Predicting the Recurrence of Hepatocellular Carcinoma after Primary Living Donor Liver Transplantation Using Metabolic Parameters Obtained from 18F-FDG PET/CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. 18F-18 FDG PET/CT Acquisition
2.3. 18F-FDG PET/CT Interpretation and Image Analysis
2.4. Data Analyses
3. Results
3.1. Patient Characteristics
3.2. Comparison between bwSUV and SUL According to the BMI and Liver Cirrhosis
3.3. Metabolic Parameters on 18F-FDG PET/CT and Recurrence
3.4. Univariate and Multivariate Survival Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J. Trends in Liver Cancer Mortality Among Adults Aged 25 and Over in the United States, 2000–2016. NCHS Data Brief 2018, 314, 1–8. [Google Scholar]
- Clavien, P.A.; Lesurtel, M.; Bossuyt, P.M.; Gores, G.J.; Langer, B.; Perrier, A. Recommendations for liver transplantation for hepatocellular carcinoma: An international consensus conference report. Lancet Oncol. 2012, 13, e11–e22. [Google Scholar] [CrossRef] [Green Version]
- Azoulay, D.; Audureau, E.; Bhangui, P.; Belghiti, J.; Boillot, O.; Andreani, P.; Castaing, D.; Cherqui, D.; Irtan, S.; Calmus, Y.; et al. Living or Brain-dead Donor Liver Transplantation for Hepatocellular Carcinoma: A Multicenter, Western, Intent-to-treat Cohort Study. Ann. Surg. 2017, 266, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Hibi, T.; Wei Chieh, A.K.; Chi-Yan Chan, A.; Bhangui, P. Current status of liver transplantation in Asia. Int. J. Surg. 2020, 82, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wang, J.; Li, H.; Chen, X.; Zeng, Y. Living or deceased organ donors in liver transplantation for hepatocellular carcinoma: A systematic review and meta-analysis. HPB 2019, 21, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, M.A.; Ghobrial, R.M.; Tong, M.J.; Hiatt, J.R.; Cameron, A.M.; Hong, J.; Busuttil, R.W. Recurrence of Hepatocellular Carcinoma Following Liver Transplantation: A Review of Preoperative and Postoperative Prognostic Indicators. Arch. Surg. 2008, 143, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapisochin, G.; Goldaracena, N.; Astete, S.; Laurence, J.M.; Davidson, D.; Rafael, E.; Castells, L.; Sandroussi, C.; Bilbao, I.; Dopazo, C.; et al. Benefit of Treating Hepatocellular Carcinoma Recurrence after Liver Transplantation and Analysis of Prognostic Factors for Survival in a Large Euro-American Series. Ann. Surg. Oncol. 2015, 22, 2286–2294. [Google Scholar] [CrossRef]
- Bodzin, A.S.; Lunsford, K.E.; Markovic, D.; Harlander-Locke, M.P.; Busuttil, R.W.; Agopian, V.G. Predicting Mortality in Patients Developing Recurrent Hepatocellular Carcinoma After Liver Transplantation: Impact of Treatment Modality and Recurrence Characteristics. Ann. Surg. 2017, 266, 118–125. [Google Scholar] [CrossRef]
- Filgueira, N.A. Hepatocellular carcinoma recurrence after liver transplantation: Risk factors, screening and clinical presentation. World J. Hepatol. 2019, 11, 261–272. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef]
