Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Ethical Consent
2.3. Data Collection
2.4. Laboratory Measurements and Data
2.5. Protein Analysis
2.6. Sample Size Calculation and Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Standard Blood Biomarkers and Derivates
3.3. Platelet-Derived Markers
3.4. Sepsis and SBI Prediction
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romaine, S.T.; Potter, J.; Khanijau, A.; McGalliard, R.J.; Wright, J.L.; Sefton, G.; Leigh, S.; Edwardson, K.; Johnston, P.; Kerr, A.; et al. Accuracy of a Modified qSOFA Score for Predicting Critical Care Admission in Febrile Children. Pediatrics 2020, 146, e20200782. [Google Scholar] [CrossRef] [PubMed]
- Coster, D.; Wasserman, A.; Fisher, E.; Rogowski, O.; Zeltser, D.; Shapira, I.; Bernstein, D.; Meilik, A.; Raykhshtat, E.; Halpern, P.; et al. Using the kinetics of C-reactive protein response to improve the differential diagnosis between acute bacterial and viral infections. Infection 2020, 48, 241–248. Available online: https://pubmed.ncbi.nlm.nih.gov/31873850/ (accessed on 23 August 2022). [CrossRef] [PubMed]
- Mickiewicz, B.; Thompson, G.C.; Blackwood, J.; Jenne, C.N.; Winston, B.W.; Vogel, H.J.; Joffe, A.R. Biomarker Phenotype for Early Diagnosis and Triage of Sepsis to the Pediatric Intensive Care Unit. Sci. Rep. 2018, 8, 16606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; Pretorius, E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin. Thromb. Hemost. 2020, 46, 302–319. Available online: http://www.thieme-connect.com/products/ejournals/html/10.1055/s-0040-1708827 (accessed on 23 August 2022).
- Morrell, C.N.; Aggrey, A.A.; Chapman, L.M.; Modjeski, K.L. Emerging roles for platelets as immune and inflammatory cells. Blood 2014, 123, 2759–2767. [Google Scholar] [CrossRef] [Green Version]
- Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Lourens, P.J.; Steenkamp, J.; Kell, D.B.; Pretorius, E. Erythrocyte, Platelet, Serum Ferritin, and P-Selectin Pathophysiology Implicated in Severe Hypercoagulation and Vascular Complications in COVID-19. Int. J. Mol. Sci. 2020, 21, 8234. Available online: https://pubmed.ncbi.nlm.nih.gov/33153161/ (accessed on 23 August 2022).
- Tokarz-Deptuła, B.; Palma, J.; Baraniecki, Ł.; Stosik, M.; Kołacz, R.; Deptuła, W. What Function Do Platelets Play in Inflammation and Bacterial and Viral Infections? Front. Immunol. 2021, 12, 770436. [Google Scholar] [CrossRef]
- van de Maat, J.; Jonkman, H.; van de Voort, E.; Mintegi, S.; Gervaix, A.; Bressan, S.; Moll, H.; Oostenbrink, R. Measuring vital signs in children with fever at the emergency department: An observational study on adherence to the NICE recommendations in Europe. Eur. J. Pediatr. 2020, 179, 1097–1106. Available online: https://pubmed.ncbi.nlm.nih.gov/32036433/ (accessed on 23 August 2022).
- Ratzinger, F.; Schuardt, M.; Eichbichler, K.; Tsirkinidou, I.; Bauer, M.; Haslacher, H.; Mitteregger, D.; Binder, M.; Burgmann, H. Utility of sepsis biomarkers and the infection probability score to discriminate sepsis and systemic inflammatory response syndrome in standard care patients. PLoS ONE 2013, 8, e82946. [Google Scholar]
- Yusa, T.; Tateda, K.; Ohara, A.; Miyazaki, S. New possible biomarkers for diagnosis of infections and diagnostic distinction between bacterial and viral infections in children. J. Infect. Chemother. 2017, 23, 96–100. [Google Scholar]
- Rautiainen, L.; Cirko, A.; Pavare, J.; Grope, I.; Gersone, G.; Tretjakovs, P.; Gardovska, D. Biomarker combinations in predicting sepsis in hospitalized children with fever. BMC Pediatr. 2022, 22, 272. Available online: http://www.ncbi.nlm.nih.gov/pubmed/35550043 (accessed on 23 August 2022). [CrossRef] [PubMed]
- Dagys, A.; Laucaitytė, G.; Volkevičiūtė, A.; Abramavičius, S.; Kėvalas, R.; Vitkauskienė, A.; Jankauskaitė, L. Blood biomarkers in early bacterial infection and sepsis diagnostics in feverish young children. Int. J. Med. Sci. 2022, 19, 753–761. Available online: https://pubmed.ncbi.nlm.nih.gov/35582414/ (accessed on 23 August 2022). [CrossRef] [PubMed]
- Fan, S.L.; Miller, N.S.; Lee, J.; Remick, D.G. Diagnosing Sepsis—The Role of Laboratory Medicine. Clin. Chim. Acta 2017, 460, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melbye, H.; Hvidsten, D.; Holm, A.; Nordbø, A.; Brox, J. The course of C-reactive protein response in untreated upper respiratory tract infection. Br. J. Gen. Pract. 2004, 54, 653. Available online: https://bjgp.org/content/54/506/653.short (accessed on 23 August 2022).
