Totally X-ray-Free Ultrasound-Guided Mini-Percutaneous Nephrolithotomy in Galdakao-Modified Supine Valdivia Position: A Novel Combined Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Ethical Considerations
2.3. Surgical Procedure and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernstrom, I.; Johansson, B. Percutaneous pyelolithotomy. A new extraction technique. Scand. J. Urol. Nephrol. 1976, 10, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Zhong, W.; Pearle, M.; Choong, S.; Chew, B.; Skolarikos, A.; Liatsikos, E.; Pal, S.K.; Lahme, S.; Durutovic, O.; et al. European Association of Urology Section of Urolithiasis and International Alliance of Urolithiasis Joint Consensus on Percutaneous Nephrolithotomy. Eur. Urol. Focus 2022, 8, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Ruhayel, Y.; Tepeler, A.; Dabestani, S.; MacLennan, S.; Petrik, A.; Sarica, K.; Seitz, C.; Skolarikos, A.; Straub, M.; Turk, C.; et al. Tract Sizes in Miniaturized Percutaneous Nephrolithotomy: A Systematic Review from the European Association of Urology Urolithiasis Guidelines Panel. Eur. Urol. 2017, 72, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.; Ridhorkar, V.; Patel, S.; Bapat, S.; Desai, M. Pediatric percutaneous nephrolithotomy: Assessing impact of technical innovations on safety and efficacy. J. Endourol. 1999, 13, 359–364. [Google Scholar] [CrossRef]
- Lahme, S.; Bichler, K.H.; Strohmaier, W.L.; Gotz, T. Minimally invasive PCNL in patients with renal pelvic and calyceal stones. Eur. Urol. 2001, 40, 619–624. [Google Scholar] [CrossRef]
- Zeng, G.; Cai, C.; Duan, X.; Xu, X.; Mao, H.; Li, X.; Nie, Y.; Xie, J.; Li, J.; Lu, J.; et al. Mini Percutaneous Nephrolithotomy Is a Noninferior Modality to Standard Percutaneous Nephrolithotomy for the Management of 20–40 mm Renal Calculi: A Multicenter Randomized Controlled Trial. Eur. Urol. 2021, 79, 114–121. [Google Scholar] [CrossRef]
- Ibarluzea, G.; Scoffone, C.M.; Cracco, C.M.; Poggio, M.; Porpiglia, F.; Terrone, C.; Astobieta, A.; Camargo, I.; Gamarra, M.; Tempia, A.; et al. Supine Valdivia and modified lithotomy position for simultaneous anterograde and retrograde endourological access. BJU Int. 2007, 100, 233–236. [Google Scholar] [CrossRef]
- Beiko, D.; Razvi, H.; Bhojani, N.; Bjazevic, J.; Bayne, D.B.; Tzou, D.T.; Stoller, M.L.; Chi, T. Techniques–Ultrasound-guided percutaneous nephrolithotomy: How we do it. Can. Urol. Assoc. J. 2020, 14, E104–E110. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Liu, Y.; Liu, L.; Lei, M.; Yuan, J.; Wan, S.P.; Zeng, G. Minimally invasive versus standard percutaneous nephrolithotomy: A meta-analysis. Urolithiasis 2015, 43, 563–570. [Google Scholar] [CrossRef]
- Proietti, S.; Rodriguez-Socarras, M.E.; Eisner, B.; De Coninck, V.; Sofer, M.; Saitta, G.; Rodriguez-Monsalve, M.; D’Orta, C.; Bellinzoni, P.; Gaboardi, F.; et al. Supine percutaneous nephrolithotomy: Tips and tricks. Transl. Androl. Urol. 2019, 8, S381–S388. [Google Scholar] [CrossRef]
- Khazaali, M.; Khazaeli, D.; Moombeini, H.; Jafari-Samim, J. Supine Ultrasound-guided Percutaneous Nephrolithotomy with Retrograde Semi-rigid Ureteroscopic guidwire retrieval: Description of an Evolved Technique. Urol. J. 2017, 14, 5038–5042. