Sirolimus-Based Immunosuppression Is Associated with Decreased Incidence of Post-Transplant Lymphoproliferative Disorder after Heart Transplantation: A Double-Center Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Immunosuppression
2.3. Biopsies
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. SRL-Based Immunosuppression as an Independent Predictor of PTLD
3.3. Types of PTLD and Treatment Strategies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PTLD | post-transplant lymphoproliferative disorder |
MTOR | mammalian target of rapamycin |
HT | heart transplantation |
CNI | calcineurin inhibitor |
EBV | Epstein–Barr virus |
References
- Dierickx, D.; Habermann, T.M. Post-transplantation lymphoproliferative disorders in adults. N. Engl. J. Med. 2018, 378, 549–562. [Google Scholar] [CrossRef]
- Morscio, J.; Tousseyn, T. Recent insights in the pathogenesis of post-transplantation lymphoproliferative disorders. World J. Transplant. 2016, 6, 505–516. [Google Scholar] [CrossRef]
- Cockfield, S.M. Identifying the patient at risk for post-transplant lymphoproliferative disorder. Transpl. Infect. Dis. 2001, 3, 70–78. [Google Scholar] [CrossRef]
- Opelz, G.; Dohler, B. Lymphomas after solid organ transplantation: A collaborative transplant study report. Am. J. Transplant. 2004, 4, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, S.N. Rapamune (RAPA, rapamycin, sirolimus): Mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin. Biochem. 1998, 31, 335–340. [Google Scholar] [CrossRef]
- Sousa, J.; Costa, M.; Abizaid, A. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: A quantitative coronary angiography and three-dimensional intravascular ultrasound study. Circulation 2001, 103, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Asleh, R.; Briasoulis, A.; Kremers, W.K.; Adigun, R.; Boilson, B.A.; Pereira, N.L.; Edwards, B.S.; Clavell, A.L.; Schirger, J.A.; Rodeheffer, R.J.; et al. Long-Term Sirolimus for Primary Immunosuppression in Heart Transplant Recipients. J. Am. Coll. Cardiol. 2018, 71, 636–650. [Google Scholar] [CrossRef]
- Mancini, D.; Pinney, S.; Burkhoff, D.; LaManca, J.; Itescu, S.; Burke, E.; Edwards, N.; Oz, M.; Marks, A.R. Use of rapamycin slows progression of cardiac transplant vasculopathy. Circulation 2003, 108, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushwaha, S.S.; Khalpey, Z.; Frantz, R.; Rodeheffer, R.J.; Clavell, A.L.; Daly, R.C.; McGregor, C.G.; Edwards, B.S. Sirolimus in cardiac transplantation: Use as a primary immunosuppressant in calcineurin inhibitor-induced nephrotoxicity. J. Heart Lung Transplant. 2005, 24, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Fine, N.M.; Kushwaha, S.S. Recent Advances in Mammalian Target of Rapamycin Inhibitor Use in Heart and Lung Transplantation. Transplantation 2016, 100, 2558–2568. [Google Scholar] [CrossRef] [PubMed]
- Manuelli, M.; De Luca, L.; Iaria, G.; Tatangelo, P.; Sforza, D.; Perrone, L.; Bellini, M.; Angelico, R.; Anselmo, A.; Tisone, G. Conversion to rapamycin immunosuppression for malignancy after kidney transplantation. Transplant. Proc. 2010, 42, 1314–1316. [Google Scholar] [CrossRef]
