Remdesivir for Patients Hospitalized with COVID-19 Severe Pneumonia: A National Cohort Study (Remdeco-19)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settings
2.2. Outcomes
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants and Treatment
3.2. Control Group
3.3. Mortality
3.4. WHO Score
3.5. SOFA Score
3.6. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
COVID-19 | Coronavirus disease 2019 |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
EAP | Expanded access programs |
EUA | Emergency use authorization |
FDA | Food and Drug Administration |
ANSM | National Agency for the Safety of Medicines and Health Products |
CT | Computed tomographic |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
IRB | Institutional review board |
WHO-CPS | World Health Organization Clinical Progression Scale |
SOFA | Sequential Organ Failure Assessment |
ECMO | Extracorporeal membrane oxygenation |
IQR | Interquartile range |
ATE | Average treatment effect |
ATT | Average treatment effect in treated |
ATO | Average treatment effect in the overlap |
SMD | Standardized mean differences |
SD | Standard deviation |
AP-HP | Assistance Publique—Hôpitaux de Paris |
ICU | Intensive care unit |
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Semenzato, L.; Botton, J.; Drouin, J.; Cuenot, F.; Dray-Spira, R.; Weill, A.; Zureik, M. Chronic Diseases, Health Conditions and Risk of COVID-19-Related Hospitalization and in-Hospital Mortality during the First Wave of the Epidemic in France: A Cohort Study of 66 Million People. Lancet Reg. Health—Eur. 2021, 8, 100158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Rizk, J.G.; Forthal, D.N.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Pfeiffer, J.P.; Lewin, J.C. Expanded Access Programs, Compassionate Drug Use, and Emergency Use Authorizations during the COVID-19 Pandemic. Drug Discov. Today 2021, 26, 593–603. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Food and Drug Administration. Emergency Use Authorization. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs (accessed on 24 February 2021).
- Lo, M.K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A.L.; Flint, M.; McMullan, L.K.; Siegel, D.; Clarke, M.O.; et al. GS-5734 and Its Parent Nucleoside Analog Inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7, 43395. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.-X.; et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N. Engl. J. Med. 2020, 382, 2327–2336. [Google Scholar] [CrossRef]
- Burwick, R.M.; Yawetz, S.; Stephenson, K.E.; Collier, A.-R.Y.; Sen, P.; Blackburn, B.G.; Kojic, E.M.; Hirshberg, A.; Suarez, J.F.; Sobieszczyk, M.E.; et al. Compassionate Use of Remdesivir in Pregnant Women with Severe COVID-19. Clin. Infect. Dis. 2021, 73, e3996–e4004. [Google Scholar] [CrossRef]
- Méndez-Echevarría, A.; Pérez-Martínez, A.; Gonzalez Del Valle, L.; Ara, M.F.; Melendo, S.; Ruiz de Valbuena, M.; Vazquez-Martinez, J.L.; Morales-Martínez, A.; Remesal, A.; Sándor-Bajusz, K.A.; et al. Compassionate Use of Remdesivir in Children with COVID-19. Eur. J. Pediatr. 2021, 180, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.-Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 Days in Patients with Severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef]
- Lamb, Y.N. Remdesivir: First Approval. Drugs 2020, 80, 1355–1363. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA Approves First Treatment for COVID-19. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (accessed on 24 February 2021).
