Effects of Different Endometrial Preparation Regimens during IVF on Incidence of Ischemic Placental Disease for FET Cycles
Abstract
:1. Introduction
2. Purpose of the Work
3. Method
3.1. Study Design and Population
3.2. Endometrial Preparation Procedures
3.3. Embryo Quality Assessment and Vitrification
3.4. Observational Indicators and Outcome Measures
3.5. Statistical Analysis
4. Results
4.1. Baseline Characteristics of Patients Involved
4.2. Subgroups Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPD | Ischemic placental disease. |
SGA | Smaller than gestational age. |
IVF | In vitro fertilization. |
FET | Frozen embryo transfer. |
HRT | Hormone replacement therapy. |
PSM | Propensity score matching. |
BMI | Body mass index. |
References
- Ananth, C.V.; Vintzileos, A.M. Ischemic placental disease: Epidemiology and risk factors. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 159, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.V.; Jablonski, K.; Myatt, L.; Roberts, J.M.; Tita, A.T.; Leveno, K.J.; Reddy, U.M.; Varner, M.W.; Thorp, J.M., Jr.; Mercer, B.M.; et al. Risk of ischemic placental disease in relation to family history of preeclampsia. Am. J. Perinatol. 2019, 36, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.V. Ischemic placental disease: A unifying concept for preeclampsia, intrauterine growth restriction, and placental abruption. In Proceedings of the Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 38, pp. 131–132. [Google Scholar]
- Ho, J.T.; Lewis, J.G.; O’Loughlin, P.; Bagley, C.J.; Romero, R.; Dekker, G.A.; Torpy, D.J. Reduced maternal corticosteroid-binding globulin and cortisol levels in pre-eclampsia and gamete recipient pregnancies. Clin. Endocrinol. 2007, 66, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, S.; Edlow, A.; Neff, P.; Sammel, M.; Andrela, C.; Elovitz, M. Rethinking IUGR in preeclampsia: Dependent or independent of maternal hypertension? J. Perinatol. 2009, 29, 680–684. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Fujiwara, T.; Suzuki, T.; Jwa, S.C.; Taniguchi, K.; Yamanobe, Y.; Kozuka, K.; Sago, H. Is in vitro fertilization associated with preeclampsia? A propensity score matched study. BMC Pregnancy Childbirth 2014, 14, 69. [Google Scholar] [CrossRef] [Green Version]
- Choux, C.; Carmignac, V.; Bruno, C.; Sagot, P.; Vaiman, D.; Fauque, P. The placenta: Phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy. Clin. Epigenet. 2015, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Klatsky, P.C.; Delaney, S.S.; Caughey, A.B.; Tran, N.D.; Schattman, G.L.; Rosenwaks, Z. The role of embryonic origin in preeclampsia: A comparison of autologous in vitro fertilization and ovum donor pregnancies. Obstet. Gynecol. 2010, 116, 1387–1392. [Google Scholar] [CrossRef]
- Matsuda, Y.; Hayashi, K.; Shiozaki, A.; Kawamichi, Y.; Satoh, S.; Saito, S. Comparison of risk factors for placental abruption and placenta previa: Case-cohort study. J. Obstet. Gynaecol. Res. 2011, 37, 538–546. [Google Scholar] [CrossRef]
- Johnson, K.M.; Hacker, M.R.; Thornton, K.; Young, B.C.; Modest, A.M. Association between in vitro fertilization and ischemic placental disease by gestational age. Fertil. Steril. 2020, 114, 579–586. [Google Scholar] [CrossRef]
- Cavoretto, P.I.; Giorgione, V.; Sotiriadis, A.; Viganò, P.; Papaleo, E.; Galdini, A.; Gaeta, G.; Candiani, M. IVF/ICSI treatment and the risk of iatrogenic preterm birth in singleton pregnancies: Systematic review and meta-analysis of cohort studies. J. Matern.-Fetal Neonatal Med. 2022, 35, 1987–1996. [Google Scholar] [CrossRef]