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. Available online: https://pubmed.ncbi.nlm.nih.gov/29515456/ (accessed on 23 August 2022). [CrossRef]
- Hyun, Y.M.; Sumagin, R.; Sarangi, P.P.; Lomakina, E.; Overstreet, M.G.; Baker, C.M.; Fowell, D.J.; Waugh, R.E.; Sarelius, I.H.; Kim, M. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J. Exp. Med. 2012, 209, 1349–1362. Available online: https://pubmed.ncbi.nlm.nih.gov/22711877/ (accessed on 23 August 2022). [CrossRef]
- Normal Values WBC and ANC Child—UpToDate. Available online: https://www.uptodate.com/contents/image?imageKey=HEME%2F105415 (accessed on 23 August 2022).
- Semple, J.W.; Italiano, J.E.; Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011, 11, 264–274. [Google Scholar] [CrossRef]
- Seyoum, M.; Enawgaw, B.; Melku, M. Human blood platelets and viruses: Defense mechanism and role in the removal of viral pathogens. Thromb. J. 2018, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Hottz, E.D.; Bozza, F.A.; Bozza, P.T. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front. Med. 2018, 5, 121. [Google Scholar] [CrossRef]
- Assinger, A. Platelets and infection—An emerging role of platelets in viral infection. Front. Immunol. 2014, 18, 649. [Google Scholar] [CrossRef] [Green Version]
- Raadsen, M.; du Toit, J.; Langerak, T.; van Bussel, B.; van Gorp, E.; Goeijenbier, M. Thrombocytopenia in Virus Infections. J. Clin. Med. 2021, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- Carestia, A.; Kaufman, T.; Schattner, M. Platelets: New Bricks in the Building of Neutrophil Extracellular Traps. Front. Immunol. 2016, 7, 271. Available online: https://pubmed.ncbi.nlm.nih.gov/27458459/ (accessed on 23 August 2022). [CrossRef] [PubMed] [Green Version]
- Handtke, S.; Thiele, T. Large and small platelets—(When) do they differ? J. Thromb. Haemost. 2020, 18, 1256–1267. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/jth.14788 (accessed on 23 August 2022). [CrossRef]
- Feketea, G.; Vlacha, V.; Pop, R.M.; Bocsan, I.C.; Stanciu, L.A.; Buzoianu, A.D.; Zdrenghea, M. Relationship Between Vitamin D Level and Platelet Parameters in Children With Viral Respiratory Infections. Front. Pediatr. 2022, 10, 824959. Available online: https://pubmed.ncbi.nlm.nih.gov/35463888/ (accessed on 23 August 2022). [CrossRef] [PubMed]
- Blair, P.; Flaumenhaft, R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Rendu, F.; Brohard-Bohn, B. The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 2001, 12, 261–273. [Google Scholar] [CrossRef]
- Heijnen, H.; van der Sluijs, P. Platelet secretory behaviour: As diverse as the granules... or not? J. Thromb. Haemost. 2015, 13, 2141–2151. [Google Scholar] [CrossRef]
- Zonneveld, R.; Martinelli, R.; Shapiro, N.I.; Kuijpers, T.W.; Plötz, F.B.; Carman, C.V. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit. Care 2014, 18, 204. Available online: https://pubmed.ncbi.nlm.nih.gov/24602331/ (accessed on 23 August 2022). [CrossRef] [PubMed] [Green Version]
