Characterization of Hyperreflective Dots by Structural and Angiographic Optical Coherence Tomography in Patients with Diabetic Retinopathy and Healthy Subjects
Abstract
:1. Introduction
2. Study Subjects and Methods
2.1. Data Analysis
2.2. Classification
2.3. Statistics
3. Results
3.1. Study Subjects
3.2. Hyperreflective Dots
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolz, M.; Schmidt-Erfurth, U.; Deak, G.; Mylonas, G.; Kriechbaum, K.; Scholda, C. Optical Coherence Tomographic Hyperreflective Foci: A Morphologic Sign of Lipid Extravasation in Diabetic Macular Edema. Ophthalmology 2009, 116, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Barbazetto, I.A.; Spaide, R.F. Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease. Retina 2013, 33, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Christenbury, J.G.; Folgar, F.A.; O’Connell, R.V.; Chiu, S.J.; Farsiu, S.; Toth, C.A. Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci. Ophthalmology 2013, 120, 1038–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vujosevic, S.; Bini, S.; Torresin, T.; Berton, M.; Midena, G.; Parrozzani, R.; Martini, F.; Pucci, P.; Daniele, A.R.; Cavarzeran, F.; et al. Hyperreflective retinal spots in normal and diabetic eyes. Retina 2017, 37, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Coscas, G.; De Benedetto, U.; Coscas, F.; Calzi, C.I.L.; Vismara, S.; Roudot-Thoraval, F.; Bandello, F.; Souied, E. Hyperreflective Dots: A New Spectral-Domain Optical Coherence Tomography Entity for Follow-Up and Prognosis in Exudative Age-Related Macular Degeneration. Ophthalmologica 2012, 229, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Bini, S.; Midena, G.; Berton, M.; Pilotto, E.; Midena, E. Hyperreflective Intraretinal Spots in Diabetics without and with Nonproliferative Diabetic Retinopathy: An In Vivo Study Using Spectral Domain OCT. J. Diabetes Res. 2013, 2013, 491835. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, M.; Hirami, Y.; Hata, M.; Mandai, M.; Takahashi, M.; Kurimoto, Y. Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa. Clin. Ophthalmol. 2014, 8, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, C.A.; Zanzottera, E.C.; Ach, T.; Balaratnasingam, C.; Freund, K.B. Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2017, 58, 211–226. [Google Scholar] [CrossRef]
- Omri, S.; Behar-Cohen, F.; de Kozak, Y.; Sennlaub, F.; Verissimo, L.; Jonet, L.; Savoldelli, M.; Omri, B.; Crisanti, P. Microglia/Macrophages Migrate through Retinal Epithelium Barrier by a Transcellular Route in Diabetic Retinopathy: Role of PKCζ in the Goto Kakizaki Rat Model. Am. J. Pathol. 2011, 179, 942–953. [Google Scholar] [CrossRef] [PubMed]
- Ling, E.A. A light microscopic demonstration of amoeboid microglia and microglial cells in the retina of rats of various ages. Arch. Histol. Jpn. 1982, 45, 37–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Wang, X.; Ma, W.; Lazere, A.; Qian, H.-H.; Zhang, J.; Abu-Asab, M.; Fariss, R.N.; Roger, J.E.; et al. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci. Adv. 2018, 4, eaap8492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991, 98, 786–806. [CrossRef]
- Sander, B.; Larsen, M.; Engler, C.; Lund-Andersen, H.; Parving, H.-H. Early changes in diabetic retinopathy: Capillary loss and blood-retina barrier permeability in relation to metabolic control. Acta Ophthalmol. 1994, 72, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Bek, T.; Ledet, T. Vascular occlusion in diabetic retinopathy. A qualitative and quantitative histopathological study. Acta Ophthalmol. Scand. 1996, 74, 36–40. [Google Scholar] [CrossRef]
