Cardiac Rehabilitation in Patients with Peripheral Artery Disease—A Literature Review in COVID-19 Era
Abstract
:1. Introduction
2. Literature Research
3. Cardiac Rehabilitation during the COVID-19 Pandemic
4. Physical Training—Mechanisms & Benefits
5. Initial Evaluation
6. Cardiac Rehabilitation—Where Do We Stand
7. Cardiac Rehabilitation Programs
7.1. Treadmill Exercise
7.1.1. Intensity
7.1.2. Program Length
7.2. Home-Based Walking Exercise
7.3. Alternative Forms of Exercise–Ergometry, Cycling and Strength Training
7.3.1. Ergometry
7.3.2. Cycling
7.3.3. Resistance Exercise Training
8. Revascularization and Supervised Exercise
9. Effects on Biomarkers after Cardiac Rehabilitation
10. Physical Exercise Protocols
11. Psychological and Social Outcome
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sandercock, G.R.H.; Cardoso, F.; Almodhy, M.; Pepera, G. Cardiorespiratory Fitness Changes in Patients Receiving Comprehensive Outpatient Cardiac Rehabilitation in the UK: A Multicentre Study. Heart 2013, 99, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Cowie, A.; Buckley, J.; Doherty, P.; Furze, G.; Hayward, J.; Hinton, S.; Jones, J.; Speck, L.; Dalal, H.; Mills, J. Standards and Core Components for Cardiovascular Disease Prevention and Rehabilitation. Heart 2019, 105, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [CrossRef]
- Writing Committee Members; Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc. Med. 2017, 22, NP1–NP43. [Google Scholar] [CrossRef] [PubMed]
- Moulson, N.; Bewick, D.; Selway, T.; Harris, J.; Suskin, N.; Oh, P.; Coutinho, T.; Singh, G.; Chow, C.-M.; Clarke, B.; et al. Cardiac Rehabilitation During the COVID-19 Era: Guidance on Implementing Virtual Care. Can. J. Cardiol. 2020, 36, 1317–1321. [Google Scholar] [CrossRef]
- Ji, H.; Fang, L.; Yuan, L.; Zhang, Q. Effects of Exercise-Based Cardiac Rehabilitation in Patients with Acute Coronary Syndrome: A Meta-Analysis. Med. Sci. Monit. 2019, 25, 5015–5027. [Google Scholar] [CrossRef]
- Besnier, F.; Gayda, M.; Nigam, A.; Juneau, M.; Bherer, L. Cardiac Rehabilitation During Quarantine in COVID-19 Pandemic: Challenges for Center-Based Programs. Arch. Phys. Med. Rehabil. 2020, 101, 1835–1838. [Google Scholar] [CrossRef]
- Barretto, S.; Ballman, K.V.; Rooke, T.W.; Kullo, I.J. Early-Onset Peripheral Arterial Occlusive Disease: Clinical Features and Determinants of Disease Severity and Location. Vasc. Med. 2003, 8, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Dhindsa, D.S.; Hooda, A.; Nayak, A.; Massad, C.S.; Rao, B.; Makue, L.F.; Rajani, R.R.; Alabi, O.; Quyyumi, A.A.; et al. Premature Atherosclerotic Peripheral Artery Disease: An Underrecognized and Undertreated Disorder with a Rising Global Prevalence. Trends Cardiovasc. Med. 2021, 31, 351–358. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Frederix, I.; Vanhees, L.; Dendale, P.; Goetschalckx, K. A Review of Telerehabilitation for Cardiac Patients. J. Telemed. Telecare 2015, 21, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Beatty, A.L.; Beckie, T.M.; Brewer, L.C.; Brown, T.M.; Forman, D.E.; Franklin, B.A.; Keteyian, S.J.; Kitzman, D.W.; Regensteiner, J.G.; et al. Home-Based Cardiac Rehabilitation. J. Am. Coll. Cardiol. 2019, 74, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.S.; Arena, R.; Ozemek, C.; Lavie, C.J. COVID-19: A Time for Alternate Models in Cardiac Rehabilitation to Take Centre Stage. Can. J. Cardiol. 2020, 36, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Gian Francesco, M.; Francesco, G.; Elio, V.; Francesco, F.; Marco, A. Cardiologia riabilitativa e prevenzione secondaria durante la pandemia COVID-19: Stato dell’arte e prospettive. G. Ital. Cardiol. 2020, 20, 527–528. [Google Scholar] [CrossRef]
- Sandesara, P.B.; Dhindsa, D.; Khambhati, J.; Lee, S.K.; Varghese, T.; O’Neal, W.T.; Harzand, A.; Gaita, D.; Kotseva, K.; Connolly, S.B.; et al. Reconfiguring Cardiac Rehabilitation to Achieve Panvascular Prevention: New Care Models for a New World. Can. J. Cardiol. 2018, 34, S231–S239. [Google Scholar] [CrossRef] [PubMed]
- Canadian Association of Cardiac Rehabilitation. Canadian Guidelines for Cardiac Rehabilitation and Cardiovascular Disease Prevention: Translating Knowledge into Action; Canadian Association of Cardiac Rehabilitation: Winnipeg, MB, Canada, 2009; ISBN 978-0-9685851-3-9. [Google Scholar]