- Vassiliou, A.G.; Mastora, Z.; Orfanos, S.E.; Jahaj, E.; Maniatis, N.A.; Koutsoukou, A.; Armaganidis, A.; Kotanidou, A. Elevated biomarkers of endothelial dysfunction/activation at ICU admission are associated with sepsis development. Cytokine 2014, 69, 240–247. Available online: https://pubmed.ncbi.nlm.nih.gov/25016133/ (accessed on 23 August 2022). [CrossRef]
- Schrijver, I.T.; Kemperman, H.; Roest, M.; Kesecioglu, J.; de Lange, D.W. Soluble P-selectin as a Biomarker for Infection and Survival in Patients With a Systemic Inflammatory Response Syndrome on the Intensive Care Unit. Biomark Insights 2017, 12, 1177271916684823. Available online: https://pubmed.ncbi.nlm.nih.gov/28469394/ (accessed on 23 August 2022). [CrossRef]
- Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015, 29, 153–162. Available online: https://pubmed.ncbi.nlm.nih.gov/25468720/ (accessed on 23 August 2022). [CrossRef] [PubMed] [Green Version]
- Ghasemzadeh, M.; Kaplan, Z.S.; Alwis, I.; Schoenwaelder, S.M.; Ashworth, K.J.; Westein, E.; Hosseini, E.; Salem, H.H.; Slattery, R.; McColl, S.R.; et al. The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood 2013, 121, 4555–4566. Available online: https://pubmed.ncbi.nlm.nih.gov/23550035/ (accessed on 23 August 2022). [CrossRef] [Green Version]
- Hoylaerts, M.F.; Vanassche, T.; Verhamme, P. Bacterial killing by platelets: Making sense of (H)IT. J. Thromb. Haemost. 2018, 16, 1182–1186. Available online: https://pubmed.ncbi.nlm.nih.gov/29582551/ (accessed on 23 August 2022). [CrossRef] [PubMed]
- Yue, L.; Pang, Z.; Li, H.; Yang, T.; Guo, L.; Liu, L.; Mei, J.; Song, X.; Xie, T.; Zhang, Y.; et al. CXCL4 contributes to host defense against acute Pseudomonas aeruginosa lung infection. PLoS ONE 2018, 13, e0205521. Available online: https://pubmed.ncbi.nlm.nih.gov/30296305/ (accessed on 23 August 2022). [CrossRef] [PubMed] [Green Version]
- Brown, A.J.; Sepuru, K.M.; Sawant, K.V.; Rajarathnam, K. Platelet-derived chemokine CXCL7 dimer preferentially exists in the glycosaminoglycan-bound form: Implications for neutrophil-platelet crosstalk. Front. Immunol. 2017, 8, 1248. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Feng, K.; Wang, Y.C.; Mei, J.J.; Ning, R.T.; Zheng, H.W.; Wang, J.J.; Worthen, G.S.; Wang, X.; Song, J.; et al. Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection. Mucosal Immunol. 2017, 10, 1529–1541. Available online: https://pubmed.ncbi.nlm.nih.gov/28120850/ (accessed on 23 August 2022). [CrossRef]
Total n = 68 (0–5 y) | |
Age <12 mo (%) | 23 (33.8) |
Median age (IQR) | 2 (0–5) |
Gender (male) (%) | 37 (54.41) |
Time of arrival (h) (IQR) | 7 (3–10) |
Clinical signs and symptoms on presentation: | |
Mean fever +/−SD | 38.8+/−0.89 |
Tachypnea (%) | 21 (31.3) |
Median RR (IQR) | 29 (24–36) |