- Kushnir, V.A.; Barad, D.H.; Albertini, D.F.; Darmon, S.K.; Gleicher, N. Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reprod. Biol. Endocrinol. 2017, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.M.; Hacker, M.R.; Resetkova, N.; O’Brien, B.; Modest, A.M. Risk of ischemic placental disease in fresh and frozen embryo transfer cycles. Fertil. Steril. 2019, 111, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Modest, A.M.; Johnson, K.M.; Karumanchi, S.A.; Resetkova, N.; Young, B.C.; Fox, M.P.; Wise, L.A.; Hacker, M.R. Risk of ischemic placental disease is increased following in vitro fertilization with oocyte donation: A retrospective cohort study. J. Assist. Reprod. Genet. 2019, 36, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Modest, A.M.; Smith, L.H.; Toth, T.L.; Collier, A.r.Y.; Hacker, M.R. Multifoetal gestations mediate the effect of in vitro fertilisation (IVF) on ischaemic placental disease in autologous oocyte IVF more than donor oocyte IVF. Paediatr. Perinat. Epidemiol. 2022, 36, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Köse, S.; Tosun, G.; Isbilen Basok, B.; Keskinoğlu, P.; Altunyurt, S. Prediction of ischemic placental diseases during the first trimester combined test period: A retrospective cohort of low-risk pregnancies in search of the link between parity and disease. J. Matern.-Fetal Neonatal Med. 2020, 33, 3272–3278. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.; Liu, H.; Wang, B.; Yang, X.; Shen, X.; Mao, X.; Wang, Y.; Kuang, Y. The impact of embryo quality on singleton birthweight in vitrified-thawed single blastocyst transfer cycles. Hum. Reprod. 2020, 35, 308–316. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, M.; Bian, X.; Wu, L.; Zhang, S.; Mao, X.; Wang, B. Letrozole-induced frozen embryo transfer cycles are associated with a lower risk of hypertensive disorders of pregnancy among women with polycystic ovary syndrome. Am. J. Obstet. Gynecol. 2021, 225, 59-e1. [Google Scholar] [CrossRef]
- Du, T.; Chen, H.; Fu, R.; Chen, Q.; Wang, Y.; Mol, B.W.; Kuang, Y.; Lyu, Q. Comparison of ectopic pregnancy risk among transfers of embryos vitrified on day 3, day 5, and day 6. Fertil. Steril. 2017, 108, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, J.; Zhu, Q.; Yang, X.; Wang, Y. Effects of different cycle regimens for frozen embryo transfer on perinatal outcomes of singletons. Hum. Reprod. 2020, 35, 1612–1622. [Google Scholar] [CrossRef]
- Dai, L.; Deng, C.; Li, Y.; Zhu, J.; Mu, Y.; Deng, Y.; Mao, M.; Wang, Y.; Li, Q.; Ma, S.; et al. Birth weight reference percentiles for Chinese. PLoS ONE 2014, 9, e104779. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y.; Guan, X.; Tong, J.; Wu, X.; Niu, J. Associations between pre-pregnancy body mass index and occurrence and clinical features of preeclampsia. Zhonghua Fu Chan Ke Za Zhi 2021, 56, 96–101. [Google Scholar] [PubMed]
- Jena, M.K.; Sharma, N.R.; Petitt, M.; Maulik, D.; Nayak, N.R. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules 2020, 10, 953. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.E.; Werler, M.M. Epidemiology of ischemic placental disease: A focus on preterm gestations. In Proceedings of the Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 38, pp. 133–138. [Google Scholar]
