An Intermodal Correlation Study among Imaging, Histology, Procedural and Clinical Parameters in Cerebral Thrombi Retrieved from Anterior Circulation Ischemic Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Design
2.2. CT Imaging
2.3. Multi-Parametric MRI
2.4. Histology
2.5. Processing of Images
2.6. Clinical and Intervention Procedure Parameters
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.F.; Ford, E.S.; Fox, C.S.; et al. Executive Summary: Heart Disease and Stroke Statistics-2012 Update A Report from the American Heart Association. Circulation 2012, 125, 188–197. [Google Scholar] [CrossRef]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, A.R.; Farkas, J. Catheter-based recanalization techniques for acute ischemic stroke. Neuroimag. Clin. N. Am. 2005, 15, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Marder, V.J.; Chute, D.J.; Starkman, S.; Abolian, A.M.; Kidwell, C.; Liebeskind, D.; Ovbiagele, B.; Vinuela, F.; Duckwiler, G.; Jahan, R.; et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 2006, 37, 2086–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparian, G.G.; Sanossian, N.; Shiroishi, M.S.; Liebeskind, D.S. Imaging of occlusive thrombi in acute ischemic stroke. Int. J. Stroke 2015, 10, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, B.; Pretorius, E.; Oberholzer, H.M.; van der Spuy, W.J. Interaction of Fibrin with Red Blood Cells: The Role of Iron. Ultrastruct. Pathol. 2012, 36, 79–84. [Google Scholar] [CrossRef]
- Fang, J.; Tsui, P.H. Evaluation of thrombolysis by using ultrasonic imaging: An in vitro study. Sci. Rep. 2015, 5, 11669. [Google Scholar] [CrossRef] [Green Version]
- Bajd, F.; Vidmar, J.; Fabjan, A.; Blinc, A.; Kralj, E.; Bizjak, N.; Sersa, I. Impact of altered venous hemodynamic conditions on the formation of platelet layers in thromboemboli. Thromb. Res. 2012, 129, 158–163. [Google Scholar] [CrossRef]
- Weisel, J.W. Structure of fibrin: Impact on clot stability. J. Thromb. Haemost. 2007, 5, 116–124. [Google Scholar] [CrossRef]
- Gennisson, J.L.; Lerouge, S.; Cloutier, G. Assessment by transient elastography of the viscoelastic properties of blood during clotting. Ultrasound Med. Biol. 2006, 32, 1529–1537. [Google Scholar] [CrossRef]
- Varin, R.; Mirshahi, S.; Mirshahi, P.; Klein, C.; Jamshedov, J.; Chidiac, J.; Perzborn, E.; Mirshahi, M.; Soria, C.; Soria, J. Whole blood clots are more resistant to lysis than plasma clots—Greater efficacy of rivaroxaban. Thromb. Res. 2013, 131, E100–E109. [Google Scholar] [CrossRef] [PubMed]
- Wohner, N.; Sotonyi, P.; Machovich, R.; Szabo, L.; Tenekedjiev, K.; Silva, M.M.C.G.; Longstaff, C.; Kolev, K. Lytic Resistance of Fibrin Containing Red Blood Cells. Arterioscl. Throm. Vas. 2011, 31, 2306–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T.; Hayakawa, M.; Funatsu, N.; Yamagami, H.; Satow, T.; Takahashi, J.C.; Nagatsuka, K.; Ishibashi-Ueda, H.; Kira, J.; Toyoda, K. Histopathologic Analysis of Retrieved Thrombi Associated With Successful Reperfusion after Acute Stroke Thrombectomy. Stroke 2016, 47, 3035–3037. [Google Scholar] [CrossRef] [PubMed]