- Furukawa, S.; Wei, L.; Krams, S.M.; Esquivel, C.O.; Martinez, O.M. PI3Kdelta inhibition augments the efficacy of rapamycin in suppressing proliferation of Epstein-Barr virus (EBV)+ B cell lymphomas. Am. J. Transplant. 2013, 13, 2035–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewski, M.; Korecka, M.; Kossev, P.; Li, S.; Goldman, J.; Moore, J.; Silberstein, L.E.; Nowell, P.C.; Schuler, W.; Shaw, L.M.; et al. The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: A potential approach to prevention and treatment of posttransplant lymphoproliferative disorders. Proc. Natl. Acad. Sci. USA 2000, 97, 4285–4290. [Google Scholar] [CrossRef] [Green Version]
- Ceppi, F.; Duval, M.; Teira, P.; Therrien, R.; Ovetchkine, P.; Mallette, B.; Bittencourt, H. Calcineurin inhibitor-free graft-versus-host disease prophylaxis with sirolimus and mycophenolate mofetil in a second allogeneic stem cell transplantation for engraftment failure and rituximab-refractory Epstein-Barr virus-induced posttransplant lymphoproliferative disease. J. Pediatr. Hematol. Oncol. 2014, 36, e319–e321. [Google Scholar]
- Pascual, J. Post-transplant lymphoproliferative disorder—The potential of proliferation signal inhibitors. Nephrol. Dial. Transplant. 2007, 22, i27–i35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asleh, R.; Clavell, A.L.; Pereira, N.L.; Smith, B.; Briasoulis, A.; Alnsasra, H.; Kremers, W.K.; Habermann, T.M.; Otley, C.C.; Li, X.; et al. Incidence of Malignancies in Patients Treated with Sirolimus following Heart Transplantation. J. Am. Coll. Cardiol. 2019, 73, 2676–2688. [Google Scholar] [CrossRef]
- Raichlin, E.; Bae, J.-H.; Khalpey, Z.; Edwards, B.S.; Kremers, W.K.; Clavell, A.L.; Rodeheffer, R.J.; Frantz, R.; Rihal, C.; Lerman, A.; et al. Conversion to sirolimus as primary immunosuppression attenuates the progression of allograft vasculopathy after cardiac transplantation. Circulation 2007, 116, 2726–2733. [Google Scholar] [CrossRef]
- Stewart, S.; Winters, G.L.; Fishbein, M.C.; Tazelaar, H.D.; Kobashigawa, J.; Abrams, J.; Andersen, C.B.; Angelini, A.; Berry, G.J.; Burke, M.M.; et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transplant. 2005, 24, 1710–1720. [Google Scholar] [CrossRef]
- Fleming, T.R.; Lin, D.Y. Survival analysis in clinical trials: Past developments and future directions. Biometrics 2000, 56, 971–983. [Google Scholar] [CrossRef]
- Kahan, B.D.; Yakupoglu, Y.K.; Schoenberg, L.; Knight, R.J.; Katz, S.M.; Lai, D.; Van Buren, C.T. Low incidence of malignancy among sirolimus/cyclosporine-treated renal transplant recipients. Transplantation 2005, 80, 749–758. [Google Scholar] [CrossRef]
- El-Salem, M.; Raghunath, P.N.; Marzec, M.; Wlodarski, P.; Tsai, D.; Hsi, E.; Wasik, M.A. Constitutive activation of mTOR signaling pathway in post-transplant lymphoproliferative disorders. Lab Investig. 2007, 87, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaysberg, M.; Balatoni, C.E.; Nepomuceno, R.R.; Krams, S.M.; Martinez, O.M. Rapamycin inhibits proliferation of Epstein-Barr virus-positive B-cell lymphomas through modulation of cell-cycle protein expression. Transplantation 2007, 83, 1114–1121. [Google Scholar] [CrossRef]