- Ananth, C.V.; Vintzileos, A.M. Maternal-fetal conditions necessitating a medical intervention resulting in preterm birth. Am. J. Obstet. Gynecol. 2006, 195, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhang, X.; Huang, L.; Wang, S.; Li, L.; Dong, M.; Zhu, X.; Liu, F. The impact of different cycle regimens on birthweight of singletons in frozen-thawed embryo transfer cycles of ovulatory women. Fertil. Steril. 2022, 117, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M. Pathophysiology of ischemic placental disease. In Proceedings of the Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 38, pp. 139–145. [Google Scholar]
- Murthi, P.; Pinar, A.A.; Dimitriadis, E.; Samuel, C.S. Inflammasomes—A molecular link for altered immunoregulation and inflammation mediated vascular dysfunction in preeclampsia. Int. J. Mol. Sci. 2020, 21, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular dysfunction in preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Eisenberg, E. Maternal measures matter: In search of an etiology for ischemic placental disease. Fertil. Steril. 2020, 114, 506–507. [Google Scholar] [CrossRef]
- Maas, K.; Galkina, E.; Thornton, K.; Penzias, A.S.; Sakkas, D. No change in live birthweight of IVF singleton deliveries over an 18-year period despite significant clinical and laboratory changes. Hum Reprod 2016, 31, 1987–1996. [Google Scholar] [CrossRef] [Green Version]
- Ernst, L.M. Maternal vascular malperfusion of the placental bed. Apmis 2018, 126, 551–560. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Yang, X.; Li, Y.; Huang, D.; Xu, X.; Yang, W.; Dai, Y.; Zhang, H.; Chen, Z.; Cheng, W. TLR9 (toll-like receptor 9) agonist suppresses angiogenesis by differentially regulating VEGFA (vascular endothelial growth factor a) and sFLT1 (soluble vascular endothelial growth factor receptor 1) in preeclampsia. Hypertension 2018, 71, 671–680. [Google Scholar] [CrossRef]
Characteristic | Natural Cycle | Stimulation Cycle | p-Value | Natural Cycle | HRT Cycle | p-Value | Stimulation Cycle | HRT Cycle | p-Value |
---|---|---|---|---|---|---|---|---|---|
1630 | 1630 | 1540 | 1540 | 2823 | 2823 | ||||
AGE | 36.569 (4.141) | 36.369 (4.350) | 0.154 | 36.552 (4.702) | 36.539 (4.199) | 0.796 | 35.670 (4.366) | 35.633 (4.605) | 0.358 |
Duration of infertility | 0.479 | 3.17 (2.76) | 2.95 (2.77) | 0.989 | 3.07 (2.89) | 2.95 (2.77) | 0.996 | ||
0 | 282 (17.301%) | 312 (19.141%) | 289 (18.766%) | 276 (17.922%) | 553 (19.589%) | 564 (19.979%) | |||
1 | 197 (12.086%) | 208 (12.761%) | 202 (13.117%) | 189 (12.273%) | 345 (12.221%) | 350 (12.398%) | |||
2 | 301 (18.466%) | 305 (18.712%) | 289 (18.766%) | 285 (18.506%) | 511 (18.101%) | 524 (18.562%) | |||
3 | 245 (15.031%) | 261 (16.012%) | 229 (14.870%) | 230 (14.935%) | 474 (16.791%) | 467 (16.543%) | |||
3+ | 605 (37.117%) | 542 (33.251%) | |||||||
BMI | 21.450 (2.829) | 21.458 (2.780) | 0.471 | 21.490 (2.812) | 21.481 (2.840) | 0.647 | 22.178 (3.186) | 22.193 (3.321) | 0.630 |
Excellent embryo rate | 0.520 (0.251) | 0.514 (0.247) | 0.546 | 0.528 (0.264) | 0.526 (0.252) | 0.794 | 0.505 (0.245) | 0.509 (0.255) | 0.852 |
Cyclerank | 0.410 | 0.942 | 0.696 | ||||||
1 | 928 (56.933%) | 925 (56.748%) | 812 (52.727%) | 823 (53.442%) | 1264 (44.775%) | 1314 (46.546%) | |||
2 | 428 (26.258%) | 395 (24.233%) | 441 (28.636%) | 431 (27.987%) | 915 (32.412%) | 847 (30.004%) | |||