- Yuki, I.; Kan, I.; Vinters, H.V.; Kim, R.H.; Golshan, A.; Vinuela, F.A.; Sayre, J.W.; Murayanna, Y.; Vinuela, F. The Impact of Thromboemboli Histology on the Performance of a Mechanical Thrombectomy Device. Am. J. Neuroradiol. 2012, 33, 643–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokin, M.; Morr, S.; Natarajan, S.K.; Lin, N.; Snyder, K.V.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I. Thrombus density predicts successful recanalization with Solitaire stent retriever thrombectomy in acute ischemic stroke. J. Neurointerv. Surg. 2015, 7, 104–107. [Google Scholar] [CrossRef]
- White, P.; Nanapragasam, A. What is new in stroke imaging and intervention? Clin. Med. 2018, 18, s13–s16. [Google Scholar] [CrossRef]
- Nitz, W.R.; Reimer, P. Contrast mechanisms in MR imaging. Eur. Radiol. 1999, 9, 1032–1046. [Google Scholar] [CrossRef]
- Minati, L.; Weglarz, W.P. Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review. Concept. Magn. Reson. A 2007, 30, 278–307. [Google Scholar] [CrossRef]
- Hawkes, D.J.; Jackson, D.F. An accurate parametrisation of the x-ray attenuation coefficient. Phys. Med. Biol. 1980, 25, 1167–1171. [Google Scholar] [CrossRef]
- van Everdingen, K.J.; van der Grond, J.; Kappelle, L.J.; Ramos, L.M.; Mali, W.P. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 1998, 29, 1783–1790. [Google Scholar] [CrossRef]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, S.; Wagner, M.; Seiler, A.; Hattingen, E.; Deichmann, R.; Noth, U.; Singer, O.C. Quantitative T2’-mapping in acute ischemic stroke. Stroke 2014, 45, 3280–3286. [Google Scholar] [CrossRef] [Green Version]
- Duchaussoy, T.; Budzik, J.F.; Norberciak, L.; Colas, L.; Pasquini, M.; Verclytte, S. Synthetic T2 mapping is correlated with time from stroke onset: A future tool in wake-up stroke management? Eur. Radiol. 2019, 29, 7019–7026. [Google Scholar] [CrossRef]
- Vidmar, J.; Blinc, A.; Sersa, I. A comparison of the ADC and T2 mapping in an assessment of blood-clot lysability. NMR Biomed. 2010, 23, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Vidmar, J.; Kralj, E.; Bajd, F.; Sersa, I. Multiparametric MRI in characterizing venous thrombi and pulmonary thromboemboli acquired from patients with pulmonary embolism. J. Magn. Reson. Imaging 2015, 42, 354–361. [Google Scholar] [CrossRef]
- Vidmar, J.; Bajd, F.; Milosevic, Z.V.; Kocijancic, I.J.; Jeromel, M.; Sersa, I. Retrieved cerebral thrombi studied by T2 and ADC mapping: Preliminary results. Radiol. Oncol. 2019, 53, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viltuznik, R.; Vidmar, J.; Fabjan, A.; Jeromel, M.; Milosevic, Z.V.; Kocijancic, I.J.; Sersa, I. Study of correlations between CT properties of retrieved cerebral thrombi with treatment outcome of stroke patients. Radiol. Oncol. 2021, 55, 409–417. [Google Scholar] [CrossRef]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. Lett. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Leong, F.J.W.M.; Brady, M.; McGee, J.O. Correction of uneven illumination (vignetting) in digital microscopy images. J. Clin. Pathol. 2003, 56, 619–621. [Google Scholar] [CrossRef]
