.; Saleh, M.; Fishbein, J.; Gandomi, A.; Lesser, M.; Chelico, J.; Gabriels, J.; Qiu, M.; Epstein, L.M. Atrial fibrillation is an independent predictor for in-hospital mortality in patients admitted with SARS-CoV-2 infection. Heart Rhythm 2021, 18, 501–507. [Google Scholar] [CrossRef]
- Elseidy, S.A.; Awad, A.K.; Vorla, M.; Fatima, A.; Elbadawy, M.A.; Mandal, D.; Mohamad, T. Cardiovascular complications in the Post-Acute COVID-19 syndrome (PACS). IJC Heart Vasc. 2022, 40, 101012. [Google Scholar] [CrossRef]
- Dixit, N.M.; Churchill, A.; Nsair, A.; Hsu, J.J. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am. Heart J. Plus Cardiol. Res. Pract. 2021, 5, 100025. [Google Scholar] [CrossRef] [PubMed]
- Chopra, V.; Flanders, S.A.; O’Malley, M.; Malani, A.N.; Prescott, H.C. Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med. 2021, 174, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Magnocavallo, M.; Vetta, G.; Della Rocca, D.G.; Gianni, C.; Mohanty, S.; Bassiouny, M.; Di Lullo, L.; Del Prete, A.; Cirone, D.; Lavalle, C.; et al. Prevalence, Management, and Outcome of Atrial Fibrillation and Other Supraventricular Arrhythmias in COVID-19 Patients. Card. Electrophysiol. Clin. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Xiong, T.Y.; Redwood, S.; Prendergast, B.; Chen, M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur. Heart J. 2020, 41, 1798–1800. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Boutjdir, M.; Capecchi, P.L. COVID-19, Arrhythmic Risk, and Inflammation: Mind the Gap! Circulation 2020, 142, 7–9. [Google Scholar] [CrossRef]
- Sanchez-Quintana, D.; Ramon Lopez-Mínguez, J.; Pizarro, G.; Murillo, M.; Angel Cabrera, J. Triggers and Anatomical Substrates in the Genesis and Perpetuation of Atrial Fibrillation. Curr. Cardiol. Rev. 2012, 8, 310–326. [Google Scholar] [CrossRef]
- Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Gyebi, G.A.; Batiha, G.E.S. Covid-19-Induced Dysautonomia: A Menace of Sympathetic Storm. ASN Neuro 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Shah, B.; Kunal, S.; Bansal, A.; Jain, J.; Poundrik, S.; Shetty, M.K.; Batra, V.; Chaturvedi, V.; Yusuf, J.; Mukhopadhyay, S.; et al. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol. J. 2022, 22, 70–76. [Google Scholar] [CrossRef]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper, L.T.; Chahal, C.A.A. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020, 17, 1463–1471. [Google Scholar] [CrossRef]
- Tse, G.; Yeo, J.M.; Chan, Y.W.; Lai, E.T.H.; Yan, B.P. What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front. Physiol. 2016, 7, 308. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, M.; Gobbi, C.; Biondi-Zoccai, G.; D’Ascenzo, F.; Palazzuoli, A.; Gasperetti, A.; Mitacchione, G.; Viecca, M.; Galli, M.; Fedele, F.; et al. Acute Coronary Syndromes and Covid-19: Exploring the Uncertainties. J. Clin. Med. 2020, 9, 1683. [Google Scholar] [CrossRef] [PubMed]
- Huertas, A.; Montani, D.; Savale, L.; Pichon, J.; Tu, L.; Parent, F.; Guignabert, C.; Humbert, M. Endothelial cell dysfunction: A major player in SARS-CoV-2 infection (COVID-19)? Eur. Respir. J. 2020, 56, 2001634. [Google Scholar] [CrossRef]
- Corban, M.T.; Toya, T.; Ahmad, A.; Lerman, L.O.; Lee, H.C.; Lerman, A. Atrial Fibrillation and Endothelial Dysfunction: A Potential Link? Mayo Clin. Proc. 2021, 96, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.; Kalyan Sundaram, A.; Jha, K.; Thakur, L.; Pond, K. Evaluation of Anticoagulation Practice With New-Onset Atrial Fibrillation in Patients with Sepsis and Septic Shock in Medical Intensive Care Unit: A Retrospective Observational Cohort Study. Cureus 2020, 12, e10026. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Proietti, M.; Laroche, C.; Diemberger, I.; Popescu, M.I.; Riahi, S.; Shantsila, A.; Dan, G.A.; Tavazzi, L.; Maggioni, A.P.; et al. Changes to oral anticoagulant therapy and risk of death over a 3-year follow-up of a contemporary cohort of European patients with atrial fibrillation final report of the EURObservational Research Programme on Atrial Fibrillation (EORP-AF) pilot general r. Int. J. Cardiol. 2018, 271, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Gulizia, M.M.; Cemin, R.; Colivicchi, F.; De Luca, L.; Lenarda, A.; Di Boriani, G.; Pasquale, G.; Di Nardi, F.; Scherillo, M.; Lucci, D.; et al. Management of atrial fibrillation in the emergency room and in the cardiology ward: The BLITZ AF study. Europace 2019, 21, 230–238. [Google Scholar] [CrossRef]
- Hernandez, I.; Gabriel, N.; He, M.; Guo, J.; Tadrous, M.; Suda, K.J.; Magnani, J.W. COVID-19 and Anticoagulation for Atrial Fibrillation: An Analysis of US Nationwide Pharmacy Claims Data. J. Am. Heart Assoc. 2021, 10, e023235. [Google Scholar] [CrossRef]
