Metabolic Bone Diseases—A Topic of Great Diversity
Author Contributions
Funding
Conflicts of Interest
References
- Montoya-García, M.-J.; Giner, M.; Marcos, R.; García-Romero, D.; Olmo-Montes, F.-J.; Miranda, M.; Hernández-Cruz, B.; Colmenero, M.-A.; Vázquez-Gámez, M. Fragility Fractures and Imminent Fracture Risk in the Spanish Population: A Retrospective Observational Cohort Study. J. Clin. Med. 2021, 10, 1082. [Google Scholar] [CrossRef]
- Zendeli, A.; Bui, M.; Fischer, L.; Ghasem-Zadeh, A.; Schima, W.; Seeman, E. High Cortico-Trabecular Transitional Zone Porosity and Reduced Trabecular Density in Men and Women with Stress Fractures. J. Clin. Med. 2021, 10, 1123. [Google Scholar] [CrossRef]
- Podfigurna, A.; Maciejewska-Jeske, M.; Nadolna, M.; Mikolajska-Ptas, P.; Szeliga, A.; Bilinski, P.; Napierala, P.; Meczekalski, B. Impact of Hormonal Replacement Therapy on Bone Mineral Density in Premature Ovarian Insufficiency Patients. J. Clin. Med. 2020, 9, 3961. [Google Scholar] [CrossRef]
- Kocijan, R.; Finzel, S.; Englbrecht, M.; Engelke, K.; Rech, J.; Schett, G. Decreased Quantity and Quality of the Periarticular and Nonperiarticular Bone in Patients with Rheumatoid Arthritis: A Cross-Sectional HR-pQCT Study. J. Bone Miner. Res. 2013, 29, 1005–1014. [Google Scholar] [CrossRef]
- Chen, T.-L.; Lu, J.-W.; Huang, Y.-W.; Wang, J.-H.; Su, K.-Y. Bone Mineral Density, Osteoporosis, and Fracture Risk in Adult Patients with Psoriasis or Psoriatic Arthritis: A Systematic Review and Meta-Analysis of Observational Studies. J. Clin. Med. 2020, 9, 3712. [Google Scholar] [CrossRef]
- Haschka, J.; Kraus, D.A.; Behanova, M.; Huber, S.; Bartko, J.; Schanda, J.E.; Meier, P.; Bahrami, A.; Zandieh, S.; Zwerina, J.; et al. Fractal-Based Analysis of Bone Microstructure in Crohn’s Disease: A Pilot Study. J. Clin. Med. 2020, 9, 4116. [Google Scholar] [CrossRef]
- Ivanova, M.; Dao, J.; Noll, L.; Fikry, J.; Goker-Alpan, O. TRAP5b and RANKL/OPG Predict Bone Pathology in Patients with Gaucher Disease. J. Clin. Med. 2021, 10, 2217. [Google Scholar] [CrossRef]
- Lu, C.-H.; Chung, C.-H.; Kuo, F.-C.; Chen, K.-C.; Chang, C.-H.; Kuo, C.-C.; Lee, C.-H.; Su, S.-C.; Liu, J.-S.; Lin, F.-H.; et al. Metformin Attenuates Osteoporosis in Diabetic Patients with Carcinoma in Situ: A Nationwide, Retrospective, Matched-Cohort Study in Taiwan. J. Clin. Med. 2020, 9, 2839. [Google Scholar] [CrossRef]
- Schett, G. Rheumatoid arthritis: Inflammation and bone loss. Wien. Med. Wochenschr. 2006, 156, 34–41. [Google Scholar] [CrossRef]
- Schett, G.; Smolen, J. New Insights in the Mechanism of Bone Loss in Arthritis. Curr. Pharm. Des. 2005, 11, 3039–3049. [Google Scholar] [CrossRef]
- Kocijan, R.; Muschitz, C.; Geiger, E.; Skalicky, S.; Baierl, A.; Dormann, R.; Plachel, F.; Feichtinger, X.; Heimel, P.; Fahrleitner-Pammer, A.; et al. Circulating microRNA Signatures in Patients with Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. J. Clin. Endocrinol. Metab. 2016, 101, 4125–4134. [Google Scholar] [CrossRef]
- Codrea, C.I.; Croitoru, A.M.; Baciu, C.C.; Melinescu, A.; Ficai, D.; Fruth, V.; Ficai, A. Advances in Osteoporotic Bone Tissue Engineering. J. Clin. Med. 2021, 10, 253. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lin, Y.-S.; Wu, C.; Lee, C.-Y.; Chen, Y.-C.; Huang, T.-J.; Cheng, J.-S. Timing of Bisphosphonate (Alendronate) Initiation after Surgery for Fragility Fracture: A Population-Based Cohort Study. J. Clin. Med. 2021, 10, 2541. [Google Scholar] [CrossRef]
- Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Testosterone and Bone Health in Men: A Narrative Review. J. Clin. Med. 2021, 10, 530. [Google Scholar] [CrossRef]
- Alfieri, C.; Binda, V.; Malvica, S.; Cresseri, D.; Campise, M.; Gandolfo, M.; Regalia, A.; Mattinzoli, D.; Armelloni, S.; Favi, E.; et al. Bone Effect and Safety of One-Year Denosumab Therapy in a Cohort of Renal Transplanted Patients: An Observational Monocentric Study. J. Clin. Med. 2021, 10, 1989. [Google Scholar] [CrossRef]
- Langdahl, B. Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: Combined and sequential approaches. Bone 2020, 139, 115516. [Google Scholar] [CrossRef]
- Kendler, D.; Chines, A.; Clark, P.; Ebeling, P.R.; McClung, M.; Rhee, Y.; Huang, S.; Stad, R.K. Bone Mineral Density After Transitioning From Denosumab to Alendronate. J. Clin. Endocrinol. Metab. 2019, 105, e255–e264. [Google Scholar] [CrossRef] [Green Version]
- Cosman, F.; Nieves, J.W.; Dempster, D.W. Treatment Sequence Matters: Anabolic and Antiresorptive Therapy for Osteoporosis. J. Bone Miner. Res. 2017, 32, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Ke, H.Z.; Richards, W.G.; Li, X.; Ominsky, M.S. Sclerostin and Dickkopf-1 as Therapeutic Targets in Bone Diseases. Endocr. Rev. 2012, 33, 747–783. [Google Scholar] [CrossRef] [Green Version]
- Chavassieux, P.; Chapurlat, R.; Portero-Muzy, N.; Roux, J.; Garcia, P.; Brown, J.P.; Libanati, C.; Boyce, R.W.; Wang, A.; Grauer, A. Bone-Forming and Antiresorptive Effects of Romosozumab in Postmenopausal Women with Osteoporosis: Bone Histomorphometry and Microcomputed Tomography Analysis After 2 and 12 Months of Treatment. J. Bone Miner. Res. 2019, 34, 1597–1608. [Google Scholar] [CrossRef]
- Graeff, C.; Campbell, G.M.; Peña, J.; Borggrefe, J.; Padhi, D.; Kaufman, A.; Chang, S.; Libanati, C.; Glüer, C.-C. Administration of romosozumab improves vertebral trabecular and cortical bone as assessed with quantitative computed tomography and finite element analysis. Bone 2015, 81, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Genant, H.K.; Engelke, K.; Bolognese, M.A.; Mautalen, C.; Brown, J.P.; Recknor, C.; Goemaere, S.; Fuerst, T.; Yang, Y.-C.; Grauer, A.; et al. Effects of Romosozumab Compared with Teriparatide on Bone Density and Mass at the Spine and Hip in Postmenopausal Women with Low Bone Mass. J. Bone Miner. Res. 2016, 32, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, K.E.S.; Treece, G.M.; Pearson, R.A.; Gee, A.H.; Bolognese, M.A.; Brown, J.P.; Goemaere, S.; Grauer, A.; Hanley, D.A.; Mautalen, C.; et al. Romosozumab Enhances Vertebral Bone Structure in Women with Low Bone Density. J. Bone Miner. Res. 2021, 37, 256–264. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resch, H.; Zendeli, A.; Kocijan, R. Metabolic Bone Diseases—A Topic of Great Diversity. J. Clin. Med. 2022, 11, 6447. https://doi.org/10.3390/jcm11216447
Resch H, Zendeli A, Kocijan R. Metabolic Bone Diseases—A Topic of Great Diversity. Journal of Clinical Medicine. 2022; 11(21):6447. https://doi.org/10.3390/jcm11216447
Chicago/Turabian StyleResch, Heinrich, Afrodite Zendeli, and Roland Kocijan. 2022. "Metabolic Bone Diseases—A Topic of Great Diversity" Journal of Clinical Medicine 11, no. 21: 6447. https://doi.org/10.3390/jcm11216447
APA StyleResch, H., Zendeli, A., & Kocijan, R. (2022). Metabolic Bone Diseases—A Topic of Great Diversity. Journal of Clinical Medicine, 11(21), 6447. https://doi.org/10.3390/jcm11216447