- Ader, F.; Bouscambert-Duchamp, M.; Hites, M.; Peiffer-Smadja, N.; Poissy, J.; Belhadi, D.; Diallo, A.; Lê, M.-P.; Peytavin, G.; Staub, T.; et al. Remdesivir plus Standard of Care versus Standard of Care Alone for the Treatment of Patients Admitted to Hospital with COVID-19 (DisCoVeRy): A Phase 3, Randomised, Controlled, Open-Label Trial. Lancet Infect. Dis. 2022, 22, 209–221. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Barratt-Due, A.; Olsen, I.C.; Nezvalova-Henriksen, K.; Kåsine, T.; Lund-Johansen, F.; Hoel, H.; Holten, A.R.; Tveita, A.; Mathiessen, A.; Haugli, M.; et al. Evaluation of the Effects of Remdesivir and Hydroxychloroquine on Viral Clearance in COVID-19: A Randomized Trial. Ann. Intern. Med. 2021, 174, 1261–1269. [Google Scholar] [CrossRef]
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A Minimal Common Outcome Measure Set for COVID-19 Clinical Research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Raith, E.P.; Udy, A.A.; Bailey, M.; McGloughlin, S.; MacIsaac, C.; Bellomo, R.; Pilcher, D.V.; Australian and New Zealand Intensive Care Society (ANZICS); Centre for Outcomes and Resource Evaluation (CORE). Prognostic Accuracy of the SOFA Score, SIRS Criteria, and QSOFA Score for In-Hospital Mortality among Adults with Suspected Infection Admitted to the Intensive Care Unit. JAMA 2017, 317, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Hazard, D.; Kaier, K.; von Cube, M.; Grodd, M.; Bugiera, L.; Lambert, J.; Wolkewitz, M. Joint Analysis of Duration of Ventilation, Length of Intensive Care, and Mortality of COVID-19 Patients: A Multistate Approach. BMC Med. Res. Methodol. 2020, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.-F.; Bredin, S.; Lascarrou, J.-B.; Soumagne, T.; Cojocaru, M.; Leclerc, M.; Lepetit, A.; Gouhier, A.; Charpentier, J.; Piton, G.; et al. Increased Susceptibility to Intensive Care Unit-Acquired Pneumonia in Severe COVID-19 Patients: A Multicentre Retrospective Cohort Study. Ann. Intensive Care 2021, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.M.; Hernán, M.A.; Brumback, B. Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology 2000, 11, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Thomas, L.E.; Li, F. Addressing Extreme Propensity Scores via the Overlap Weights. Am. J. Epidemiol. 2019, 188, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Li, L.; Greene, T. Propensity Score Weighting Analysis and Treatment Effect Discovery. Stat. Methods Med. Res. 2019, 28, 2439–2454. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in Adults with Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; et al. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola Virus in Rhesus Monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Mulangu, S.; Dodd, L.E.; Davey, R.T.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of Acute Kidney Injury in Patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef]
- Gabarre, P.; Dumas, G.; Dupont, T.; Darmon, M.; Azoulay, E.; Zafrani, L. Acute Kidney Injury in Critically Ill Patients with COVID-19. Intensive Care Med. 2020, 46, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, L.; Wang, F.-S. Liver Injury in COVID-19: Management and Challenges. Lancet Gastroenterol. Hepatol. 2020, 5, 428–430. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.-C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef] [PubMed]