- Grace, S.L.; Turk-Adawi, K.; Santiago de Araújo Pio, C.; Alter, D.A. Ensuring Cardiac Rehabilitation Access for the Majority of Those in Need: A Call to Action for Canada. Can. J. Cardiol. 2016, 32, S358–S364. [Google Scholar] [CrossRef]
- Pfaeffli Dale, L.; Whittaker, R.; Dixon, R.; Stewart, R.; Jiang, Y.; Carter, K.; Maddison, R. Acceptability of a Mobile Health Exercise-Based Cardiac Rehabilitation Intervention: A Randomized Trial. J. Cardiopulm. Rehabil. Prev. 2015, 35, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, S.; Ghisi, G.L.d.M.; Hébert, A.-A.; Ahden, S.; Oh, P. Cardiac Rehabilitation in Canada During COVID-19. CJC Open 2021, 3, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.J.; Taylor, R.S. Cardiac Rehabilitation for People with Heart Disease: An Overview of Cochrane Systematic Reviews. Int. J. Cardiol. 2014, 177, 348–361. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Oldridge, N.; Thompson, D.R.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease. J. Am. Coll. Cardiol. 2016, 67, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, W.P.; Feng, J.; Pwee, K.H.; Lim, J. A Systematic Review of Economic Evaluations of Cardiac Rehabilitation. BMC Health Serv. Res. 2012, 12, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, K.; Khonsari, S.; Gallagher, R.; Gallagher, P.; Clark, A.M.; Freedman, B.; Briffa, T.; Bauman, A.; Redfern, J.; Neubeck, L. Telehealth Interventions for the Secondary Prevention of Coronary Heart Disease: A Systematic Review and Meta-Analysis. Eur. J. Cardiovasc. Nurs. 2019, 18, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Batalik, L.; Filakova, K.; Batalikova, K.; Dosbaba, F. Remotely Monitored Telerehabilitation for Cardiac Patients: A Review of the Current Situation. World J. Clin. Cases 2020, 8, 1818–1831. [Google Scholar] [CrossRef] [PubMed]
- Batalik, L.; Dosbaba, F.; Hartman, M.; Batalikova, K.; Spinar, J. Benefits and Effectiveness of Using a Wrist Heart Rate Monitor as a Telerehabilitation Device in Cardiac Patients: A Randomized Controlled Trial. Medicine 2020, 99, e19556. [Google Scholar] [CrossRef]
- Stefanakis, M.; Batalik, L.; Papathanasiou, J.; Dipla, L.; Antoniou, V.; Pepera, G. Exercise-Based Cardiac Rehabilitation Programs in the Era of COVID-19: A Critical Review. Rev. Cardiovasc. Med. 2021, 22, 1143–1155. [Google Scholar] [CrossRef]
- O’Doherty, A.F.; Humphreys, H.; Dawkes, S.; Cowie, A.; Hinton, S.; Brubaker, P.H.; Butler, T.; Nichols, S. How Has Technology Been Used to Deliver Cardiac Rehabilitation during the COVID-19 Pandemic? An International Cross-Sectional Survey of Healthcare Professionals Conducted by the BACPR. BMJ Open. 2021, 11, e046051. [Google Scholar] [CrossRef] [PubMed]
- Abell, B.; Glasziou, P.; Hoffmann, T. The Contribution of Individual Exercise Training Components to Clinical Outcomes in Randomised Controlled Trials of Cardiac Rehabilitation: A Systematic Review and Meta-Regression. Sports Med. Open 2017, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, D.M.; Chen, J.; Chunara, R.; Testa, P.A.; Nov, O. COVID-19 Transforms Health Care through Telemedicine: Evidence from the Field. J. Am. Med. Inform. Assoc. 2020, 27, 1132–1135. [Google Scholar] [CrossRef]
- Strain, T.; Wijndaele, K.; Brage, S. Physical Activity Surveillance Through Smartphone Apps and Wearable Trackers: Examining the UK Potential for Nationally Representative Sampling. JMIR MHealth UHealth 2019, 7, e11898. [Google Scholar] [CrossRef] [Green Version]
- Hammill, B.G.; Curtis, L.H.; Schulman, K.A.; Whellan, D.J. Relationship Between Cardiac Rehabilitation and Long-Term Risks of Death and Myocardial Infarction Among Elderly Medicare Beneficiaries. Circulation 2010, 121, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manson, J.J.; Crooks, C.; Naja, M.; Ledlie, A.; Goulden, B.; Liddle, T.; Khan, E.; Mehta, P.; Martin-Gutierrez, L.; Waddington, K.E.; et al. COVID-19-Associated Hyperinflammation and Escalation of Patient Care: A Retrospective Longitudinal Cohort Study. Lancet Rheumatol. 2020, 2, e594–e602. [Google Scholar] [CrossRef]