- Yao, F.Y.; Ferrell, L.; Bass, N.M.; Watson, J.J.; Bacchetti, P.; Venook, A.; Ascher, N.L.; Roberts, J.P. Liver transplantation for hepatocellular carcinoma: Expansion of the tumor size limits does not adversely impact survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Llovet, J.M.; Miceli, R.; Bhoori, S.; Schiavo, M.; Mariani, L.; Camerini, T.; Roayaie, S.; Schwartz, M.E.; Grazi, G.L.; et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: A retrospective, exploratory analysis. Lancet Oncol. 2009, 10, 35–43. [Google Scholar] [CrossRef]
- Sotiropoulos, G.C.; Malagó, M.; Molmenti, E.; Paul, A.; Nadalin, S.; Brokalaki, E.; Kühl, H.; Dirsch, O.; Lang, H.; Broelsch, C.E. Liver transplantation for hepatocellular carcinoma in cirrhosis: Is clinical tumor classification before transplantation realistic? Transplantation 2005, 79, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.R.; Chung, J.W.; Yu, M.H.; Lee, M.; Kim, J.H. Diagnostic accuracy of contrast-enhanced dynamic CT for small hypervascular hepatocellular carcinoma and assessment of dynamic enhancement patterns: Results of two-year follow-up using cone-beam CT hepatic arteriography. PLoS ONE 2018, 13, e0203940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grąt, K.; Grąt, M.; Rowiński, O.; Patkowski, W.; Zieniewicz, K.; Pacho, R. Accuracy of Computed Tomography in the Assessment of Milan Criteria in Liver Transplantation for Hepatocellular Carcinoma. Transplant. Proc. 2018, 50, 2002–2005. [Google Scholar] [CrossRef]
- Ziai, P.; Hayeri, M.R.; Salei, A.; Salavati, A.; Houshmand, S.; Alavi, A.; Teytelboym, O.M. Role of Optimal Quantification of Fdg Pet Imaging in the Clinical Practice of Radiology. Radiographics 2016, 36, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Refaat, R.; Basha, M.A.A.; Hassan, M.S.; Hussein, R.S.; El Sammak, A.A.; El Sammak, D.; Radwan, M.H.S.; Awad, N.M.; Saad El-Din, S.A.; Elkholy, E.; et al. Efficacy of contrast-enhanced FDG PET/CT in patients awaiting liver transplantation with rising alpha-fetoprotein after bridge therapy of hepatocellular carcinoma. Eur. Radiol. 2018, 28, 5356–5367. [Google Scholar] [CrossRef]
- Ling, L.L.-L.; Hsu, C.-C.; Yong, C.-C.; Elsarawy, A.M.; Chan, Y.-C.; Wang, C.-C.; Li, W.-F.; Lin, T.-L.; Kuo, F.-Y.; Cheng, Y.-F.; et al. FDG-PET predicted unfavorable tumor histology in living donor liver transplant recipients; a retrospective cohort study. Int. J. Surg. 2019, 69, 124–131. [Google Scholar] [CrossRef]
- Lee, J.W.; Paeng, J.C.; Kang, K.W.; Kwon, H.W.; Suh, K.S.; Chung, J.K.; Lee, M.C.; Lee, D.S. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J. Nucl. Med. 2009, 50, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.I.; Paeng, J.C.; Cheon, G.J.; Suh, K.S.; Lee, D.S.; Chung, J.K.; Kang, K.W. Prediction of Posttransplantation Recurrence of Hepatocellular Carcinoma Using Metabolic and Volumetric Indices of 18F-FDG PET/CT. J. Nucl. Med. 2016, 57, 1045–1051. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.D.; Lee, B.; Kim, S.H.; Joo, J.; Kim, S.K.; Kim, Y.K.; Park, S.J. Proposal of new expanded selection criteria using total tumor size and (18)F-fluorodeoxyglucose—Positron emission tomography/computed tomography for living donor liver transplantation in patients with hepatocellular carcinoma: The National Cancer Center Korea criteria. World J. Transplant. 2016, 6, 411–422. [Google Scholar] [CrossRef]