- Papakonstantinou, P.E.; Borovac, J.A.; Gasecka, A.; Bongiovanni, D.; Ehrlinder, H.; Giustozzi, M.; Parker, W.A.E.; Guerreiro, R.A. Anticoagulation therapy in non-valvular atrial fibrillation in the covid-19 era: Is it time to reconsider our therapeutic strategy? Eur. J. Prev. Cardiol. 2021, zwab021. [Google Scholar] [CrossRef]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N. Engl J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef]
- Wazni, O.M.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Cryoballoon Ablation as Initial Therapy for Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Wells, G.A.; Deyell, M.W.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; Khaykin, Y.; et al. Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Rovaris, G.; Ciconte, G.; Schiavone, M.; Mitacchione, G.; Gasperetti, A.; Piazzi, E.; Negro, G.; Montemerlo, E.; Rondine, R.; Pozzi, M.; et al. Second-generation laser balloon ablation for the treatment of atrial fibrillation assessed by continuous rhythm monitoring: The LIGHT-AF study. Europace 2021, 23, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Di Biase, L.; Mohanty, P.; Mohanty, S.; Santangeli, P.; Trivedi, C.; Lakkireddy, D.; Reddy, M.; Jais, P.; Themistoclakis, S.; Dello Russo, A.; et al. Ablation Versus Amiodarone for Treatment of Persistent Atrial Fibrillation in Patients with Congestive Heart Failure and an Implanted Device: Results from the AATAC Multicenter Randomized Trial. Circulation 2016, 133, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Kattubadi, A.; Solorzano, J.; Feng, K.; Brar, V.; Dominic, P. COVID-19 Vaccines and Atrial Fibrillation Risk: A Pharmacovigilance Analysis. J. Am. Coll. Cardiol. 2022, 79, 1838. [Google Scholar] [CrossRef]
Cohort (n = 23) | |
---|---|
Age (years), mean ± s.d. | 71.5 ± 8.1 |
Male, n (%) | 20 (87.0) |
Diabetes, n (%) | 2 (8.7) |
Hypertension, n (%) | 14 (60.9) |
Underlying cardiac disease, n (%) Ischemic cardiomyopathy, n (%) HFrEF, n (%) | 2 (8.7) 2 (8.7) 1 (4.3) |
Vascular disease, n (%) | 3 (13.0) |
LA volume index (ml/m2), median (IQR) | 22 (18–24) |
Moderate to severe MR, n (%) | 1 (4.3) |
History of stroke/TIA, n (%) | 1 (4.3) |
CKD, n (%) | 2 (8.7) |
CHA2DS2-VASc, median (IQR) | 2 (1–3) |
CHA2DS2-VASc < 2 (female) or < 1 (male), number of patients (%) | 3 (13) |
HAS-BLED, median (IQR) | 2 (1–2) |
Previous history of major bleeding, n (%) | 1 (4.3) |
Need for ICU hospitalization, n (%) | 0 (0) |
Need for CPAP during COVID-19 admission, n (%) | 4 (21.7) |
Anticoagulation at discharge, n (%) DOACs, n (%) LMWH, n (%) | 21 (91.3) 19 (82.6) 2 (8.7) |
Antiarrhythmic drugs at discharge, n (%) Amiodarone, n (%) Flecainide, n (%) | 11 (47.8) 8 (34.8) 3 (13.0) |
Cardioversion during admission, n (%) | 16 (69.6) |
VAs during COVID-19 admission, n (%) | 1 (4.3) |
Time from discharge to first ambulatory evaluation (days), median (IQR) | 53 (41.5–127) |
Follow-up time (days), median (IQR) | 175 (83–336) |
Patients monitored with an ILR, n (%) ILR implanted during admission, n (%) ILR implanted during post-discharge follow-up, n (%) | 15 (65.2) 10 (43.5) 5 (21.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavone, M.; Sozzi, F.B.; Gasperetti, A.; Gobbi, C.; Gherbesi, E.; Barbieri, L.; Arosio, R.; Mitacchione, G.; Toriello, F.; Faggiano, A.; et al. Clinical Management of New-Onset Atrial Fibrillation in COVID-19 Patients Referred to a Tertiary Cardiac Arrhythmia Center after Hospital Discharge. J. Clin. Med. 2022, 11, 5661. https://doi.org/10.3390/jcm11195661
Schiavone M, Sozzi FB, Gasperetti A, Gobbi C, Gherbesi E, Barbieri L, Arosio R, Mitacchione G, Toriello F, Faggiano A, et al. Clinical Management of New-Onset Atrial Fibrillation in COVID-19 Patients Referred to a Tertiary Cardiac Arrhythmia Center after Hospital Discharge. Journal of Clinical Medicine. 2022; 11(19):5661. https://doi.org/10.3390/jcm11195661
Chicago/Turabian StyleSchiavone, Marco, Fabiola B. Sozzi, Alessio Gasperetti, Cecilia Gobbi, Elisa Gherbesi, Lucia Barbieri, Roberto Arosio, Gianfranco Mitacchione, Filippo Toriello, Andrea Faggiano, and et al. 2022. "Clinical Management of New-Onset Atrial Fibrillation in COVID-19 Patients Referred to a Tertiary Cardiac Arrhythmia Center after Hospital Discharge" Journal of Clinical Medicine 11, no. 19: 5661. https://doi.org/10.3390/jcm11195661
APA StyleSchiavone, M., Sozzi, F. B., Gasperetti, A., Gobbi, C., Gherbesi, E., Barbieri, L., Arosio, R., Mitacchione, G., Toriello, F., Faggiano, A., Viecca, M., Forleo, G. B., & Carugo, S. (2022). Clinical Management of New-Onset Atrial Fibrillation in COVID-19 Patients Referred to a Tertiary Cardiac Arrhythmia Center after Hospital Discharge. Journal of Clinical Medicine, 11(19), 5661. https://doi.org/10.3390/jcm11195661