- Nepomuceno, R.R.; Balatoni, C.E.; Natkunam, Y.; Snow, A.L.; Krams, S.M.; Martinez, O.M. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res. 2003, 63, 4472–4480. [Google Scholar] [PubMed]
- Johnston, P.B.; LaPlant, B.; McPhail, E.; Habermann, T.M.; Inwards, D.J.; Micallef, I.N.; Colgan, J.P.; Nowakowski, G.S.; Ansell, S.M.; Witzig, T.E. Everolimus combined with R-CHOP-21 for new, untreated, diffuse large B-cell lymphoma (NCCTG 1085 [Alliance]): Safety and efficacy results of a phase 1 and feasibility trial. Lancet Haematol. 2016, 3, e309–e316. [Google Scholar] [CrossRef] [Green Version]
- Witzig, T.E.; Reeder, C.B.; LaPlant, B.R.; Gupta, M.K.; Johnston, P.B.; Micallef, I.N.; Porrata, L.F.; Ansell, S.M.; Colgan, J.P.; Jacobsen, E.D.; et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 2011, 25, 341–347. [Google Scholar] [CrossRef]
- Kumarasinghe, G.; Lavee, O.; Parker, A.; Nivison-Smith, I.; Milliken, S.; Dodds, A.; Joseph, J.; Fay, K.; Ma, D.D.; Malouf, M.; et al. Post-transplant lymphoproliferative disease in heart and lung transplantation: Defining risk and prognostic factors. J. Heart Lung Transplant. 2015, 34, 1406–1414. [Google Scholar] [CrossRef] [Green Version]
- Evens, A.M.; Roy, R.; Sterrenberg, D.; Moll, M.Z.; Chadburn, A.; Gordon, L.I. Post-transplantation lymphoproliferative disorders: Diagnosis, prognosis, and current approaches to therapy. Curr. Oncol. Rep. 2010, 12, 383–394. [Google Scholar] [CrossRef]
- Hayes, D., Jr.; Tumin, D.; Foraker, R.E.; Tobias, J.D. Posttransplant lymphoproliferative disease and survival in adult heart transplant recipients. J. Cardiol. 2017, 69, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Caillard, S.; Porcher, R.; Provot, F.; Dantal, J.; Choquet, S.; Durrbach, A.; Morelon, E.; Moal, V.; Janbon, B.; Alamartine, E.; et al. Post-transplantation lymphoproliferative disorder after kidney transplantation: Report of a nationwide French registry and the development of a new prognostic score. J. Clin. Oncol. 2013, 31, 1302–1309. [Google Scholar] [CrossRef]
- Walker, R.C.; Paya, C.V.; Marshall, W.F.; Strickler, J.G.; Wiesner, R.H.; Velosa, J.A.; Habermann, T.M.; Daly, R.C.; McGregor, C.G. Pretransplantation seronegative Epstein-Barr virus status is the primary risk factor for posttransplantation lymphoproliferative disorder in adult heart, lung, and other solid organ transplantations. J. Heart Lung Transplant. 1995, 14, 214–221. [Google Scholar]
- Walker, R.C.; Marshall, W.F.; Strickler, J.G.; Wiesner, R.H.; Velosa, J.A.; Habermann, T.M.; McGregor, C.G.A.; Paya, C.V. Pretransplantation assessment of the risk of lymphoproliferative disorder. Clin. Infect. Dis. 1995, 20, 1346–1353. [Google Scholar] [CrossRef]
- Caillard, S.; Dhamidharka, V.; Agodoa, L.; Bohen, E.; Abbott, K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation 2005, 80, 1233–1243. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.S.; Tsodikov, A.; Cibrik, D.M.; Ross, C.W.; Kaminski, M.S.; Blayney, D.W. Lymphoma after solid organ transplantation: Risk, response to therapy, and survival at a transplantation center. J. Clin. Oncol. 2009, 27, 3354–3362. [Google Scholar]