- Jindal, G.; Miller, T.; Shivashankar, R.; Mitchell, J.; Stern, B.J.; Yarbrough, K.; Gandhi, D. Relationship of thrombus length to number of stent retrievals, revascularization, and outcomes in acute ischemic stroke. J. Vasc. Interv. Radiol. 2014, 25, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Salamon, N.; Mayor, F.; Yuki, I.; Takemoto, K.; Vinters, H.V.; Vinuela, F. Characterization of Arterial Thrombus Composition by Magnetic Resonance Imaging in a Swine Stroke Model. Stroke 2013, 44, 1463–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidmar, J.; Sersa, I.; Kralj, E.; Tratar, G.; Blinc, A. Discrimination between red blood cell and platelet components of blood clots by MR microscopy. Eur. Biophys. J. 2008, 37, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L. Simple Expression for the Tortuosity of Porous Media. Transport. Porous. Med. 2011, 88, 193–203. [Google Scholar] [CrossRef]
- Brownstein, K.R.; Tarr, C.E. Spin-Lattice Relaxation in a System Governed by Diffusion. J. Magn. Reson. 1977, 26, 17–24. [Google Scholar] [CrossRef]
- Wu, Z.; Mittal, S.; Kish, K.; Yu, Y.; Hu, J.; Haacke, E.M. Identification of calcification with MRI using susceptibility-weighted imaging: A case study. J. Magn. Reson. Imaging 2009, 29, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Velasco Gonzalez, A.; Buerke, B.; Gorlich, D.; Fobker, M.; Rusche, T.; Sauerland, C.; Meier, N.; Jeibmann, A.; McCarthy, R.; Kugel, H.; et al. Clot Analog Attenuation in Non-contrast CT Predicts Histology: An Experimental Study Using Machine Learning. Transl. Stroke Res. 2020, 11, 940–949. [Google Scholar] [CrossRef]
- Riedel, C.H.; Zimmermann, P.; Jensen-Kondering, U.; Stingele, R.; Deuschl, G.; Jansen, O. The importance of size: Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011, 42, 1775–1777. [Google Scholar] [CrossRef] [Green Version]
- Phinikaridou, A.; Andia, M.E.; Saha, P.; Modarai, B.; Smith, A.; Botnar, R.M. In Vivo Magnetization Transfer and Diffusion-Weighted Magnetic Resonance Imaging Detects Thrombus Composition in a Mouse Model of Deep Vein Thrombosis. Circ-Cardiovasc. Imaging 2013, 6, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Hallock, K.J.; Hamilton, J.A. Magnetization transfer magnetic resonance of human atherosclerotic plaques ex vivo detects areas of high protein density. J. Cardiovasc. Magn. R 2011, 13, 73. [Google Scholar] [CrossRef]
- Hulley, S.B.; Cummings, S.R.; Browner, W.S.; Grady, D.; Newman, T.B. Designing Clinical Research, 4th ed.; Lippincott Williams & Wilkins (LWW): Philadelphia, PA, USA, 2013; pp. 55–83. [Google Scholar]
MR Parameters | CT Parameters | Histol. | Procedure Parameters | Clinical Parameters | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pt. # | ADC Avg [10−9 m2/s] | ADC Var [10−9 m2/s] | T2 Avg [ms] | T2 Var [ms] | ΔHU Avg | ΔHU Var | L [mm] | RBC % [%] | Tt Lysis [min] | t MeR [min] | # Passes | Age [yrs] | Tx before Stroke | iNIH SS | ΔNIH SS | imRS | ΔmRS |
1 | 0.50 | 0.26 | 89 | 21 | −3.3 | −0.22 | 20.8 | 11.5 | 110 | 42 | 1 | 77 | / | 21 | 20 | 4 | 3 |