- Bektas, A.; Schurman, S.H.; Franceschi, C.; Ferrucci, L. A Public Health Perspective of Aging: Do Hyper-Inflammatory Syndromes Such as COVID-19, SARS, ARDS, Cytokine Storm Syndrome, and Post-ICU Syndrome Accelerate Short- and Long-Term Inflammaging? Immun. Ageing 2020, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, M.; Garofano, M.; Palumbo, R.; Di Pietro, P.; Izzo, C.; Damato, A.; Venturini, E.; Iesu, S.; Virtuoso, N.; Strianese, A.; et al. Exercise Training and Cardiac Rehabilitation in COVID-19 Patients with Cardiovascular Complications: State of Art. Life 2021, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of Grip Strength with Cardiovascular, Respiratory, and Cancer Outcomes and All Cause Mortality: Prospective Cohort Study of Half a Million UK Biobank Participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Zhao, H.-M.; Xie, Y.-X.; Wang, C. Recommendations for Respiratory Rehabilitation in Adults with Coronavirus Disease 2019. Chin. Med. J. 2020, 133, 1595–1602. [Google Scholar] [CrossRef]
- Kamiya, K.; Hamazaki, N.; Matsue, Y.; Mezzani, A.; Corrà, U.; Matsuzawa, R.; Nozaki, K.; Tanaka, S.; Maekawa, E.; Noda, C.; et al. Gait Speed Has Comparable Prognostic Capability to Six-Minute Walk Distance in Older Patients with Cardiovascular Disease. Eur. J. Prev. Cardiol. 2018, 25, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Chinese Association of Rehabilitation Medicine; Respiratory Rehabilitation Committee of Chinese Association of Rehabilitation Medicine; Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Medicine and Rehabilitation. Recommendations for respiratory rehabilitation of coronavirus disease 2019 in adult. Zhonghua Jie He He Hu Xi Za Zhi Zhonghua Jiehe He Huxi Zazhi Chin. J. Tuberc. Respir. Dis. 2020, 43, 308–314. [Google Scholar] [CrossRef]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant Treatment Is Associated with Decreased Mortality in Severe Coronavirus Disease 2019 Patients with Coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Panzavolta, C.; Zalunardo, B.; Irsara, S.; Ferretto, L.; Visonà, A. Peripheral Artery Disease, the ‘Lost Syndrome’ during Lockdown for COVID-19: A Report of Three Cases. Med. Int. 2021, 1, 15. [Google Scholar] [CrossRef]
- Gonzalez Cañas, E.; Gimenez Gaibar, A.; Rodriguez Lorenzo, L.; Castro Rios, J.G.; Martinez Toiran, A.; Bella Cueto, M.R.; Bella Burgos, B.; Espasa Soley, M. Acute Peripheral Arterial Thrombosis in COVID-19. Role of Endothelial Inflammation. Br. J. Surg. 2020, 107, e444–e445. [Google Scholar] [CrossRef]
- Smolderen, K.G.; Lee, M.; Arora, T.; Simonov, M.; Mena-Hurtado, C. Peripheral Artery Disease and COVID-19 Outcomes: Insights from the Yale DOM-CovX Registry. Curr Probl Cardiol. 2021, 7, 101007. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Yin, H.; Sun, Z.; Zügel, M.; Steinacker, J.M.; Schumann, U. Exercise Training and Endothelial Function in Patients with Type 2 Diabetes: A Meta-Analysis. Cardiovasc. Diabetol. 2018, 17, 64. [Google Scholar] [CrossRef]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of Exercise Modalities on Arterial Stiffness and Wave Reflection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Arena, R.; Swift, D.L.; Johannsen, N.M.; Sui, X.; Lee, D.; Earnest, C.P.; Church, T.S.; O’Keefe, J.H.; Milani, R.V.; et al. Exercise and the Cardiovascular System: Clinical Science and Cardiovascular Outcomes. Circ. Res. 2015, 117, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Arias-Fernández, P.; Romero-Martin, M.; Gómez-Salgado, J.; Fernández-García, D. Rehabilitation and Early Mobilization in the Critical Patient: Systematic Review. J. Phys. Ther. Sci. 2018, 30, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Taylor, C.E.; Lewis, N.C.S.; George, K.; Atkinson, G. Post-Exercise Blood Pressure Reduction Is Greater Following Intermittent Than Continuous Exercise and Is Influenced Less by Diurnal Variation. Chronobiol. Int. 2009, 26, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Boff, W.; da Silva, A.M.; Farinha, J.B.; Rodrigues-Krause, J.; Reischak-Oliveira, A.; Tschiedel, B.; Puñales, M.; Bertoluci, M.C. Superior Effects of High-Intensity Interval vs. Moderate-Intensity Continuous Training on Endothelial Function and Cardiorespiratory Fitness in Patients With Type 1 Diabetes: A Randomized Controlled Trial. Front. Physiol. 2019, 10, 450. [Google Scholar] [CrossRef]
- Molmen-Hansen, H.E.; Stolen, T.; Tjonna, A.E.; Aamot, I.L.; Ekeberg, I.S.; Tyldum, G.A.; Wisloff, U.; Ingul, C.B.; Stoylen, A. Aerobic Interval Training Reduces Blood Pressure and Improves Myocardial Function in Hypertensive Patients. Eur. J. Prev. Cardiol. 2012, 19, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Casonatto, J.; Goessler, K.F.; Cornelissen, V.A.; Cardoso, J.R.; Polito, M.D. The Blood Pressure-Lowering Effect of a Single Bout of Resistance Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur. J. Prev. Cardiol. 2016, 23, 1700–1714. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hotta, K.; Ota, E.; Mori, R.; Matsunaga, A. Effects of Resistance Training on Muscle Strength, Exercise Capacity, and Mobility in Middle-Aged and Elderly Patients with Coronary Artery Disease: A Meta-Analysis. J. Cardiol. 2016, 68, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.-L.; Yang, T. Pulmonary Rehabilitation for Patients with Coronavirus Disease 2019 (COVID-19). Chronic Dis. Transl. Med. 2020, 6, 79–86. [Google Scholar] [CrossRef]