SpO2 <94% (%) | 8 (11.8%) |
Mean SpO2 +/−SD | 96.85+/−3.43 |
Tachycardia (%) | 33 (48.5%) |
Median HR (IQR) | 145.5 (130.5–165) |
CRT +/−SD | 2.34+/−0.73 |
Diagnosis group | |
Viral (%) | 42 (61.8) |
Bacterial (%) | 10 (14.7) |
SBI (%) | 16 (23.5) Sepsis n = 4 |
Biomarker | Overall n = 68 | Viral n = 42 | All Bacterial n = 26 | p Value | SBI n = 16 | Other n = 52 | p Value | Sepsis n = 4 | Other n = 64 | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Leu × 109/L | 11.86 ± 6.24 | 9.183 ± 3.76 | 16.18 ± 7.05 | <0.001 | 14.92 ± 7.9 | 10.92 ± 5.37 | 0.024 | 11.61 ± 10.49 | 11.88 ± 6.01 | 0.288 |
Neu × 109/L | 7.55 ± 5.67 | 4.95 ± 3.07 | 11.76 ± 6.41 | <0.001 | 11.01 ± 7.55 | 6.49 ± 4.54 | 0.005 | 7.88 ± 9.22 | 7.53 ± 5.49 | 0.324 |
CRP, mg/L (IQR) | 16.38 (1.59–16.51) | 6.01 (3.49–8.59) | 33.09 (13.06–53.11) | <0.001 | 59.86 (11.26–75.05) | 11.89 ± (4.84–11.45) | <0.001 | 87.84 (59.22–116.56) | 11.92 (4.76–19.07) | 0.001 |
PLT × 109/L | 292.13 ± 96.19 | 276.95 ± 80.45 | 311.81 ± 116.31 | 0.054 | 320 ± 122.18 | 283.56 ± 86.29 | 0.187 | 304.3 ± 160.4 | 291 ± 92.76 | 0.498 |
MPV, fL | 9.47 ± 0.74 | 9.57 ± 0.79 | 9.31 ± 0.65 | 0.167 | 9.46 ± 0.58 | 9.48 ± 0.79 | 0.931 | 9.88 ± 0.22 | 9.45 ± 0,76 | 0.056 |
PDW, fL | 10.53 ± 1.42 | 10.66 ± 1.58 | 10.33 ± 1.10 | 0.380 | 10.51 ± 0.95 | 10.54 ± 1.54 | 0.946 | 11.15 ± 0.39 | 10.50 ± 1.45 | 0.070 |
P-LCR, % | 20.52 ± 6.17 | 21.19 ± 6.67 | 19.43 ± 5.23 | 0.255 | 20.53 ± 4.62 | 20.51 ± 6.62 | 0.991 | 23.53 ± 1.42 | 20.33 ± 6.31 | 0.074 |
PCT | 0.28 ± 0.09 | 0.27 ± 0.07 | 0.29 ± 0.10 | 0.279 | 0.30 ± 0.11 | 0.27 ± 0.08 | 0.125 | 0.25 ± 0.16 | 0.28 ± 0.08 | 0.054 |
PLT/MPV (IQR) | 31.28 (23.73–36.02) | 29.64 (26.72–32.55) | 33.93 (28.47–39.39) | 0.126 | 34.17 (26.85–41.48) | 30.39 (27.51–33.26) | 0.242 | 24.02 (12.89–35.17) | 31.73 (28.94–34.51) | 0.185 |
PNR (IQR) | 69.11 (29.39–88.29) | 82.71 (63.16–102.26) | 47.15 (21.29–73.02) | 0.028 | 60.54 (18.51–102.57) | 71.75 (54.79–88.71) | 0.551 | 67.43 (1.92–132.93) | 69.22 (52.85–85.6) | 0.958 |
PNLR (IQR) | 1362.32 (705.14–2128.68) | 945.42 (609.24–1281.60) | 2035.78 (1303.3–2768.27) | 0.003 | 2161.43 (1025.87–3296.99) | 1116.44 (796.05–1436.85) | 0.013 | 518.78 | 1414.98 (1043.78–1786.19) | 0.247 |
Overall n = 68 | Viral n = 42 | All Bacterial n = 26 | p Value | SBI n = 16 | Other n = 52 | p Value | Sepsis n = 4 | Other n = 64 | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
CXCL4 (pg/mL) | 36.3 ± 4.8 | 35.52 ± 4.49 | 34.38 ± 5.32 | 0.348 | 34.38 ± 6.15 | 35.30 ± 4.38 | 0.505 | 31.81 ± 5.54 | 35.29 ± 4.74 | 0.162 |
CXCL7 (pg/mL) | 84.6 ± 10.9 | 82.20 ± 10.34 | 86.31 ± 11.50 | 0.132 | 88.1 ± 11.36 | 82.44 ± 10.51 | 0.069 | 96.5 ± 4.87 | 82.98 ± 10.7 | 0.015 |
sP-selectin (pg/mL) | 34.7 ± 21.6 | 29.09 ± 17.53 | 52.89 ± 19.76 | <0.001 | 53.66 ± 22.5 | 33.13 ± 19.04 | <0.001 | 62.25 ± 17.18 | 36.55 ± 21.08 | 0.020 |