2 | 0.48 | 0.24 | 90 | 17 | 12.8 | −4.40 | 16.3 | 45.1 | 240 | 62 | 2 | 77 | / | 17 | 9 | 5 | 1 |
3 | 0.72 | 0.30 | 79 | 21 | 3.4 | 0.80 | 17.0 | 12.0 | 120 | 65 | 1 | 63 | / | 23 | 16 | 4 | 1 |
4 | 0.64 | 0.25 | 59 | 9 | 2.5 | 7.08 | 17.5 | 41.4 | 95 | 77 | 1 | 83 | AA | 18 | 15 | 5 | 3 |
5 | 0.38 | 0.15 | 78 | 12 | −0.5 | −0.31 | 17.9 | 65.9 | 145 | 97 | 3 | 43 | / | 26 | 20 | 5 | 2 |
6 | 0.61 | 0.28 | 85 | 23 | 5.9 | 1.95 | 16.3 | 61.0 | 89 | 38 | 3 | 78 | / | 7 | 7 | 3 | 3 |
7 | 0.57 | 0.24 | 73 | 19 | −4.2 | −0.49 | 22.2 | 57.3 | 50 | 90 | 1 | 58 | / | 13 | 10 | 4 | 3 |
8 | 0.73 | 0.23 | 94 | 15 | −1.1 | −1.63 | 26.9 | 50.3 | 107 | 77 | 1 | 77 | / | 14 | 11 | 4 | 1 |
9 | 0.48 | 0.20 | 85 | 18 | 8.1 | 4.60 | 22.7 | 56.3 | 110 | 115 | 2 | 85 | ACAA | 5 | 3 | 3 | 1 |
10 | 0.61 | 0.23 | 64 | 20 | 44.1 | −24.60 | 19.7 | 52.4 | 165 | 82 | 4 | 81 | / | 26 | −16 | 5 | −1 |
11 | 0.55 | 0.23 | 83 | 21 | −1.1 | 1.83 | 17.1 | 19.1 | 148 | 60 | 1 | 66 | / | 12 | 12 | 3 | 3 |
12 | 0.52 | 0.21 | 76 | 18 | 1.7 | −1.83 | 13.9 | 31.8 | 185 | 69 | 1 | 72 | AA | 6 | 3 | 3 | 2 |
13 | 0.44 | 0.20 | 73 | 16 | 12.3 | −0.46 | 22.5 | 74.7 | 125 | 108 | 2 | 62 | / | 19 | 7 | 5 | 1 |
14 | 0.69 | 0.28 | 101 | 24 | 76.9 | −53.00 | 19.3 | 38.9 | 81 | 63 | 5 | 79 | / | 18 | −2 | 4 | −1 |
15 | 0.50 | 0.24 | 85 | 20 | 64.7 | −44.40 | 17.9 | 48.8 | 120 | 75 | 2 | 91 | / | 42 | 0 | 5 | −1 |
16 | 0.50 | 0.17 | 73 | 11 | 1.7 | −1.30 | 18.6 | 21.3 | 140 | 77 | 1 | 73 | / | 15 | 11 | 5 | 1 |
17 | 0.71 | 0.25 | 88 | 21 | 1.8 | −0.63 | 13.5 | 14.8 | 67 | 53 | 1 | 72 | AA | 14 | 12 | 5 | 2 |
18 | 0.71 | 0.27 | 73 | 18 | 15.4 | 0.87 | 19.1 | 42.4 | 90 | 43 | 1 | 85 | AC | 22 | 19 | 5 | 1 |
19 | 0.56 | 0.26 | 109 | 29 | 3.8 | 1.18 | 20.9 | 37.7 | 60 | 60 | 1 | 73 | / | 3 | 2 | 1 | 1 |
20 | 0.62 | 0.26 | 77 | 16 | 8.8 | 0.56 | 19.3 | 56.0 | 120 | 76 | 3 | 86 | AC | 11 | −29 | 4 | −2 |
21 | 0.36 | 0.19 | 93 | 15 | 8.7 | −1.99 | 29.2 | 79.1 | 90 | 61 | 1 | 79 | / | 19 | 9 | 5 | 0 |
22 | 0.37 | 0.16 | 71 | 19 | 2.6 | 0.24 | 13.6 | 9.3 | 110 | 95 | 3 | 70 | / | 16 | 7 | 5 | 0 |
23 | 0.53 | 0.27 | 84 | 19 | 6.9 | 0.67 | 21.5 | 80.4 | 25 | 65 | 2 | 65 | / | 16 | 13 | 4 | 2 |
24 | 0.65 | 0.29 | 89 | 27 | 5.6 | −1.20 | 12.1 | 57.1 | 75 | 55 | 1 | 53 | / | 13 | 10 | 4 | 3 |
25 | 0.63 | 0.26 | 80 | 19 | 61.3 | −42.60 | 18.7 | 46.8 | 105 | 90 | 4 | 69 | AA | 42 | 0 | 5 | −1 |
Pearson | ADC Avg | ADC Var | T2 Avg | T2 Var | ΔHU Avg | ΔHU Var | L | RBC % | Tt Lysis | t MeR | # Passes | Age | iNIHSS | ΔNIHSS | imRS | ΔmRS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spearman | |||||||||||||||||
ADC avg | 1.00 | 0.77 | 0.05 | 0.29 | 0.18 | −0.16 | −0.16 | −0.22 | −0.28 | −0.40 | −0.02 | 0.18 | −0.01 | −0.09 | −0.12 | 0.02 | |
ADC var | 0.71 | 1.00 | 0.24 | 0.57 | 0.26 | −0.21 | −0.18 | −0.06 | −0.35 | −0.59 | 0.01 | 0.19 | 0.04 | −0.10 | −0.26 | 0.06 | |
T2 avg | 0.06 | 0.24 | 1.00 | 0.60 | 0.12 | −0.18 | 0.23 | 0.03 | −0.23 | −0.37 | −0.04 | 0.04 | −0.22 | 0.04 | −0.52 | −0.05 | |
T2 var | 0.33 | 0.62 | 0.43 | 1.00 | 0.21 | −0.22 | −0.24 | −0.16 | −0.33 | −0.43 | 0.08 | −0.03 | −0.20 | −0.14 | −0.61 | 0.03 | |