- Lewis, L.K.; Williams, M.T.; Olds, T.S. The Active Cycle of Breathing Technique: A Systematic Review and Meta-Analysis. Respir. Med. 2012, 106, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Ozalp, O.; Inal-Ince, D.; Cakmak, A.; Calik-Kutukcu, E.; Saglam, M.; Savci, S.; Vardar-Yagli, N.; Arikan, H.; Karakaya, J.; Coplu, L. High-intensity Inspiratory Muscle Training in Bronchiectasis: A Randomized Controlled Trial. Respirology 2019, 24, 246–253. [Google Scholar] [CrossRef]
- Vitacca, M.; Carone, M.; Clini, E.M.; Paneroni, M.; Lazzeri, M.; Lanza, A.; Privitera, E.; Pasqua, F.; Gigliotti, F.; Castellana, G.; et al. Joint Statement on the Role of Respiratory Rehabilitation in the COVID-19 Crisis: The Italian Position Paper. Respiration 2020, 99, 493–499. [Google Scholar] [CrossRef]
- Rawstorn, J.C.; Gant, N.; Rolleston, A.; Whittaker, R.; Stewart, R.; Benatar, J.; Warren, I.; Meads, A.; Jiang, Y.; Maddison, R. End Users Want Alternative Intervention Delivery Models: Usability and Acceptability of the REMOTE-CR Exercise-Based Cardiac Telerehabilitation Program. Arch. Phys. Med. Rehabil. 2018, 99, 2373–2377. [Google Scholar] [CrossRef]
- Rosen, K.; Patel, M.; Lawrence, C.; Mooney, B. Delivering Telerehabilitation to COVID-19 Inpatients:A Retrospective Chart Review Suggests It Is a Viable Option. HSS J. 2020, 16, 64–70. [Google Scholar] [CrossRef]
- Sari, D.M.; Wijaya, L.C.G. Cardiac Rehabilitation via Telerehabilitation in COVID-19 Pandemic Situation. Egypt. Heart J. 2021, 73, 31. [Google Scholar] [CrossRef]
- Ribeiro, F.; Santos, M. Exercise-Based Cardiac Rehabilitation in COVID-19 Times: One Small Step for Health Care Systems, One Giant Leap for Patients. Rev. Esp. Cardiol. Engl. Ed. 2020, 73, 969–970. [Google Scholar] [CrossRef]
- Hamburg, N.M.; Balady, G.J. Exercise Rehabilitation in Peripheral Artery Disease: Functional Impact and Mechanisms of Benefits. Circulation 2011, 123, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Tran, B. Assessment and Management of Peripheral Arterial Disease: What Every Cardiologist Should Know. Heart Br. Card. Soc. 2021, 107, 1835–1843. [Google Scholar] [CrossRef]
- Lamberti, N.; López-Soto, P.J.; Guerzoni, F.; Napoli, N.; Gasbarro, V.; Zamboni, P.; Tsolaki, E.; Taddia, M.C.; Rodríguez-Borrego, M.A.; Manfredini, R.; et al. Changes in Exercise Capacity and Risk of All-Cause Mortality in Patients with Peripheral Artery Disease: A 10-Year Retrospective Cohort Study. Intern. Emerg. Med. 2020, 15, 289–298. [Google Scholar] [CrossRef]
- Gomes, A.P.F.; Correia, M.A.; Soares, A.H.G.; Cucato, G.G.; Lima, A.H.R.A.; Cavalcante, B.R.; Sobral-Filho, D.C.; Ritti-Dias, R.M. Effects of Resistance Training on Cardiovascular Function in Patients With Peripheral Artery Disease: A Randomized Controlled Trial. J. Strength Cond. Res. 2018, 32, 1072–1080. [Google Scholar] [CrossRef]
- Akerman, A.P.; Thomas, K.N.; van Rij, A.M.; Body, E.D.; Alfadhel, M.; Cotter, J.D. Heat Therapy vs. Supervised Exercise Therapy for Peripheral Arterial Disease: A 12-Wk Randomized, Controlled Trial. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H1495–H1506. [Google Scholar] [CrossRef]
- Lamberti, N.; Straudi, S.; Lissia, E.; Cavazzini, L.; Buja, S.; Manfredini, R.; Basaglia, N.; Manfredini, F. Home-Based Exercise for Elderly Patients with Intermittent Claudication Limited by Osteoarticular Disorders—Feasibility and Effectiveness of a Low-Intensity Programme. Vasa 2018, 47, 227–234. [Google Scholar] [CrossRef]
- Malagoni, A.M.; Catizone, L.; Mandini, S.; Soffritti, S.; Manfredini, R.; Boari, B.; Russo, G.; Basaglia, N.; Zamboni, P.; Manfredini, F. Acute and Long-Term Effects of an Exercise Program for Dialysis Patients Prescribed in Hospital and Performed at Home. J. Nephrol. 2008, 21, 871–878. [Google Scholar]
- Manfredini, F.; Mallamaci, F.; D’Arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino, D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 28, 1259–1268. [Google Scholar] [CrossRef]