Serotonin (pg/mL) | 16.6 ± 4.1 | 16.34 ± 4.22 | 16.90 ± 4.02 | 0.603 | 17,04 ± 3.99 | 16.4 ± 4.19 | 0.590 | 15.28 ± 4.6 | 16.64 ± 4.12 | 0.527 |
Marker | Compared Groups | Cutoff Value pg/mL | Youden’s Index | AUC (CI 95%) | Likelihood Ratio | Sensitivity % | Specificity % | p Value |
---|---|---|---|---|---|---|---|---|
CXCL7 | Sepsis (n = 4) vs. other infections (n = 64) | 95.05 | 0.560 | 0.912 (0.824–1.000) | 3.25 | 81.25 | 75 | 0.006 |
SBI (n = 16) vs. other (n = 52) | 81.20 | 0.197 | 0.644 (0.493–0.815) | 2.05 | 38.46 | 81.25 | 0.080 | |
VI (n = 42) vs. all bacterial etiology infections (n = 26) | 91.69 | 0.214 | 0.642 (0.467–0.758) | 1.75 | 50 | 71.43 | 0.050 | |
sP-selectin | Sepsis (n = 4) vs. No sepsis (n = 64) | 59.59 | 0.544 | 0.847 (0.660–1.001) | 3.17 | 79.37 | 75 | 0.017 |
SBI (n = 16) vs. other (n = 52) | 52.98 | 0.465 | 0.754 (0.603–0.905) | 2.33 | 84.0 | 62.5 | 0.001 | |
VI (n = 42) vs. all bacterial etiology infections (n = 26) | 38.06 | 0.550 | 0.807 (0.695–0.919) | 3.78 | 75.6 | 80 | <0.001 |
Marker (Cutoff Value pg/mL) | Compared Groups | Cutoff Value | Youden’s Index | AUC (CI 95%) | Sensitivity % | Specificity % | p Value |
---|---|---|---|---|---|---|---|
CXCL7 + sP-selectin | VI vs. bacterial etiology of infection | 0.003 | 0.339 | 0.728 (0.598–0.858) | 65.9 | 68 | 0.001 |
CXCL7 + sP-selectin | SBI vs. other | 0.050 | 0.402 | 0.738 (0.586–0.889) | 85 | 56.2 | 0.002 |
CXCL7 + sP-selectin | Sepsis vs. no sepsis | 0.054 | 0.823 | 0.935 (0.855–1.016) | 82.3 | 100 | <0.001 |
CXCL7 + sP-selectin + tachypnoea | Sepsis vs. no sepsis | 0.130 | 0.919 | 0.962 (0.909–1.016) | 91.8 | 100 | <0.001 |
CXCL7 + sP-selectin + tachypnoea + SpO2 < 94% | SBI vs. other | 0.289 | 0.613 | 0.815 (0.671–0.985) | 88 | 73.3 | <0.001 |
CXCL7 + sP-selectin + tachypnoea + SpO2 < 94% | Sepsis vs. no sepsis | 0.227 | 0.968 | 0.973 (0.934–1.012) | 96.8 | 100 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pociute, A.; Kottilingal Farook, M.F.; Dagys, A.; Kevalas, R.; Laucaityte, G.; Jankauskaite, L. Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics. J. Clin. Med. 2022, 11, 6475. https://doi.org/10.3390/jcm11216475
Pociute A, Kottilingal Farook MF, Dagys A, Kevalas R, Laucaityte G, Jankauskaite L. Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics. Journal of Clinical Medicine. 2022; 11(21):6475. https://doi.org/10.3390/jcm11216475
Chicago/Turabian StylePociute, Aiste, Muhammed Fazil Kottilingal Farook, Algirdas Dagys, Rimantas Kevalas, Goda Laucaityte, and Lina Jankauskaite. 2022. "Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics" Journal of Clinical Medicine 11, no. 21: 6475. https://doi.org/10.3390/jcm11216475
APA StylePociute, A., Kottilingal Farook, M. F., Dagys, A., Kevalas, R., Laucaityte, G., & Jankauskaite, L. (2022). Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics. Journal of Clinical Medicine, 11(21), 6475. https://doi.org/10.3390/jcm11216475