- Detry, O.; Govaerts, L.; Deroover, A.; Vandermeulen, M.; Meurisse, N.; Malenga, S.; Bletard, N.; Mbendi, C.; Lamproye, A.; Honoré, P.; et al. Prognostic value of (18)F-FDG PET/CT in liver transplantation for hepatocarcinoma. World J. Gastroenterol. 2015, 21, 3049–3054. [Google Scholar] [CrossRef]
- Zasadny, K.R.; Wahl, R.L. Standardized Uptake Values of Normal Tissues at Pet with 2-[Fluorine-18]-Fluoro-2-Deoxy-D-Glucose: Variations with Body Weight and a Method for Correction. Radiology 1993, 189, 847–850. [Google Scholar] [CrossRef]
- Sarikaya, I.; Albatineh, A.N.; Sarikaya, A. Revisiting Weight-Normalized SUV and Lean-Body-Mass-Normalized SUV in PET Studies. J. Nucl. Med. Technol. 2020, 48, 163–167. [Google Scholar] [CrossRef]
- Miao, W.; Nie, P.; Yang, G.; Wang, Y.; Yan, L.; Zhao, Y.; Yu, T.; Yu, M.; Wu, F.; Rao, W.; et al. An FDG PET/CT metabolic parameter-based nomogram for predicting the early recurrence of hepatocellular carcinoma after liver transplantation. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3656–3665. [Google Scholar] [CrossRef] [PubMed]
- Bauschke, A.; Altendorf-Hofmann, A.; Ardelt, M.; Kissler, H.; Tautenhahn, H.-M.; Settmacher, U. Impact of successful local ablative bridging therapy prior to liver transplantation on long-term survival in patients with hepatocellular carcinoma in cirrhosis. J. Cancer Res. Clin. Oncol. 2020, 146, 1819–1827. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.W.; Song, G.W.; Kwon, J.H.; Hwang, S.; Kim, K.H.; Ahn, C.S.; Moon, D.B.; Park, G.C.; Lee, S.G. The Real Impact of Bridging or Downstaging on Survival Outcomes after Liver Transplantation for Hepatocellular Carcinoma. Liver Cancer 2020, 9, 721–733. [Google Scholar] [CrossRef]
- Kim, S.H.; Won, K.S.; Choi, B.W.; Jo, I.; Zeon, S.K.; Chung, W.J.; Kwon, J.H. Usefulness of F-18 FDG PET/CT in the Evaluation of Early Treatment Response After Interventional Therapy for Hepatocellular Carcinoma. Nucl. Med. Mol. Imaging 2012, 46, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.J.; Cheng, J.Y.; Hu, S.L.; Zhang, G.Y.; Fu, Y.; Zhang, Y.J. Value of 18F-FDG PET/CT in detecting viable tumor and predicting prognosis of hepatocellular carcinoma after TACE. Clin. Radiol. 2015, 70, 128–137. [Google Scholar] [CrossRef]
- Kim, H.O.; Kim, J.S.; Shin, Y.M.; Ryu, J.S.; Lee, Y.S.; Lee, S.G. Evaluation of Metabolic Characteristics and Viability of Lipiodolized Hepatocellular Carcinomas Using 18f-Fdg Pet/Ct. J. Nucl. Med. 2010, 51, 1849–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.H.; Suh, K.S.; Lee, H.W.; Cho, E.H.; Cho, J.Y.; Cho, Y.B.; Yi, N.J.; Lee, K.U. The role of (18)F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients. Liver Transpl. 2006, 12, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Suh, K.S.; Suh, S.W.; Yoo, T.; Kim, H.; Park, M.S.; Choi, Y.; Paeng, J.C.; Yi, N.J.; Lee, K.W. Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation. J. Hepatol. 2016, 64, 852–859. [Google Scholar] [CrossRef]