- Manfredini, R.; Lamberti, N.; Manfredini, F.; Straudi, S.; Fabbian, F.; Rodriguez Borrego, M.A.; Basaglia, N.; Carmona Torres, J.M.; Lopez Soto, P.J. Gender Differences in Outcomes Following a Pain-Free, Home-Based Exercise Program for Claudication. J. Womens Health 2019, 28, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.G.; Marzolini, S.; Lin, E.; Nguyen, C.H.; Oh, P. Peripheral Arterial Disease: Supervised Exercise Therapy Through Cardiac Rehabilitation. Clin. Geriatr. Med. 2019, 35, 527–537. [Google Scholar] [CrossRef]
- McDermott, M.M. Exercise Rehabilitation for Peripheral Artery Disease: A REVIEW. J. Cardiopulm. Rehabil. Prev. 2018, 38, 63–69. [Google Scholar] [CrossRef]
- Parmenter, B.J.; Dieberg, G.; Smart, N.A. Exercise Training for Management of Peripheral Arterial Disease: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.H.; Marzolini, S.; Oh, P.; Thomas, S.G. Entering Cardiac Rehabilitation With Peripheral Artery Disease: A Retrospective Comparison to Coronary Artery Disease. J. Cardiopulm. Rehabil. Prev. 2020, 40, 255–262. [Google Scholar] [CrossRef]
- McDermott, M.M.; Kibbe, M.R. Improving Lower Extremity Functioning in Peripheral Artery Disease: Exercise, Endovascular Revascularization, or Both? JAMA 2017, 317, 689–690. [Google Scholar] [CrossRef] [PubMed]
- Fakhry, F.; van de Luijtgaarden, K.M.; Bax, L.; den Hoed, P.T.; Hunink, M.G.M.; Rouwet, E.V.; Spronk, S. Supervised Walking Therapy in Patients with Intermittent Claudication. J. Vasc. Surg. 2012, 56, 1132–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Ades, P.; Guralnik, J.M.; Dyer, A.; Ferrucci, L.; Liu, K.; Nelson, M.; Lloyd-Jones, D.; Van Horn, L.; Garside, D.; et al. Treadmill Exercise and Resistance Training in Patients with Peripheral Arterial Disease with and without Intermittent Claudication: A Randomized Controlled Trial. JAMA 2009, 301, 165–174. [Google Scholar] [CrossRef]
- Yasu, T. Comprehensive Cardiac Rehabilitation Program for Peripheral Arterial Diseases. J. Cardiol. 2021. [Google Scholar] [CrossRef]
- Gardner, A.W.; Poehlman, E.T. Exercise Rehabilitation Programs for the Treatment of Claudication Pain. A Meta-Analysis. JAMA 1995, 274, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.; Ranka, S.; Lippmann, M.; Weiford, B.; Hance, K.; Whitman, B.; Wright, L.; Donaldson, S.; Boyer, B.; Gupta, K. Cardiac Rehabilitation in Patients with Peripheral Arterial Disease after Revascularization. Vascular 2021, 29, 350–354. [Google Scholar] [CrossRef]
- McDermott, M.M. Exercise Training for Intermittent Claudication. J. Vasc. Surg. 2017, 66, 1612–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, Z.; Chang, G.; Wang, M.; Wu, R.; Wang, S.; Yao, C. Effect of Structured Home-Based Exercise on Walking Ability in Patients with Peripheral Arterial Disease: A Meta-Analysis. Ann. Vasc. Surg. 2015, 29, 597–606. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Liu, K.; Guralnik, J.M.; Criqui, M.H.; Spring, B.; Tian, L.; Domanchuk, K.; Ferrucci, L.; Lloyd-Jones, D.; Kibbe, M.; et al. Home-Based Walking Exercise Intervention in Peripheral Artery Disease: A Randomized Clinical Trial. JAMA 2013, 310, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S.; Blevins, S.M. Step-Monitored Home Exercise Improves Ambulation, Vascular Function, and Inflammation in Symptomatic Patients With Peripheral Artery Disease: A Randomized Controlled Trial. J. Am. Heart Assoc. 2014, 3, e001107. [Google Scholar] [CrossRef] [Green Version]
- Zwierska, I.; Walker, R.D.; Choksy, S.A.; Male, J.S.; Pockley, A.G.; Saxton, J.M. Upper- vs Lower-Limb Aerobic Exercise Rehabilitation in Patients with Symptomatic Peripheral Arterial Disease: A Randomized Controlled Trial. J. Vasc. Surg. 2005, 42, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Guralnik, J.M.; Criqui, M.H.; Ferrucci, L.; Liu, K.; Spring, B.; Tian, L.; Domanchuk, K.; Kibbe, M.; Zhao, L.; et al. Unsupervised Exercise and Mobility Loss in Peripheral Artery Disease: A Randomized Controlled Trial. J. Am. Heart Assoc. 2015, 4, e001659. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Guralnik, J.M.; Criqui, M.H.; Ferrucci, L.; Zhao, L.; Liu, K.; Domanchuk, K.; Spring, B.; Tian, L.; Kibbe, M.; et al. Home-Based Walking Exercise in Peripheral Artery Disease: 12-Month Follow-up of the GOALS Randomized Trial. J. Am. Heart Assoc. 2014, 3, e000711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, T.C.; Lunos, S.; Carlson, T.; Henderson, K.; Lightbourne, M.; Nelson, B.; Hodges, J.S. Effects of a Home-Based Walking Intervention on Mobility and Quality of Life in People with Diabetes and Peripheral Arterial Disease: A Randomized Controlled Trial. Diabetes Care 2011, 34, 2174–2179. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, N.; Straudi, S.; Manfredini, R.; De Giorgi, A.; Gasbarro, V.; Zamboni, P.; Manfredini, F. Don’t Stop Walking: The in-Home Rehabilitation Program for Peripheral Artery Disease Patients during the COVID-19 Pandemic. Intern. Emerg. Med. 2021, 16, 1307–1315. [Google Scholar] [CrossRef]