3 | 154 (9.448%) | 176 (10.798%) | 154 (10.000%) | 157 (10.195%) | 387 (13.709%) | 394 (13.957%) | |||
3+ | 120 (7.362%) | 133 (8.160%) | (%) | (%) | (%) | (%) | |||
Gravidity | 0.079 | 0.215 | 0.689 | ||||||
0 | 916 (56.196%) | 863 (52.945%) | 818 (53.117%) | 859 (55.779%) | 1604 (56.819%) | 1619 (57.350%) | |||
1 | 373 (22.883%) | 409 (25.092%) | 371 (24.091%) | 354 (22.987%) | 656 (23.238%) | 633 (22.423%) | |||
2 | 213 (13.067%) | 210 (12.883%) | 190 (12.338%) | 203 (13.182%) | 328 (11.619%) | 323 (11.442%) | |||
3 | 83 (5.092%) | 83 (5.092%) | 105 (6.818%) | 80 (5.195%) | 149 (5.278%) | 161 (5.703%) | |||
3+ | 43 (2.638%) | 65 (2.988%) | (%) | (%) | (%) | (%) | |||
Parity | 0.759 | 0.602 | 0.497 | ||||||
0 | 1466 (89.939%) | 1470 (90.184%) | 1380 (89.610%) | 1387 (90.065%) | 2578 (91.321%) | 2576 (91.250%) | |||
1 | 150 (9.202%) | 149 (9.141%) | 151 (9.805%) | 140 (9.091%) | 225 (7.970%) | 232 (8.218%) | |||
2 | 13 (0.798%) | 11 (0.675%) | 9 (0.584%) | 12 (0.779%) | 18 (0.638%) | 15 (0.531%) | |||
3 | 1 (0.061%) | 0 (0.000%) | 0 (0.000%) | 1 (0.065%) | 2 (0.071%) | 0 (0.000%) | |||
Paternal factor | 377 (23.129%) | 380 (23.313%) | 0.901 | 337 (21.883%) | 340 (22.078%) | 0.896 | 625 (22.140%) | 604 (21.396%) | 0.498 |
Ovulation Dysfunction | 90 (5.521%) | 67 (4.110%) | 0.060 | 92 (5.974%) | 90 (5.844%) | 0.879 | 505 (17.889%) | 507 (17.960%) | 0.945 |
Endometriosis | 142 (8.712%) | 144 (8.834%) | 0.901 | 150 (9.740%) | 144 (9.351%) | 0.713 | 208 (7.368%) | 221 (7.829%) | 0.514 |
Tubal disease | 1157 (70.982%) | 1151 (70.613%) | 0.817 | 1087 (70.584%) | 1076 (69.870%) | 0.665 | 1763 (62.451%) | 1762 (62.416%) | 0.978 |
Unexplained infertility | 27 (1.656%) | 27 (1.656%) | 1.000 | 21 (1.364%) | 26 (1.688%) | 0.462 | 49 (1.736%) | 45 (1.594%) | 0.677 |
No. of embryo transferred | 0.902 | 0.709 | 0.616 | ||||||
1 | 396 (24.294%) | 393 (24.110%) | 394 (25.584%) | 385 (25.000%) | 794 (28.126%) | 811 (28.728%) | |||
2 | 1234 (75.706%) | 1237 (75.890%) | 1146 (74.416%) | 1155 (75.000%) | 2029 (71.874%) | 2012 (71.272%) | |||
Developmental stage of embryo | 0.350 | 0.661 | 0.920 | ||||||
Day 5 or 6 | 265 (16.258%) | 285 (17.485%) | 248 (16.104%) | 257 (16.688%) | 560 (19.837%) | 557 (19.731%) | |||
Day 3 | 1365 (83.742%) | 1345 (82.515%) | 1292 (83.896%) | 1283 (83.312%) | 2263 (80.163%) | 2266 (80.269%) | |||
Insemination method | 0.897 | 0.963 | 0.862 | ||||||
IVF | 1014 (62.209%) | 1002 (61.472%) | 946 (61.429%) | 952 (61.818%) | 1612 (57.102%) | 1623 (57.492%) | |||
ICSI | 488 (29.939%) | 500 (30.675%) | 468 (30.390%) | 461 (29.935%) | 818 (28.976%) | 821 (29.083%) | |||
IVF + ICSI | 128 (7.853%) | 128 (7.853%) | 126 (8.182%) | 127 (8.247%) | 393 (13.921%) | 379 (13.425%) |
Outcome | Natural Cycle | Stimulation Cycle | Crude OR | P1 | Adjusted OR | P2 |
---|---|---|---|---|---|---|
1630 | 1630 | |||||
Low BW | 63 (3.865%) | 72 (4.417%) | 1.149 (0.814, 1.624) | 0.429 | 1.152 (0.816, 1.628) | 0.422 |
Preterm | 88 (5.399%) | 106 (6.503%) | 1.219 (0.911, 1.631) | 0.183 | 1.215 (0.908, 1.627) | 0.190 |
Very low BW | 7 (0.429%) | 9 (0.552%) | 1.287 (0.478, 3.465) | 0.616 | 1.284 (0.477, 3.457) | 0.621 |
Very Preterm | 8 (0.491%) | 12 (0.736%) | 1.504 (0.613, 3.688) | 0.370 | 1.489 (0.606, 3.654) | 0.385 |
SGA | 66 (4.049%) | 94 (5.767%) | 1.450 (1.050, 2.002) | 0.023 * | 1.477 (1.069, 2.041) | 0.018 * |
LGA | 246 (15.092%) | 227 (13.926%) | 0.910 (0.749, 1.106) | 0.345 | 0.909 (0.747, 1.107) | 0.343 |