- Chan, G.; Balaratnasingam, C.; Yu, P.; Morgan, W.H.; McAllister, I.L.; Cringle, S.J.; Yu, D.-Y. Quantitative Morphometry of Perifoveal Capillary Networks in the Human Retina. Investig. Opthalmol. Vis. Sci. 2012, 53, 5502–5514. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Maiello, M.; Lorenzi, M. Increased expression of basement membrane collagen in human diabetic retinopathy. J. Clin. Investig. 1994, 93, 438–442. [Google Scholar] [CrossRef]
- Kam, J.H.; Lenassi, E.; Jeffery, G. Viewing Ageing Eyes: Diverse Sites of Amyloid Beta Accumulation in the Ageing Mouse Retina and the Up-Regulation of Macrophages. PLoS ONE 2010, 5, e13127. [Google Scholar] [CrossRef]
- Kang, J.-W.; Chung, H.; Kim, H.C. Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina 2016, 36, 1630–1639. [Google Scholar] [CrossRef]
- Davoudi, S.; Papavasileiou, E.; Roohipoor, R.; Cho, H.; Kudrimoti, S.; Hancock, H.; Hoadley, S.; Andreoli, C.; Husain, D.; James, M.; et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes. Retina 2016, 36, 1622–1629. [Google Scholar] [CrossRef] [Green Version]
- De Benedetto, U.; Sacconi, R.; Pierro, L.; Lattanzio, R.; Bandello, F. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina 2015, 35, 449–453. [Google Scholar] [CrossRef]
- Murakami, T.; Suzuma, K.; Dodo, Y.; Yoshitake, T.; Yasukura, S.; Nakanishi, H.; Fujimoto, M.; Oishi, M.; Tsujikawa, A. Decorrelation Signal of Diabetic Hyperreflective Foci on Optical Coherence Tomography Angiography. Sci. Rep. 2018, 8, 8798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokona, D.; Häner, N.U.; Ebneter, A.; Zinkernagel, M.S. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy. Exp. Eye Res. 2017, 154, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ma, L.; Zhao, H.; Hao, Y.; Fu, S.; Wang, H.; Li, Y.; Han, H. Automatic segmentation of hyperreflective dots via focal priors and visual saliency. Med. Phys. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Torresin, T.; Velotta, E.; Pilotto, E.; Parrozzani, R.; Frizziero, L. OCT Hyperreflective Retinal Foci in Diabetic Retinopathy: A Semi-Automatic Detection Comparative Study. Front. Immunol. 2021, 12, 613051. [Google Scholar] [CrossRef]
- Schmidt, M.F.; Christensen, J.L.; Dahl, V.A.; Toosy, A.; Petzold, A.; Hanson, J.V.M.; Schippling, S.; Frederiksen, J.L.; Larsen, M. Automated detection of hyperreflective foci in the outer nuclear layer of the retina. Acta Ophthalmol. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
Subject (Group) | Age | Sex | Eye | Diabetic Retinopathy Stage | Diabetes Mellitus Type 1 Duration in Years | Diabetic Retinopathy Duration in Years | Treatment for Diabetic Retinopathy | Diabetic Nephropathy Duration in Years | BCVA (Snellen) |
---|---|---|---|---|---|---|---|---|---|
1 (DR) | 47 | M | L | mNPDR | 20 | 2 | None | 2 | 20/16 |
2 (DR) | 56 | M | R | mNPDR | 44 | 2 | None | 0 | 20/20 |
3 (DR) | 29 | M | L | mNPDR | 17 | 2.5 | None | 0 | 20/20 |
4 (DR) | 66 | F | L | mNPDR | 22 | 1 | None | 0 | 20/25 |
5 (DR) | 29 | M | R | mNPDR | 17 | 2 | None | 0 | 20/16 |
6 (DR) | 48 | F | L | QPDR | 31 | 18 | PRP | 18 | 20/20 |
7 (DR) | 47 | M | R | QPDR | 37 | 12 | PRP | 0 | 20/16 |
8 (DR) | 51 | M | R | QPDR | 38 | 22 | PRP | 6 | 20/16 |
9 (C) | 47 | F | L | - | - | - | None | - | - |