- Allen, T.J. Textbook of Work Physiology: Physiological Bases of Exercise, 4th ed.; Human Kinetics: Champaign, IL, USA, 2004; Volume 56, p. 248. [Google Scholar] [CrossRef]
- Bobbert, A.C. Physiological Comparison of Three Types of Ergometry. J. Appl. Physiol. 1960, 15, 1007–1014. [Google Scholar] [CrossRef]
- Stenberg, J.; Astrand, P.O.; Ekblom, B.; Royce, J.; Saltin, B. Hemodynamic Response to Work with Different Muscle Groups, Sitting and Supine. J. Appl. Physiol. 1967, 22, 61–70. [Google Scholar] [CrossRef]
- Treat-Jacobson, D.; McDermott, M.M.; Bronas, U.G.; Campia, U.; Collins, T.C.; Criqui, M.H.; Gardner, A.W.; Hiatt, W.R.; Regensteiner, J.G.; Rich, K.; et al. Optimal Exercise Programs for Patients With Peripheral Artery Disease: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e10–e33. [Google Scholar] [CrossRef]
- Bronas, U.G.; Treat-Jacobson, D.; Leon, A.S. Comparison of the Effect of Upper Body-Ergometry Aerobic Training vs Treadmill Training on Central Cardiorespiratory Improvement and Walking Distance in Patients with Claudication. J. Vasc. Surg. 2011, 53, 1557–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tew, G.; Nawaz, S.; Zwierska, I.; Saxton, J.M. Limb-Specific and Cross-Transfer Effects of Arm-Crank Exercise Training in Patients with Symptomatic Peripheral Arterial Disease. Clin. Sci. 2009, 117, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauret, G.J.; Fakhry, F.; Fokkenrood, H.J.P.; Hunink, M.G.M.; Teijink, J.A.W.; Spronk, S. Modes of Exercise Training for Intermittent Claudication. Cochrane Database Syst. Rev. 2014, 4, CD009638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, R.D.; Nawaz, S.; Wilkinson, C.H.; Saxton, J.M.; Pockley, A.G.; Wood, R.F.M. Influence of Upper- and Lower-Limb Exercise Training on Cardiovascular Function and Walking Distances in Patients with Intermittent Claudication. J. Vasc. Surg. 2000, 31, 662–669. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Bronks, R.; Newton, R.U.; Sharman, M.J.; Graham, J.C.; Cody, D.V.; Kraemer, W.J. Resistance Training in Patients with Peripheral Arterial Disease: Effects on Myosin Isoforms, Fiber Type Distribution, and Capillary Supply to Skeletal Muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B302–B310. [Google Scholar] [CrossRef]
- Sanderson, B.; Askew, C.; Stewart, I.; Walker, P.; Gibbs, H.; Green, S. Short-Term Effects of Cycle and Treadmill Training on Exercise Tolerance in Peripheral Arterial Disease. J. Vasc. Surg. 2006, 44, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiatt, W.R.; Wolfel, E.E.; Meier, R.H.; Regensteiner, J.G. Superiority of Treadmill Walking Exercise versus Strength Training for Patients with Peripheral Arterial Disease. Implications for the Mechanism of the Training Response. Circulation 1994, 90, 1866–1874. [Google Scholar] [CrossRef] [Green Version]
- Ritti-Dias, R.M.; Wolosker, N.; de Moraes Forjaz, C.L.; Carvalho, C.R.F.; Cucato, G.G.; Leão, P.P.; de Fátima Nunes Marucci, M. Strength Training Increases Walking Tolerance in Intermittent Claudication Patients: Randomized Trial. J. Vasc. Surg. 2010, 51, 89–95. [Google Scholar] [CrossRef]
- Parmenter, B.J.; Raymond, J.; Dinnen, P.; Lusby, R.J.; Fiatarone Singh, M.A. High-Intensity Progressive Resistance Training Improves Flat-Ground Walking in Older Adults with Symptomatic Peripheral Arterial Disease. J. Am. Geriatr. Soc. 2013, 61, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Saetre, T.; Enoksen, E.; Lyberg, T.; Stranden, E.; Jørgensen, J.J.; Sundhagen, J.O.; Hisdal, J. Supervised Exercise Training Reduces Plasma Levels of the Endothelial Inflammatory Markers E-Selectin and ICAM-I in Patients with Peripheral Arterial Disease. Angiology 2011, 62, 301–305. [Google Scholar] [CrossRef]