- Kornberg, A.; Witt, U.; Schernhammer, M.; Kornberg, J.; Ceyhan, G.O.; Mueller, K.; Friess, H.; Thrum, K. Combining 18F-FDG positron emission tomography with Up-to-seven criteria for selecting suitable liver transplant patients with advanced hepatocellular carcinoma. Sci. Rep. 2017, 7, 14176. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Chen, C.L.; Wang, C.C.; Lin, C.C.; Yong, C.C.; Wang, S.H.; Liu, Y.W.; Lin, T.L.; Lee, W.F.; Lin, Y.H.; et al. Combination of FDG-PET and UCSF Criteria for Predicting HCC Recurrence after Living Donor Liver Transplantation. Transplantation 2016, 100, 1925–1932. [Google Scholar] [CrossRef]
- Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A Systematic Review of the Factors Affecting Accuracy of SUV Measurements. AJR Am. J. Roentgenol. 2010, 195, 310–320. [Google Scholar] [CrossRef]
- Akamatsu, G.; Ikari, Y.; Nishida, H.; Nishio, T.; Ohnishi, A.; Maebatake, A.; Sasaki, M.; Senda, M. Influence of Statistical Fluctuation on Reproducibility and Accuracy of SUVmax and SUVpeak: A Phantom Study. J. Nucl. Med. Technol. 2015, 43, 222–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verloh, N.; Einspieler, I.; Utpatel, K.; Menhart, K.; Brunner, S.; Hofheinz, F.; van den Hoff, J.; Wiggermann, P.; Evert, M.; Stroszczynski, C.; et al. In vivo confirmation of altered hepatic glucose metabolism in patients with liver fibrosis/cirrhosis by (18)F-FDG PET/CT. EJNMMI Res. 2018, 8, 98. [Google Scholar] [CrossRef]
- Yue, X.; Wang, J.; Ye, F.; Xiao, D. Mean standardized uptake value (SUVmean) and global hepatic glycolysis as potential imaging markers reflecting hepatic functional capacity: Evidence from 18F-FDG PET/CT. Hippokratia 2018, 22, 122–126. [Google Scholar] [PubMed]
- Bettinardi, V.; Castiglioni, I.; De Bernardi, E.; Gilardi, M.C. PET quantification: Strategies for partial volume correction. Clin. Transl. Imaging 2014, 2, 199–218. [Google Scholar] [CrossRef]
- Mahmud, M.H.; Nordin, A.J.; Ahmad Saad, F.F.; Azman, A.Z. Impacts of biological and procedural factors on semiquantification uptake value of liver in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging. Quant. Imaging Med. Surg. 2015, 5, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Malladi, A.; Viner, M.; Jackson, T.; Mercier, G.; Subramaniam, R.M. PET/CT mediastinal and liver FDG uptake: Effects of biological and procedural factors. J. Med. Imaging Radiat. Oncol. 2013, 57, 169–175. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall | Non-Recurrence | Recurrence | p Value |
---|---|---|---|---|
Patients (n) | 49 | 33 | 16 | |
Age, mean (years) | 53.8 ± 5.8 | 54.0 ± 5.8 | 53.4 ± 6.0 | 0.920 |
Sex (female/male) | 9/40 | 7/26 | 2/14 | 0.698 |
MELD score | 10.3 ± 4.1 | 10.5 ± 4.7 | 10.0 ± 2.9 | 0.762 |