10 (C) | 60 | F | R | - | - | - | None | - | - |
11 (C) | 28 | M | L | - | - | - | None | - | - |
12 (C) | 63 | F | L | - | - | - | None | - | - |
13 (C) | 23 | M | R | - | - | - | None | - | - |
14 (C) | 48 | M | R | - | - | - | None | - | - |
15 (C) | 46 | F | L | - | - | - | None | - | - |
16 (C) | 51 | F | R | - | - | - | None | - | - |
Diabetic Patients | Healthy Controls | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mild NPDR | Quiescent PDR | ||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Median | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Median | p-Value *** | |
Inner nuclear layer * | |||||||||||||||||||
Hyperreflective dots (no.) | 18 | 14 | 13 | 13 | 7 | 13 | 12 | 15 | 13 | 13 | 8 | 16 | 11 | 13 | 6 | 8 | 7 | 9.5 | 0.3 |
Granules ≤ 3 adjacent B-scans (no.) | 5 | 2 | 3 | 4 | 0 | 6 | 2 | 3 | 3 | 2 | 0 | 7 | 0 | 0 | 2 | 3 | 6 | 2 | 0.7 |
Elongated elements > 3 adjacent B-scans (no.) | 13 | 12 | 10 | 9 | 7 | 7 | 10 | 12 | 10 | 11 | 8 | 9 | 11 | 13 | 4 | 5 | 1 | 8.5 | 0.57 |
Transversal dimension of elongated (mean in µm) | 59 | 79 | 51 | 67 | 115 | 63 | 183 | 82 | 73 | 128 | 87 | 76 | 180 | 121 | 58 | 62 | 66 | 81.5 | 0.48 |
Location near inner plexiform layer (no. (%)) | 7 (39) | 6 (43) | 6 (46) | 4 (31) | 2 (29) | 2 (15) | 1 (8) | 6 (40) | 5 (31) | 4 (31) | 0 (0) | 3 (19) | 2 (18) | 4 (31) | 0 (0) | 3 (38) | 3 (43) | 3 (23) | 0.106 |
Location inside inner nuclear layer (no. (%)) | 3 (17) | 0 (0) | 1 (8) | 4 (31) | 0 (0) | 7 (54) | 3 (25) | 7 (47) | 3 (23) | 0 (0) | 1 (13) | 1 (6) | 0 (0) | 0 (0) | 1 (17) | 0 (0) | 0 (0) | 0 (5) | 0.013 |
Location near outer plexiform layer (no. (%)) | 8 (44) | 8 (57) | 6 (46) | 5 (38) | 5 (71) | 4 (31) | 8 (67) | 2 (13) | 5.5 (46) | 9 (69) | 7 (88) | 12 (75) | 9 (82) | 9 (69) | 5 (83) | 5 (63) | 4 (57) | 8 (73) | 0.29 |
Outer nuclear layer ** | |||||||||||||||||||
Hyper-reflective dots (no.) | 2 | 0 | 11 | 2 | 2 | 4 | 1 | 3 | 2 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 1 | 0.5 | |
Transversal dimension (mean in µm) | 11 | - | 24 | 39 | 11 | 30 | 22 | 29 | 23 | - | - | - | 11 | 22 | - | 22 | 33 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torm, M.E.W.; Sander, B.; Hornum, M.; Krohn, P.; Birn, H.; Larsen, M. Characterization of Hyperreflective Dots by Structural and Angiographic Optical Coherence Tomography in Patients with Diabetic Retinopathy and Healthy Subjects. J. Clin. Med. 2022, 11, 6646. https://doi.org/10.3390/jcm11226646
Torm MEW, Sander B, Hornum M, Krohn P, Birn H, Larsen M. Characterization of Hyperreflective Dots by Structural and Angiographic Optical Coherence Tomography in Patients with Diabetic Retinopathy and Healthy Subjects. Journal of Clinical Medicine. 2022; 11(22):6646. https://doi.org/10.3390/jcm11226646
Chicago/Turabian StyleTorm, Marie Elise Wistrup, Birgit Sander, Mads Hornum, Paul Krohn, Henrik Birn, and Michael Larsen. 2022. "Characterization of Hyperreflective Dots by Structural and Angiographic Optical Coherence Tomography in Patients with Diabetic Retinopathy and Healthy Subjects" Journal of Clinical Medicine 11, no. 22: 6646. https://doi.org/10.3390/jcm11226646
APA StyleTorm, M. E. W., Sander, B., Hornum, M., Krohn, P., Birn, H., & Larsen, M. (2022). Characterization of Hyperreflective Dots by Structural and Angiographic Optical Coherence Tomography in Patients with Diabetic Retinopathy and Healthy Subjects. Journal of Clinical Medicine, 11(22), 6646. https://doi.org/10.3390/jcm11226646