- Minne, L.; Abu-Hanna, A.; de Jonge, E. Evaluation of SOFA-Based Models for Predicting Mortality in the ICU: A Systematic Review. Crit. Care 2008, 12, R161. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yao, N.; Qiu, Y.; He, C. Predictive Performance of SOFA and QSOFA for In-Hospital Mortality in Severe Novel Coronavirus Disease. Am. J. Emerg. Med. 2020, 38, 2074–2080. [Google Scholar] [CrossRef]
- Bels, J.L.M.; van Kuijk, S.M.J.; Ghossein-Doha, C.; Tijssen, F.H.; van Gassel, R.J.J.; Tas, J.; Collaborators, M.; Schnabel, R.M.; Aries, M.J.H.; van de Poll, M.C.G.; et al. Decreased Serial Scores of Severe Organ Failure Assessments Are Associated with Survival in Mechanically Ventilated Patients; the Prospective Maastricht Intensive Care COVID Cohort. J. Crit. Care 2020, 62, 38–45. [Google Scholar] [CrossRef]
Invasive Ventilation (n = 71) | Noninvasive Oxygen Support (n = 14) | Total (n = 85) | |
---|---|---|---|
Characteristics | |||
Median age (IQR)—years | 59 (48.5–69) | 63 (54–71) | 60 (49–69) |
Age category—no. (%) | |||
<50 | 20 (28.2) | 2 (15.4) | 23 (27.1) |
50 to <70 | 35 (49.3) | 6 (46.2) | 41 (48.2) |
>70 | 16 (22.5) | 5 (38.5) | 21 (24.7) |
Male sex—no. (%) | 55 (77.5) | 11 (84.6) | 66 (77.6) |
Oxygen-support category—no. (%) | |||
Invasive ventilation | 71 (100) | 0 | 71 (83.5) |
Non-invasive oxygen support | 13 (100) | 13 (15.3) | |
Of which high-flow oxygen | 7 (53.8) | 7 (8.2) | |
Median duration of symptoms before remdesivir therapy (IQR)—days | 11 (9–14) | 9 (6–12) | 11 (8–14) |
Median duration of symptoms before admission (IQR)—days | 6 (4–8) | 5 (5–7) | 6 (4–8) |
Median duration of diagnosis before remdesivir therapy (IQR)—days | 5 (2–7) | 3 (1–4) | 5 (2–7) |
Coexisting conditions—no. (%) | |||
Any condition | 50 (70.4) | 9 (69.2) | 60 (70.6) |
Cardiovascular | 35 (49.3) | 8 (61.5) | 44 (73.3) |
Diabetes | 10 (14.1) | 1 (7.7) | 11 (18.3) |
Dyslipidemia | 12 (16.9) | 5 (38.5) | 17 (28.3) |
Respiratory pathology | 14 (19.7) | 2 (15.4) | 16 (26.7) |
Cancer | 3 (4.2) | 0 | 3 (5) |
Median BMI (IQR) | 27.8 (26.4–31.4) | 27.7 (25.6–33.2) | 27.8 (26.2–31.4) |
Normal no. (%) | 11 (15.5) | 2 (15.4) | 14 (18.0) |
Overweight no. (%) | 33 (46.5) | 4 (30.8) | 37 (47.4) |
Moderate obesity no. (%) | 16 (22.5) | 3 (23.1) | 19 (24.4) |
Severe obesity no. (%) | 4 (5.6) | 0 | 4 (5.1) |
Morbid obesity no. (%) | 3 (4.2) | 1 (7.8) | 4 (5.1) |
Median WHO score (Min—Max) | 6 (6–6) | 5 (4–5) | 6 (3–6) |
Median SOFA score (Min—Max) | 8 (1–15) | 3 (2–7) | 7 (0–15) |
Median laboratory values (IQR) | |||
ASAT—IU per liter | 49 (37–68) | 42 (30–77) | 49 (37–68) |
ALAT—IU per liter | 40 (27–60.3) | 45 (32.5–72) | 40.5 (27–64) |
LDH—IU per liter | 385 (343.5–469.8) | 587 (375–631) | 387 (344–503) |
Creatinine—µmol per liter | 71.5 (55.8–89.3) | 74 (58.5–85.5) | 72 (56.8–89) |
Bilirubin—µmol per liter | 9.8 (7.7–16.9) | 8 (6–12) | 9.1 (7.5–16) |
Hemoglobin—g per deciliter | 12.1 (10–13) | 13.5 (12.1–14.5) | 12.3 (10.3–13.4) |
Platelets—Giga/L | 162 (0.384–259) | 174 (0.252–217.5) | 163 (0.359–252) |
WBC—Giga/L | 8.7 (6.655–12.395) | 6.36 (4.95–8.275) | 8.465 (6.125–11.96) |
Lymphocytes—Giga/L | 0.90 (0.572–1.64) | 0.87 (0.555–1.125) | 0.9 (0.55–1.48) |