- Swinnen, L.J.; Costanzo-Nordin, M.R.; Fisher, S.G. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N. Engl. J. Med. 1990, 323, 1723–1728. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Stevens, G. Risk for post-transplant lymphoproliferative disorder after polyclonal antibody induction in kidney transplantation. Pediatr. Transplant. 2005, 9, 622–626. [Google Scholar] [CrossRef]
- Bustami, R.T.; Ojo, A.O.; Wolfe, R.A.; Merion, R.M.; Bennett, W.M.; McDiarmid, S.V.; Leichtman, A.B.; Held, P.J.; Port, F.K. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am. J. Transplant. 2004, 4, 87–93. [Google Scholar] [CrossRef]
- Zuckermann, A.; Keogh, A.; Crespo-Leiro, M.G.; Mancini, D.; Vilchez, F.G.; Almenar, L.; Brozena, S.; Eisen, H.; Tai, S.S.; Kushwaha, S. Randomized controlled trial of sirolimus conversion in cardiac transplant recipients with renal insufficiency. Am. J. Transplant. 2012, 12, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
Variable | PTLD | No PTLD | Total |
---|---|---|---|
(N = 30) | (N = 560) | (N = 590) | |
Age at transplant (years) | |||
Mean ± SD | 53.9 ± 11.1 | 51.5 ± 11.8 | 51.6 ± 11.8 |
Median | 56.5 | 54 | 54 |
Male gender (n, %) | 25 (83.3%) | 408 (72.9%) | 433 (73.4%) |
Multi-organ transplants † (n, %) | 3 (10.0%) | 60 (10.7%) | 63 (10.7%) |
EBV mismatch (N, n, %) | 5 of 16 (31%) | 13 of 403 (3.2%) | 18 of 419 (4.3%) |
Induction regimen | |||
OKT3 | 19 (86.4%) | 191 (46.4%) | 210 (48.5%) |
ATG | 3 (13.6%) | 173 (42.1%) | 176 (40.7) |
Basiliximab | 0 (0.0%) | 8 (2.0%) | 8 (1.8%) |
Other | 0 (0.0%) | 8 (2.0%) | 8 (1.8%) |
No induction | 0 (0.0%) | 31 (7.5%) | 31 (7.2%) |
Missing induction | 8 | 149 | 157 |
Variable | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
Baseline characteristics | |||
Mayo Clinic Rochester | 1.19 | 0.40, 3.52 | 0.76 |
Patient age at heart transplant per 10 years | 1.29 | 0.91, 1.81 | 0.15 |
Male gender | 1.58 | 0.60, 4.14 | 0.35 |
Multiple organs transplanted | 1.24 | 0.37, 4.11 | 0.73 |
EBV mismatch † | 11.87 | 4.12, 34.19 | <0.001 |
Missing EBV information † | 1.46 | 0.63, 3.41 | 0.38 |
EBV mismatch ‡ | 10.03 | 3.78, 26.61 | <0.001 |
OKT3 induction vs. all others * | 1.90 | 0.89, 4.06 | 0.10 |
Time-dependent characteristics | |||
Sirolimus | 0.19 | 0.04, 0.80 | 0.02 |
Rejection | 1.71 | 0.81, 3.60 | 0.16 |
Model | Variable | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|---|
1 | Stepwise Model * | |||
Sirolimus (time-dependent) | 0.12 | 0.03, 0.55 | 0.006 | |
EBV mismatch ‡ | 17.65 | 6.20, 50.25 | <0.001 | |
2 | Adjusted Models | |||
Sirolimus (time-dependent) | 0.20 | 0.05, 0.83 | 0.03 | |
Induction ** | ||||
OKT3 | 1.80 | 0.84, 3.87 | 0.13 | |
3 | Sirolimus (time-dependent) | 0.14 | 0.03, 0.62 | 0.009 |
EBV mismatch ‡ | 19.43 | 6.87, 54.97 | <0.001 | |
Induction ** | ||||
OKT3 | 2.03 | 0.93, 4.44 | 0.07 | |
4 | Sirolimus (time-dependent) | 0.19 | 0.04, 0.82 | 0.02 |
Rejection (time-dependent) | 1.67 | 0.79, 3.51 | 0.18 | |
5 | Sirolimus (time-dependent) | 0.20 | 0.05, 0.84 | 0.03 |
Rejection (time-dependent) | 1.52 | 0.72, 3.24 | 0.28 | |
Induction ** | ||||
OKT3 | 1.68 | 0.78, 3.66 | 0.19 | |
6 | Sirolimus (time-dependent) | 0.14 | 0.03, 0.62 | 0.01 |