ΔHU avg | 0.01 | 0.30 | 0.08 | 0.10 | 1.00 | −0.97 | 0.00 | 0.12 | 0.04 | 0.09 | 0.70 | 0.35 | 0.64 | −0.44 | 0.25 | −0.68 | |
ΔHU var | 0.05 | 0.14 | −0.24 | 0.05 | −0.35 | 1.00 | 0.02 | −0.03 | −0.04 | −0.07 | −0.66 | −0.24 | −0.66 | 0.38 | −0.23 | 0.62 | |
L | −0.15 | −0.19 | 0.14 | −0.25 | 0.08 | −0.01 | 1.00 | 0.50 | −0.23 | 0.21 | −0.08 | 0.21 | 0.01 | −0.03 | −0.03 | −0.21 | |
RBC % | −0.22 | −0.06 | 0.04 | −0.25 | 0.28 | −0.06 | 0.47 | 1.00 | −0.20 | 0.25 | 0.20 | −0.10 | 0.04 | −0.19 | 0.08 | −0.10 | |
tt Lysis | −0.38 | −0.50 | −0.30 | −0.38 | 0.01 | −0.19 | −0.19 | −0.21 | 1.00 | 0.15 | 0.10 | 0.07 | 0.12 | −0.15 | 0.21 | −0.17 | |
t MeR | −0.32 | −0.58 | −0.48 | −0.54 | 0.01 | −0.13 | 0.31 | 0.24 | 0.34 | 1.00 | 0.27 | −0.15 | 0.15 | −0.23 | 0.21 | −0.30 | |
# Passes | −0.18 | 0.01 | −0.09 | 0.04 | 0.60 | −0.26 | 0.02 | 0.29 | 0.17 | 0.38 | 1.00 | 0.16 | 0.34 | −0.55 | 0.19 | −0.60 | |
Age | 0.08 | 0.06 | 0.07 | −0.13 | 0.46 | −0.02 | 0.21 | −0.05 | 0.10 | −0.19 | 0.09 | 1.00 | 0.04 | −0.42 | 0.01 | −0.45 | |
iNIHSS | −0.04 | 0.00 | −0.19 | −0.17 | 0.37 | −0.42 | 0.05 | 0.02 | 0.22 | 0.17 | 0.28 | 0.03 | 1.00 | 0.01 | 0.65 | −0.43 | |
ΔNIHSS | 0.08 | 0.01 | −0.09 | −0.16 | −0.60 | 0.40 | −0.12 | −0.15 | −0.10 | −0.26 | −0.57 | −0.37 | 0.17 | 1.00 | 0.11 | 0.72 | |
imRS | −0.19 | −0.31 | −0.36 | −0.52 | 0.30 | −0.41 | −0.09 | 0.04 | 0.20 | 0.28 | 0.19 | 0.07 | 0.73 | 0.12 | 1.00 | −0.27 | |
ΔmRS | 0.06 | 0.10 | −0.03 | 0.15 | −0.70 | 0.49 | −0.26 | −0.01 | −0.22 | −0.34 | −0.54 | −0.45 | −0.35 | 0.66 | −0.35 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viltužnik, R.; Bajd, F.; Miloševič, Z.; Kocijančič, I.; Jeromel, M.; Fabjan, A.; Kralj, E.; Vidmar, J.; Serša, I. An Intermodal Correlation Study among Imaging, Histology, Procedural and Clinical Parameters in Cerebral Thrombi Retrieved from Anterior Circulation Ischemic Stroke Patients. J. Clin. Med. 2022, 11, 5976. https://doi.org/10.3390/jcm11195976
Viltužnik R, Bajd F, Miloševič Z, Kocijančič I, Jeromel M, Fabjan A, Kralj E, Vidmar J, Serša I. An Intermodal Correlation Study among Imaging, Histology, Procedural and Clinical Parameters in Cerebral Thrombi Retrieved from Anterior Circulation Ischemic Stroke Patients. Journal of Clinical Medicine. 2022; 11(19):5976. https://doi.org/10.3390/jcm11195976
Chicago/Turabian StyleViltužnik, Rebeka, Franci Bajd, Zoran Miloševič, Igor Kocijančič, Miran Jeromel, Andrej Fabjan, Eduard Kralj, Jernej Vidmar, and Igor Serša. 2022. "An Intermodal Correlation Study among Imaging, Histology, Procedural and Clinical Parameters in Cerebral Thrombi Retrieved from Anterior Circulation Ischemic Stroke Patients" Journal of Clinical Medicine 11, no. 19: 5976. https://doi.org/10.3390/jcm11195976
APA StyleViltužnik, R., Bajd, F., Miloševič, Z., Kocijančič, I., Jeromel, M., Fabjan, A., Kralj, E., Vidmar, J., & Serša, I. (2022). An Intermodal Correlation Study among Imaging, Histology, Procedural and Clinical Parameters in Cerebral Thrombi Retrieved from Anterior Circulation Ischemic Stroke Patients. Journal of Clinical Medicine, 11(19), 5976. https://doi.org/10.3390/jcm11195976