- Nowak, W.; Mika, P.; Nowobilski, R.; Kusinska, K.; Bukowska-Strakova, K.; Nizankowski, R.; Jozkowicz, A.; Szczeklik, A.; Dulak, J. Exercise Training in Intermittent Claudication: Effects on Antioxidant Genes, Inflammatory Mediators and Proangiogenic Progenitor Cells. Thromb. Haemost. 2012, 108, 824–831. [Google Scholar] [CrossRef]
- Fukase, T.; Dohi, T.; Kato, Y.; Chikata, Y.; Takahashi, N.; Endo, H.; Doi, S.; Nishiyama, H.; Okai, I.; Iwata, H.; et al. Long-Term Impact of High-Sensitivity C-Reactive Protein in Patients with Intermittent Claudication Due to Peripheral Artery Disease Following Endovascular Treatment. Heart Vessels 2021, 36, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Januszek, R.; Mika, P.; Konik, A.; Petriczek, T.; Nowobilski, R.; Niżankowski, R. The Effect of Treadmill Training on Endothelial Function and Walking Abilities in Patients with Peripheral Arterial Disease. J. Cardiol. 2014, 64, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Mika, P.; Wilk, B.; Mika, A.; Marchewka, A.; Niżankowski, R. The Effect of Pain-Free Treadmill Training on Fibrinogen, Haematocrit, and Lipid Profile in Patients with Claudication. Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Mika, P.; Spodaryk, K.; Cencora, A.; Mika, A. Red Blood Cell Deformability in Patients With Claudication After Pain-Free Treadmill Training. Clin. J. Sport Med. 2006, 16, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Dopheide, J.F.; Geissler, P.; Rubrech, J.; Trumpp, A.; Zeller, G.C.; Daiber, A.; Münzel, T.; Radsak, M.P.; Espinola-Klein, C. Influence of Exercise Training on Proangiogenic TIE-2 Monocytes and Circulating Angiogenic Cells in Patients with Peripheral Arterial Disease. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2016, 105, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.S.; Duscha, B.D.; Robbins, J.L.; Duggan, N.N.; Regensteiner, J.G.; Kraus, W.E.; Hiatt, W.R.; Dokun, A.O.; Annex, B.H. Alteration in Angiogenic and Anti-Angiogenic Forms of Vascular Endothelial Growth Factor-A in Skeletal Muscle of Patients with Intermittent Claudication Following Exercise Training. Vasc. Med. 2012, 17, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Tisi, P.V.; Hulse, M.; Chulakadabba, A.; Gosling, P.; Shearman, C.P. Exercise Training for Intermittent Claudication: Does It Adversely Affect Biochemical Markers of the Exercise-Induced Inflammatory Response? Eur. J. Vasc. Endovasc. Surg. 1997, 14, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Saxton, J.M.; Zwierska, I.; Blagojevic, M.; Choksy, S.A.; Nawaz, S.; Pockley, A.G. Upper- versus Lower-Limb Aerobic Exercise Training on Health-Related Quality of Life in Patients with Symptomatic Peripheral Arterial Disease. J. Vasc. Surg. 2011, 53, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Nguyen, C.H.; Thomas, S.G. Completion and Adherence Rates to Exercise Interventions in Intermittent Claudication: Traditional Exercise versus Alternative Exercise—A Systematic Review. Eur. J. Prev. Cardiol. 2019, 26, 1625–1633. [Google Scholar] [CrossRef]
- Delaney, C.L.; Miller, M.D.; Chataway, T.K.; Spark, J.I. A Randomised Controlled Trial of Supervised Exercise Regimens and Their Impact on Walking Performance, Skeletal Muscle Mass and Calpain Activity in Patients with Intermittent Claudication. Eur. J. Vasc. Endovasc. Surg. 2014, 47, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Mika, P.; Spodaryk, K.; Cencora, A.; Unnithan, V.B.; Mika, A. Experimental Model of Pain-Free Treadmill Training in Patients with Claudication. Am. J. Phys. Med. Rehabil. 2005, 84, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Barak, S.; Stopka, C.B.; Martinez, C.A.; Carmeli, E. Benefits of Low-Intensity Pain-Free Treadmill Exercise on Functional Capacity of Individuals Presenting with Intermittent Claudication Due to Peripheral Arterial Disease. Angiology 2009, 60, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Bulińska, K.; Kropielnicka, K.; Jasiński, T.; Wojcieszczyk-Latos, J.; Pilch, U.; Dąbrowska, G.; Skórkowska-Telichowska, K.; Kałka, D.; Zywar, K.; Paszkowski, R.; et al. Nordic Pole Walking Improves Walking Capacity in Patients with Intermittent Claudication: A Randomized Controlled Trial. Disabil. Rehabil. 2016, 38, 1318–1324. [Google Scholar] [CrossRef]