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, L.; Li, Q.; Zhang, Y.; Jiang, Q. Supine versus prone position for percutaneous nephrolithotripsy: A meta-analysis of randomized controlled trials. Int. J. Surg. 2019, 66, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Khadgi, S.; El-Nahas, A.R.; Darrad, M.; Al-Terki, A. Safety and efficacy of a single middle calyx access (MCA) in mini-PCNL. Urolithiasis 2020, 48, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Okhunov, Z.; Friedlander, J.I.; George, A.K.; Duty, B.D.; Moreira, D.M.; Srinivasan, A.K.; Hillelsohn, J.; Smith, A.D.; Okeke, Z. STONE nephrolithometry: Novel surgical classification system for kidney calculi. Urology 2013, 81, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Zhang, X.; Tang, Y.; Xiao, B.; Hu, W.; Chen, S.; Li, J. Tract dilation monitored by ultrasound in percutaneous nephrolithotomy: Feasible and safe. World J. Urol. 2020, 38, 1569–1576. [Google Scholar] [CrossRef]
- Nicklas, A.P.; Schilling, D.; Bader, M.J.; Herrmann, T.R.; Nagele, U.; Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group. The vacuum cleaner effect in minimally invasive percutaneous nephrolitholapaxy. World J. Urol. 2015, 33, 1847–1853. [Google Scholar] [CrossRef]
- Zhong, W.; Zeng, G.; Wu, K.; Li, X.; Chen, W.; Yang, H. Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J. Endourol. 2008, 22, 2147–2151. [Google Scholar] [CrossRef]
- DiBianco, J.M.; Ghani, K.R. Precision Stone Surgery: Current Status of Miniaturized Percutaneous Nephrolithotomy. Curr. Urol. Rep. 2021, 22, 24. [Google Scholar] [CrossRef]
- Wan, C.; Wang, D.; Xiang, J.; Yang, B.; Xu, J.; Zhou, G.; Zhou, Y.; Zhao, Y.; Zhong, J.; Liu, J. Comparison of postoperative outcomes of mini percutaneous nephrolithotomy and standard percutaneous nephrolithotomy: A meta-analysis. Urolithiasis 2022, 50, 523–533. [Google Scholar] [CrossRef]
- Singh, H.; Jha, A.K.; Thummar, H.G. Complications in Mini PCNL. In Minimally Invasive Percutaneous Nephrolithotomy; Agrawal, M.S., Mishra, D.K., Somani, B., Eds.; Springer: Singapore, 2022; pp. 305–322. [Google Scholar]
- Yamaguchi, A.; Skolarikos, A.; Buchholz, N.P.; Chomon, G.B.; Grasso, M.; Saba, P.; Nakada, S.; de la Rosette, J.; Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Study Group. Operating times and bleeding complications in percutaneous nephrolithotomy: A comparison of tract dilation methods in 5537 patients in the Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study. J. Endourol. 2011, 25, 933–939. [Google Scholar] [CrossRef]
- Boccafoschi, C.; Lugnani, F. Intra-renal reflux. Urol. Res. 1985, 13, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Kreydin, E.I.; Eisner, B.H. Risk factors for sepsis after percutaneous renal stone surgery. Nat. Rev. Urol. 2013, 10, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Sarier, M.; Duman, I.; Yuksel, Y.; Tekin, S.; Demir, M.; Arslan, F.; Ergun, O.; Kosar, A.; Yavuz, A.H. Results of minimally invasive surgical treatment of allograft lithiasis in live-donor renal transplant recipients: A single-center experience of 3758 renal transplantations. Urolithiasis 2019, 47, 273–278. [Google Scholar] [CrossRef] [PubMed]
Variables | (n = 150) | |
---|---|---|
Age, years (mean ± SD) | 56.96 ± 12.45 | |
Gender (Male/Female) | 90/60 | |
Laterality (Left/Right) | 92/58 | |
Body mass index, kg/m2 (mean ± SD) | 26.00 ± 4.27 | |
Obesity (Body mass index > 30 kg/m2), n (%) | 25 (16.7%) | |
Total stone size, cm (mean ± SD) | 3.19 ± 1.67 | |
Total stone burden, mm2 (mean ± SD) | 427 ± 360 | |
Stone number | ||
Single, n (%) | 42 (28.0%) | |
Multiple, n (%) | 86 (57.3%) | |
Staghorn stone, n (%) | 22 (14.7%) | |
Stone location | ||
Kidney, n (%) | 90 (60.0%) | |
Upper ureter, n (%) | 22 (14.7%) | |
Kidney and upper ureter, n (%) | 38 (25.3%) | |
Stone density, Hounsfield unit (mean ± SD) | 1199.1 ± 309.2 | |
S.T.O.N.E. Score (mean ± SD) | 7.61 ± 1.36 | |
S.T.O.N.E. Score ≥ 9, n (%) | 36 (24.0%) | |
Preoperative hydronephrosis | ||
None, n (%) | 32 (21.3%) | |