Child–Pugh score | 6.3 ± 1.8 | 6.3 ± 1.9 | 6.4 ± 1.8 | 0.862 |
Body mass index, mean | 23.7 ± 3.0 | 24.4 ± 2.9 | 22.2 ± 2.9 | 0.038 * |
Etiology | 0.162 | |||
HBV | 37 | 22 | 15 | |
HCV | 5 | 5 | 0 | |
Neither HBV nor HCV | 7 | 6 | 1 | |
Liver cirrhosis (negative/positive) | 18/31 | 13/20 | 5/11 | 0.754 |
Ascites (negative/positive) | 39/10 | 28/5 | 11/5 | 0.261 |
AFP, median (ng/mL) | 37.1 (range, 1.0–147,390.7) | 28.0 (range, 1.3–44,848.8) | 73.2 (range, 1.0–147,390.7) | 0.084 |
PIVKA-II, median (mAU/mL) | 52.0 (range, 9.0–18,361.2) | 37.4 (range, 9.0–9853.0) | 560.0 (range, 15.0–18,361.2) | 0.072 |
Cold ischemia time (min) | 60.7 ± 39.6 | 58.4 ± 41.1 | 61.9 ± 38.2 | 0.358 |
Warm ischemia time (min) | 36.2 ± 14.5 | 35.4 ± 13.2 | 36.6 ± 15.8 | 0.581 |
Estimated blood loss (mL) | 3412 ± 2688 | 3235 ± 1337 | 3478 ± 3521 | 0.159 |
GRWR | 1.11 ± 0.23 | 1.08 ± 0.23 | 1.18 ± 0.23 | 0.285 |
T-stage (1/2/3/4) | 24/15/7/3 | 21/10/2/0 | 3/5/5/3 | 0.001 * |
Tumor number, mean | 2.3 ± 1.5 | 2.0 ± 1.3 | 2.9 ± 1.7 | 0.063 |
Largest tumor size, mean (cm) | 4.5 ± 4.7 | 3.0 ± 2.0 | 7.5 ± 7.0 | <0.001 * |
Microvascular invasion (negative/positive) | 46/3 | 33/0 | 13/3 | 0.030 * |
Milan criteria (within/beyond) | 23/26 | 22/11 | 1/15 | <0.001 * |
UCSF criteria (within/beyond) | 33/16 | 28/5 | 5/11 | <0.001 * |
Up-to-seven criteria (within/beyond) | 32/17 | 26/7 | 6/10 | 0.009 * |
Variables | Overall (n = 49) | p Value | BMI ≤ 25 (n = 33) | p Value | BMI > 25 (n = 16) | p Value |
---|---|---|---|---|---|---|
T-bwSUVmax | 3.68 ± 2.62 | <0.001 * | 4.07 ± 2.99 | <0.001 * | 2.89 ± 1.41 | 0.008 * |
T-SULmax | 3.09 ± 2.10 | 3.38 ± 2.39 | 2.48 ± 1.16 | |||
L-bwSUVmax | 2.53 ± 0.47 | <0.001 * | 2.44 ± 0.41 | <0.001 * | 2.71 ± 0.55 | 0.001 * |
L-SULmax | 2.11 ± 0.43 | 2.13 ± 0.39 | 2.07 ± 0.50 | |||
L-bwSUVmean | 1.98 ± 0.50 | <0.001 * | 1.94 ± 0.47 | <0.001 * | 2.08 ± 0.55 | <0.001 * |
L-SULmean | 1.53 ± 0.40 | 1.56 ± 0.38 | 1.45 ± 0.43 |
Variables | Overall | Non-Recurrence | Recurrence | p Value |
---|---|---|---|---|
Visual findings (negative/positive) | 31/18 | 23/10 | 8/8 | 0.217 |
T-bwSUVmax | 3.68 ± 2.62 | 3.26 ± 1.30 | 4.56 ± 4.14 | 0.654 |
T-bwSUVmax/L-bwSUVmax | 1.49 ± 1.00 | 1.29 ± 0.54 | 1.92 ± 1.51 | 0.070 |
T-bwSUVmax/L-bwSUVmean | 1.90 ± 1.09 | 1.66 ± 0.59 | 2.39 ± 1.63 | 0.050 |
T-SULmax | 3.09 ± 2.10 | 2.56 ± 1.10 | 4.16 ± 3.12 | 0.009 * |
T-SULmax/L-SULmax | 1.46 ± 0.92 | 1.19 ± 0.41 | 2.01 ± 1.36 | <0.001 * |
T-SULmax/L-SULmean | 2.02 ± 1.11 | 1.65 ± 0.53 | 2.77 ± 1.58 | <0.001 * |
Variables | Cutoff Value | AUC | 95% CI | Sensitivity (%) | Specificity (%) | Youden Index | p Value |
---|---|---|---|---|---|---|---|
T-bwSUVmax | 4.60 | 0.540 | 0.391–0.683 | 25.0 | 93.9 | 0.189 | 0.676 |
T-bwSUVmax/L-bwSUVmax | 1.11 | 0.661 | 0.512–0.790 | 68.8 | 63.6 | 0.324 | 0.056 |
T-bwSUVmax/L-bwSUVmean | 1.91 | 0.674 | 0.525–0.801 | 50.0 | 81.8 | 0.318 | 0.047 * |
T-SULmax | 2.78 | 0.732 | 0.586–0.848 | 68.8 | 69.7 | 0.385 | 0.003 * |
T-SULmax/L-SULmax | 1.05 | 0.820 | 0.684–0.915 | 100.0 | 57.6 | 0.576 | <0.001 * |