- Collins, E.G.; O’Connell, S.; McBurney, C.; Jelinek, C.; Butler, J.; Reda, D.; Gerber, B.S.; Hurt, C.; Grabiner, M. Comparison of Walking With Poles and Traditional Walking for Peripheral Arterial Disease Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2012, 32, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Beckitt, T.A.; Day, J.; Morgan, M.; Lamont, P.M. Calf Muscle Oxygen Saturation and the Effects of Supervised Exercise Training for Intermittent Claudication. J. Vasc. Surg. 2012, 56, 470–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauber, S.; Guéra, V.; Barth, J.; Schmid, J.P.; Saner, H.; Znoj, H.; Grolimund, J.; von Känel, R. Psychosocial Outcome in Cardiovascular Rehabilitation of Peripheral Artery Disease and Coronary Artery Disease Patients. Vasc. Med. 2013, 18, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mockford, K.A.; Gohil, R.A.; Mazari, F.; Khan, J.A.; Vanicek, N.; Coughlin, P.A.; Chetter, I.C. Effect of Supervised Exercise on Physical Function and Balance in Patients with Intermittent Claudication. Br. J. Surg. 2014, 101, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Guidon, M.; McGee, H. Exercise-Based Interventions and Health-Related Quality of Life in Intermittent Claudication: A 20-Year (1989–2008) Review. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 140–154. [Google Scholar] [CrossRef]
- Golledge, J.; Leicht, A.S.; Yip, L.; Rowbotham, S.E.; Pinchbeck, J.; Jenkins, J.S.; Clapperton, R.; Dally-Watkins, M.; Fiatarone Singh, M.A.; Mavros, Y.; et al. Relationship Between Disease Specific Quality of Life Measures, Physical Performance, and Activity in People with Intermittent Claudication Caused by Peripheral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 957–964. [Google Scholar] [CrossRef]
- De Donato, G.; Pasqui, E.; Alba, G.; Abu Leil, M.; Palasciano, G. The Limitations of Social Behaviour Imposed by CoVid-19 Impacted the Perception and the Evolution of Peripheral Arterial Disease Negatively. Ann. Vasc. Surg. 2021, 73, 107–113. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value |
---|---|
Saturation | >92–93% |
Heart rate | An increase up to 20 beats per minute from the baseline |
Systolic blood pressure | ≥90 mmHg and ≤180 mmHg |
Symptoms | The Borg Scale–dyspnea with a score < 4 Rate of perceived exertion–fatigue with a score < 11–12 |
Parameters | Value |
---|---|
Saturation | <88–93% |
Heart rate | <40 beats per minute or >120 beats per minute |
Systolic blood pressure | <90 mmHg and >180 mmHg |
Body temperature fluctuations | >37.2 °C |
Symptoms | Worsening of respiratory symptoms during exercise Chest tightness or pain Difficulty in breathing Palpitations Sweating |
Unclear vision |
Supervised Program (Studies until 2021) | Claudication Onset Distance (Mean ± SD, %) | Peak Walking Distance (Mean ± SD, %) |
---|---|---|
12 weeks (8 studies) | 156.60 ± 46.97 m (103%) | 283.10 ± 69.32 m (79%) |
24–52 weeks (7 studies) | 251.23 ± 75.72 m (167%) | 334.06 ± 78.14 m (92%) |
Overall (15 studies) | 203.93 ± 77.93 m (128%) | 307.45 ± 75.58 m (82%) |
Group | Increase Peak Walking Distance (Mean) | Increase Claudication Onset Distance (Mean) | Increase the 6 Minute Walking Test Distance (Mean) | |
---|---|---|---|---|
Hiatt et al. [99] | Resistance Training Group | +107 m | +1.6 m | NA |
Treadmill Walking Group | +273 m | +182 | NA | |
McDermott et al. [76] | Resistance Training Group | +129 m | +102 | −3 m |
Treadmill Walking Group | +212 m | +156 m | +20.9 m | |
Ritti-Dias et al. [100] | Resistance Training Group | +157 m * | +146 | - |
Treadmill Walking Group | +149 m * | +127 m | - | |
Parmenter et al. [101] | Resistance Training Group | - | - | +60 m |
Treadmill Walking Group | - | - | −9 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anghel, R.; Adam, C.A.; Marcu, D.T.M.; Mitu, O.; Mitu, F. Cardiac Rehabilitation in Patients with Peripheral Artery Disease—A Literature Review in COVID-19 Era. J. Clin. Med. 2022, 11, 416. https://doi.org/10.3390/jcm11020416
Anghel R, Adam CA, Marcu DTM, Mitu O, Mitu F. Cardiac Rehabilitation in Patients with Peripheral Artery Disease—A Literature Review in COVID-19 Era. Journal of Clinical Medicine. 2022; 11(2):416. https://doi.org/10.3390/jcm11020416
Chicago/Turabian StyleAnghel, Razvan, Cristina Andreea Adam, Dragos Traian Marius Marcu, Ovidiu Mitu, and Florin Mitu. 2022. "Cardiac Rehabilitation in Patients with Peripheral Artery Disease—A Literature Review in COVID-19 Era" Journal of Clinical Medicine 11, no. 2: 416. https://doi.org/10.3390/jcm11020416
APA StyleAnghel, R., Adam, C. A., Marcu, D. T. M., Mitu, O., & Mitu, F. (2022). Cardiac Rehabilitation in Patients with Peripheral Artery Disease—A Literature Review in COVID-19 Era. Journal of Clinical Medicine, 11(2), 416. https://doi.org/10.3390/jcm11020416