Mild, n (%) | 13 (8.7%) | |
Moderate, n (%) | 78 (52.0%) | |
Severe, n (%) | 27 (18.0%) | |
Previous surgery | ||
ESWL or URSM or RIRS, n (%) | 57 (38.0%) | |
PCNL or open surgery, n (%) | 12 (8.0%) | |
ASA classification | 1, n (%) | 5 (3.3%) |
2, n (%) | 108 (72.0%) | |
3, n (%) | 36 (24.0%) | |
4, n (%) | 1 (0.7%) | |
Preoperative Hemoglobin, g/dL (mean ± SD) | 14.05 ± 1.64 | |
Preoperative Creatinine, mg/dL (mean ± SD) | 1.04 ± 0.41 | |
Preoperative eGFR (MDRD), mL/min/1.73 m2 (mean ± SD) | 74.30 ± 24.23 | |
Preoperative positive urine culture, n (%) | 44 (29.3%) | |
Preoperative pain scale, visual analog scale (mean ± SD) | 0.35 ± 0.83 |
Parameters | (n = 150) | |
---|---|---|
Operative time, min (mean ± SD) | 66.22 ± 36.54 | |
Target calyx | ||
Upper, n (%) | 14 (9.3%) | |
Middle, n (%) | 85 (56.7%) | |
Lower, n (%) | 51 (34.0%) | |
Puncture site | ||
11th intercostal space, n (%) | 10 (6.7%) | |
Subcostal area, n (%) | 140 (93.3%) | |
Non-hydronephrotic calyceal puncture, n (%) | 30 (20.0%) | |
Success of renal access creation in the first attempt, n (%) | 133 (88.7%) | |
Puncture depth, cm (mean ± SD) | 8.84 ± 1.90 | |
Retrograde semi-rigid ureteroscopic assistance, n (%) | 49 (32.7%) | |
Tubeless, n (%) | 21 (14.0%) |
Variables | (n = 150) | |
---|---|---|
Hospital stay, days (mean ± SD) | 3.73 ± 1.59 | |
Stone-free status, n (%) | 140 (93.3%) | |
Postoperative Hemoglobin, g/dL (mean ± SD) | 13.01 ± 1.70 | |
Hemoglobin drop, g/dL (mean ± SD) | 1.04 ± 1.10 | |
Postoperative Creatinine, mg/dL (mean ± SD) | 0.92 ± 0.34 | |
Postoperative eGFR (MDRD), mL/min/1.73 m2 (mean ± SD) | 85.26 ± 27.47 | |
Change of eGFR (MDRD), mL/min/1.73 m2 (mean ± SD) | 10.63 ± 18.27 | |
Postoperative pain scale, visual analog scale (mean ± SD) | 2.99 ± 1.50 | |
Stone analysis | ||
Calcium oxalate predominant, n (%) | 109 (72.7%) | |
Calcium phosphate predominant, n (%) | 41 (27.3%) | |
Complications classified by Clavien–Dindo classification | ||
Grade I | ||
Fever > 38 °C, n (%) | 15 (10.0%) | |
Transient gross hematuria, n (%) | 13 (8.7%) | |
Postoperative pain scale ≥ 4, n (%) | 30 (20.0%) | |
Grade II | ||
Sepsis, n (%) | 2 (1.3%) | |
Grade IIIb | ||
Bladder blood clot retention, n (%) | 2 (1.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-Y.; Chen, Y.-T.; Luo, H.-L.; Shen, Y.-C.; Chen, C.-H.; Chuang, Y.-C.; Huang, K.-W.; Wang, H.-J. Totally X-ray-Free Ultrasound-Guided Mini-Percutaneous Nephrolithotomy in Galdakao-Modified Supine Valdivia Position: A Novel Combined Surgery. J. Clin. Med. 2022, 11, 6644. https://doi.org/10.3390/jcm11226644
Liu Y-Y, Chen Y-T, Luo H-L, Shen Y-C, Chen C-H, Chuang Y-C, Huang K-W, Wang H-J. Totally X-ray-Free Ultrasound-Guided Mini-Percutaneous Nephrolithotomy in Galdakao-Modified Supine Valdivia Position: A Novel Combined Surgery. Journal of Clinical Medicine. 2022; 11(22):6644. https://doi.org/10.3390/jcm11226644
Chicago/Turabian StyleLiu, Yi-Yang, Yen-Ta Chen, Hao-Lun Luo, Yuan-Chi Shen, Chien-Hsu Chen, Yao-Chi Chuang, Ko-Wei Huang, and Hung-Jen Wang. 2022. "Totally X-ray-Free Ultrasound-Guided Mini-Percutaneous Nephrolithotomy in Galdakao-Modified Supine Valdivia Position: A Novel Combined Surgery" Journal of Clinical Medicine 11, no. 22: 6644. https://doi.org/10.3390/jcm11226644
APA StyleLiu, Y.-Y., Chen, Y.-T., Luo, H.-L., Shen, Y.-C., Chen, C.-H., Chuang, Y.-C., Huang, K.-W., & Wang, H.-J. (2022). Totally X-ray-Free Ultrasound-Guided Mini-Percutaneous Nephrolithotomy in Galdakao-Modified Supine Valdivia Position: A Novel Combined Surgery. Journal of Clinical Medicine, 11(22), 6644. https://doi.org/10.3390/jcm11226644