Control (n = 34) | Remdesivir (n = 71) | SMD | p-Value | |
---|---|---|---|---|
Characteristics | ||||
Age—mean (SD) | 63.4 (12.93) | 57.8 (14.22) | 0.408 | 0.054 |
Male sex—% (SD) | 0.71 (0.46) | 0.77 (0.42) | 0.156 | 0.47 |
BMI—mean (SD) | 28.4 (7.15) | 29.04 (4.67) | 0.104 | 0.24 |
SOFA J0—mean (SD) | 9.59 (3.57) | 8.18 (3.05) | 0.423 | 0.040 |
WBC—mean (SD) | 7608.82 (3395.48) | 13,269.72 (16,920.34) | 0.464 | 0.001 |
Diabetes—mean (SD) | 0.24 (0.43) | 0.14 (0.35) | 0.241 | 0.27 |
Cancer—mean (SD) | 0.15 (0.36) | 0.04 (0.20) | 0.359 | 0.11 |
Estimate | Standard Error | T Value | Pr (>|t|) | |
---|---|---|---|---|
Unweighted | 0.18 | 0.09 | 2.13 | 0.04 |
Matching | 0.14 | 0.10 | 1.37 | 0.17 |
Overlap | 0.16 | 0.10 | 1.58 | 0.11 |
Total (n = 85) | |
---|---|
Event | |
Any adverse event | 59 (69.4) |
Hepatic enzyme increased | 27 (31.8) |
Anemia | 26 (30.6) |
Thrombopenia | 9 (10.6) |
Neutropenia | 4 (4.7) |
Diarrhea | 10 (11.8) |
Rash | 6 (7.1) |
Acute kidney injury | 24 (28.2) |
Hypotension | 20 (23.5) |
Atrial fibrillation | 9 (10.6) |
Multiple organ dysfunction syndrome | 5 (5.9) |
Hypernatremia | 6 (7.1) |
Deep-vein thrombosis | 14 (16.5) |
Acute respiratory distress syndrome | 19 (22.3) |
Pneumothorax | 5 (5.9) |
Hematuria | 10 (11.8) |
Delirium | 6 (7.1) |
Septic shock | 10 (11.8) |
Any serious adverse event | 38 (44.7) |
Hepatic enzyme increased | 9 (10.6) |
Anemia | 12 (14.1) |
Thrombopenia | 3 (3.5) |
Neutropenia | 4 (4.7) |
Diarrhea | 4 (4.7) |
Rash | 4 (4.7) |
Acute kidney injury | 13 (15.3) |
Hypotension | 19 (22.3) |
Atrial fibrillation | 9 (10.6) |
Hypernatremia | 3 (3.5) |
Deep-vein thrombosis | 11 (12.9) |
Pneumothorax | 4 (4.7) |
Hematuria | 5 (5.9) |
Delirium | 5 (5.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerbit, J.; Detroit, M.; Chevret, S.; Pene, F.; Luyt, C.-E.; Ghosn, J.; Eyvrard, F.; Martin-Blondel, G.; Sarton, B.; Clere-Jehl, R.; et al. Remdesivir for Patients Hospitalized with COVID-19 Severe Pneumonia: A National Cohort Study (Remdeco-19). J. Clin. Med. 2022, 11, 6545. https://doi.org/10.3390/jcm11216545
Zerbit J, Detroit M, Chevret S, Pene F, Luyt C-E, Ghosn J, Eyvrard F, Martin-Blondel G, Sarton B, Clere-Jehl R, et al. Remdesivir for Patients Hospitalized with COVID-19 Severe Pneumonia: A National Cohort Study (Remdeco-19). Journal of Clinical Medicine. 2022; 11(21):6545. https://doi.org/10.3390/jcm11216545
Chicago/Turabian StyleZerbit, Jeremie, Marion Detroit, Sylvie Chevret, Frederic Pene, Charles-Edouard Luyt, Jade Ghosn, Frederic Eyvrard, Guillaume Martin-Blondel, Benjamine Sarton, Raphael Clere-Jehl, and et al. 2022. "Remdesivir for Patients Hospitalized with COVID-19 Severe Pneumonia: A National Cohort Study (Remdeco-19)" Journal of Clinical Medicine 11, no. 21: 6545. https://doi.org/10.3390/jcm11216545
APA StyleZerbit, J., Detroit, M., Chevret, S., Pene, F., Luyt, C.-E., Ghosn, J., Eyvrard, F., Martin-Blondel, G., Sarton, B., Clere-Jehl, R., Moine, P., Cransac, A., Andreu, P., Labruyère, M., Albertini, L., Huon, J.-F., Roge, P., Bernard, L., Farines-Raffoul, M., ... Kroemer, M. (2022). Remdesivir for Patients Hospitalized with COVID-19 Severe Pneumonia: A National Cohort Study (Remdeco-19). Journal of Clinical Medicine, 11(21), 6545. https://doi.org/10.3390/jcm11216545