T-SULmax/L-SULmean | 1.81 | 0.850 | 0.720–0.936 | 87.5 | 78.8 | 0.663 | <0.001 * |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | 0.950 | p Value | HR | 95% | p Value |
Sex (female vs. male) | 1.798 | 0.409–7.917 | 0.438 | |||
MELD score | 0.981 | 0.856–1.125 | 0.981 | |||
Child–Pugh score | 1.008 | 0.767–1.324 | 0.955 | |||
BMI (≤25 vs. >25) | 0.648 | 0.209–2.015 | 0.454 | |||
Liver cirrhosis (negative vs. positive) | 1.304 | 0.452–3.758 | 0.624 | |||
Ascites (negative vs. positive) | 2.045 | 0.709–5.894 | 0.185 | |||
AFP (≤150 vs. >150 ng/mL) | 1.823 | 0.677–4.911 | 0.235 | |||
PIVKA-II (≤100 vs. >100 mAU/mL) | 3.090 | 1.144–8.345 | 0.026 * | 1.262 | 0.426–3.742 | 0.675 |
T-stage (T1/2 vs. T3/4) | 5.346 | 1.996–14.317 | 0.001 * | |||
Tumor number (≤3 vs. >3) | 2.982 | 1.081–8.225 | 0.035 * | |||
Tumor size (≤5 cm vs. >5 cm) | 3.661 | 1.311–9.946 | 0.013 * | |||
Microvascular invasion (negative vs. positive) | 6.867 | 1.900–24.819 | 0.003 * | 1.005 | 0.255–3.954 | 0.995 |
Milan criteria (within vs. beyond) | 15.153 | 1.999–114.858 | 0.009 * | |||
UCSF criteria (within vs. beyond) | 6.363 | 2.202–18.384 | 0.001 * | 5.905 | 1.783–19.552 | 0.004 * |
Up-to-seven criteria (within vs. beyond) | 3.431 | 1.245–9.451 | 0.017 * | |||
PET visual (negative vs. positive) | 1.844 | 0.690–4.932 | 0.223 | |||
T-bwSUVmax (≤4.6 vs. >4.6) | 3.052 | 0.971–9.595 | 0.056 | |||
T-bwSUVmax/L-bwSUVmax (≤1.11 vs. >1.11) | 2.842 | 0.985–8.198 | 0.053 | |||
T-bwSUVmax/L-bwSUVmean (≤1.91 vs. >1.91) | 2.806 | 1.050–7.497 | 0.040 * | |||
T-SULmax (≤2.78 vs. >2.78) | 3.553 | 1.231–10.254 | 0.019 * | |||
T-SULmax/L-SULmax (≤1.05 vs. >1.05) | 53.321 | 0.914–3111.518 | 0.055 | |||
T-SULmax/L-SULmean (≤1.81 vs. >1.81) | 11.962 | 2.713–52.747 | 0.001 * | 11.142 | 2.298–54.017 | 0.003 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Kim, J.D.; Choi, D.L.; Choi, B. Predicting the Recurrence of Hepatocellular Carcinoma after Primary Living Donor Liver Transplantation Using Metabolic Parameters Obtained from 18F-FDG PET/CT. J. Clin. Med. 2022, 11, 354. https://doi.org/10.3390/jcm11020354
Kang S, Kim JD, Choi DL, Choi B. Predicting the Recurrence of Hepatocellular Carcinoma after Primary Living Donor Liver Transplantation Using Metabolic Parameters Obtained from 18F-FDG PET/CT. Journal of Clinical Medicine. 2022; 11(2):354. https://doi.org/10.3390/jcm11020354
Chicago/Turabian StyleKang, Sungmin, Joo Dong Kim, Dong Lak Choi, and Byungwook Choi. 2022. "Predicting the Recurrence of Hepatocellular Carcinoma after Primary Living Donor Liver Transplantation Using Metabolic Parameters Obtained from 18F-FDG PET/CT" Journal of Clinical Medicine 11, no. 2: 354. https://doi.org/10.3390/jcm11020354
APA StyleKang, S., Kim, J. D., Choi, D. L., & Choi, B. (2022). Predicting the Recurrence of Hepatocellular Carcinoma after Primary Living Donor Liver Transplantation Using Metabolic Parameters Obtained from 18F-FDG PET/CT. Journal of Clinical Medicine, 11(2), 354. https://doi.org/10.3390/jcm11020354