IPD | 70 (4.294%) | 102 (6.258%) | 1.488 (1.089, 2.033) | 0.012 * | 1.511 (1.105, 2.067) | 0.010 * |
Pre-eclampsia | 3 (0.184%) | 9 (0.552%) | 3.011 (0.814, 11.142) | 0.082 | 3.091 (0.833, 11.473) | 0.092 |
Placental abruption | 1 (0.061%) | 3 (0.184%) | 3.004 (0.312, 28.906) | 0.625 | 2.887 (0.299, 27.862) | 0.359 |
Outcome | Natural Cycle | HRT Cycle | Crude OR | P1 | Adjusted OR | P2 |
---|---|---|---|---|---|---|
1540 | 1540 | |||||
Low BW | 59 (3.831%) | 68 (4.416%) | 1.160 (0.812, 1.656) | 0.415 | 1.159 (0.812, 1.654) | 0.418 |
Preterm | 81 (5.260%) | 111 (7.208%) | 1.399 (1.041, 1880) | 0.026 * | 1.398 (1.039, 1.880) | 0.027 * |
Very low BW | 7 (0.455%) | 4 (0.260%) | 0.570 (0.167, 1.952) | 0.371 | 0.577 (0.168, 1.975) | 0.381 |
Very Preterm | 8 (0.519%) | 8 (0.519%) | 1.000 (0.374, 2.671) | 1.000 | 0.997 (0.373, 2.665) | 0.996 |
SGA | 60 (3.896%) | 62 (4.026%) | 1.035 (0.720, 1.486) | 0.853 | 1.032 (0.718, 1.484) | 0.865 |
LGA | 242 (15.714%) | 234 (15.195%) | 0.961 (0.790, 1.168) | 0.690 | 0.959 (0.787, 1.168) | 0.679 |
IPD | 64 (4.156%) | 74 (4.805%) | 1.164 (0.827, 1.639) | 0.384 | 1.164 (0.826, 1.640) | 0.386 |
Pre-eclampsia | 3 (0.195%) | 13 (0.844%) | 4.362 (1.240, 15.337) | 0.022 * | 4.408 (1.252, 15.512) | 0.021 * |
Placental abruption | 1 (0.065%) | 1 (0.065%) | 1.000 (0.062, 16.002) | 1.000 | 1.035 (0.064, 16.668) | 0.981 |
Outcome | Stimulation Cycle | HRT Cycle | Crude OR | P1 | Adjusted OR | P2 |
---|---|---|---|---|---|---|
2823 | 2823 | |||||
Low BW | 124 (4.392%) | 148 (5.243%) | 0.830 (0.650, 1.060) | 0.136 | 0.830 (0.650, 1.060) | 0.136 |
Preterm | 208 (7.368%) | 230 (8.147%) | 0.897 (0.738, 1090) | 0.274 | 0.898 (0.738, 1.092) | 0.280 |
Very low BW | 15 (0.531%) | 17 (0.602%) | 0.882 (0.439, 1.769) | 0.723 | 0.883 (0.440, 1.772) | 0.726 |
Very Preterm | 24 (0.850%) | 32 (1.134%) | 0.748 (0.439, 1.273) | 0.284 | 0.749 (0.440, 1.275) | 0.286 |
SGA | 136 (4.818%) | 139 (4.924%) | 0.977 (0.767, 1.245) | 0.853 | 0.981 (0.769, 1.250) | 0.874 |
LGA | 455 (16.118%) | 474 (16.791%) | 0.952 (0.827, 1.096) | 0.495 | 0.956 (0.829, 1.101) | 0.531 |
IPD | 147 (5.207%) | 163 (5.774%) | 0.896 (0.713, 1.127) | 0.350 | 0.898 (0.714, 1.130) | 0.359 |
Pre-eclampsia | 13 (0.461%) | 25 (0.886%) | 0.518 (0.264, 1.014) | 0.055 | 0.519 (0.265, 1.016) | 0.056 |
Placental abruption | 3 (0.106%) | 6 (0.213%) | 0.499 (0.125, 1.999) | 0.327 | 0.502 (0.125, 2.012) | 0.331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, Q.; Wang, Y. Effects of Different Endometrial Preparation Regimens during IVF on Incidence of Ischemic Placental Disease for FET Cycles. J. Clin. Med. 2022, 11, 6506. https://doi.org/10.3390/jcm11216506
Wang Y, Chen Q, Wang Y. Effects of Different Endometrial Preparation Regimens during IVF on Incidence of Ischemic Placental Disease for FET Cycles. Journal of Clinical Medicine. 2022; 11(21):6506. https://doi.org/10.3390/jcm11216506
Chicago/Turabian StyleWang, Yingjie, Qiuju Chen, and Yun Wang. 2022. "Effects of Different Endometrial Preparation Regimens during IVF on Incidence of Ischemic Placental Disease for FET Cycles" Journal of Clinical Medicine 11, no. 21: 6506. https://doi.org/10.3390/jcm11216506
APA StyleWang, Y., Chen, Q., & Wang, Y. (2022). Effects of Different Endometrial Preparation Regimens during IVF on Incidence of Ischemic Placental Disease for FET Cycles. Journal of Clinical Medicine, 11(21), 6506. https://doi.org/10.3390/jcm11216506