Rejection (time-dependent) | 1.39 | 0.64, 3.01 | 0.40 | |
EBV mismatch ‡ | 18.41 | 6.51, 52.06 | <0.001 | |
Induction ** | ||||
OKT3 | 1.89 | 0.85, 4.20 | 0.12 |
Time from Heart Transplant | While Not on Sirolimus | While on Sirolimus | |
---|---|---|---|
0–1 month | Number at risk of PTLD | 590 | 1 |
PY during interval | 48.42 | 0.04 | |
Number with PTLD | 0 | 0 | |
Rate † | 0 | 0 | |
95% CI † | (0, 762) | (0, 9624) | |
1–6 months | Number at risk of PTLD | 589 | 64 |
PY during interval | 232.68 | 11.05 | |
Number with PTLD | 5 | 0 | |
Rate † | 215 | 0 | |
95% CI † | (70, 501) | (0, 3338) | |
6–12 months | Number at risk of PTLD | 521 | 127 |
PY during interval | 241.19 | 45.19 | |
Number with PTLD | 30 | 0 | |
Rate † | 124 | 0 | |
95% CI † | (26, 364) | (0, 816) | |
1–2 years | Number at risk of PTLD | 453 | 167 |
PY during interval | 374.17 | 135.93 | |
Number with PTLD | 3 | 0 | |
Rate † | 76 | 0 | |
95% CI † | (16, 222) | (0, 271) | |
2–5 years | Number at risk of PTLD | 420 | 190 |
PY during interval | 862.60 | 396.17 | |
Number with PTLD | 7 | 0 | |
Rate † | 81 | 0 | |
95% CI † | (33, 167) | (0, 93) | |
5–10 years | Number at risk of PTLD | 298 | 141 |
PY during interval | 762.62 | 415.40 | |
Number with PTLD | 7 | 1 | |
Rate † | 92 | 24 | |
95% CI † | (37, 189) | (1, 134) | |
10+ years | Number at risk of PTLD | 138 | 69 |
PY during interval | 460.49 | 242.43 | |
Number with PTLD | 3 | 1 | |
Rate † | 64 | 41 | |
95% CI † | (13, 190) | (1, 230) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asleh, R.; Vucicevic, D.; Petterson, T.M.; Kremers, W.K.; Pereira, N.L.; Daly, R.C.; Edwards, B.S.; Steidley, D.E.; Scott, R.L.; Kushwaha, S.S. Sirolimus-Based Immunosuppression Is Associated with Decreased Incidence of Post-Transplant Lymphoproliferative Disorder after Heart Transplantation: A Double-Center Study. J. Clin. Med. 2022, 11, 322. https://doi.org/10.3390/jcm11020322
Asleh R, Vucicevic D, Petterson TM, Kremers WK, Pereira NL, Daly RC, Edwards BS, Steidley DE, Scott RL, Kushwaha SS. Sirolimus-Based Immunosuppression Is Associated with Decreased Incidence of Post-Transplant Lymphoproliferative Disorder after Heart Transplantation: A Double-Center Study. Journal of Clinical Medicine. 2022; 11(2):322. https://doi.org/10.3390/jcm11020322
Chicago/Turabian StyleAsleh, Rabea, Darko Vucicevic, Tanya M. Petterson, Walter K. Kremers, Naveen L. Pereira, Richard C. Daly, Brooks S. Edwards, D. Eric Steidley, Robert L. Scott, and Sudhir S. Kushwaha. 2022. "Sirolimus-Based Immunosuppression Is Associated with Decreased Incidence of Post-Transplant Lymphoproliferative Disorder after Heart Transplantation: A Double-Center Study" Journal of Clinical Medicine 11, no. 2: 322. https://doi.org/10.3390/jcm11020322
APA StyleAsleh, R., Vucicevic, D., Petterson, T. M., Kremers, W. K., Pereira, N. L., Daly, R. C., Edwards, B. S., Steidley, D. E., Scott, R. L., & Kushwaha, S. S. (2022). Sirolimus-Based Immunosuppression Is Associated with Decreased Incidence of Post-Transplant Lymphoproliferative Disorder after Heart Transplantation: A Double-Center Study. Journal of Clinical Medicine, 11(2), 322. https://doi.org/10.3390/jcm11020322