Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Acute and Chronic Exposure to High Altitude on SpO2max and Related VO2max Subsection
3.1.1. Healthy, Well-Trained Individuals
3.1.2. Patients Suffering from Coronary Artery Disease
3.1.3. Obese People and Patients Suffering from Type 2 Diabetes Mellitus
3.1.4. Patients Suffering from COPD
4. Discussion
4.1. Correct Measurement of SpO2 (and VO2max)
4.2. Effects of Baseline Aerobic Performance
4.3. Effects of Age
4.4. Effects of Sex
4.5. Effects of Pre-Existing Cardiovascular and Metabolic Disease
4.6. Effects of Pre-Existing Respiratory Diseases
5. Limitations
6. Preventive and Therapeutic Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenfant, C.; Sullivan, K. Adaptation to high altitude. N. Engl. J. Med. 1971, 284, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Williams, J. Exercise-induced hypoxaemia in highly trained athletes. Sports Med. 1987, 4, 46–53. [Google Scholar] [CrossRef]
- Schoene, R.B. Limits of human lung function at high altitude. J. Exp. Biol. 2001, 204, 3121–3127. [Google Scholar] [CrossRef]
- Amann, M.; Regan, M.S.; Kobitary, M.; Eldridge, M.W.; Boutellier, U.; Pegelow, D.F.; Dempsey, J.A. Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R314–R324. [Google Scholar] [CrossRef]
- Tucker, A.; Stager, J.M.; Cordain, L. Arterial O2 saturation and maximum O2 consumption in moderate-altitude runners exposed to sea level and 3050 m. JAMA 1984, 252, 2867–2871. [Google Scholar] [CrossRef]
- Powers, S.K.; Lawler, J.; Dempsey, J.A.; Dodd, S.; Landry, G. Effects of incomplete pulmonary gas exchange on VO2max. J. Appl. Physiol. 1989, 66, 2491–2495. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Wagner, P.D. Exercise-induced arterial hypoxemia. J. Appl. Physiol. 1999, 87, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Gaston, A.F.; Durand, F.; Roca, E.; Doucende, G.; Hapkova, I.; Subirats, E. Exercise-Induced Hypoxaemia Developed at Sea-Level Influences Responses to Exercise at Moderate Altitude. PLoS ONE 2016, 11, e0161819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burtscher, M.; Schocke, M.; Koch, R. Ventilation-limited exercise capacity in a 59-year-old athlete. Respir. Physiol. Neurobiol. 2011, 175, 181–184. [Google Scholar] [CrossRef]
- Furian, M.; Hartmann, S.E.; Latshang, T.D.; Flueck, D.; Murer, C.; Scheiwiller, P.M.; Osmonov, B.; Ulrich, S.; Kohler, M.; Poulin, M.J.; et al. Exercise performance of lowlanders with COPD at 2,590 m: Data from a randomized trial. Respiration 2018, 95, 422–432. [Google Scholar] [CrossRef]
- Lawler, J.; Powers, S.K.; Thompson, D. Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J. Appl. Physiol. (1985) 1988, 64, 1486–1492. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Moia, C.; Thomet, J.M.; Kayser, B. The decrease of maximal oxygen consumption during hypoxia in man: A mirror image of the oxygen equilibrium curve. J. Physiol. 1997, 498 Pt 1, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaumik, G.; Purkayastha, S.S.; Selvamurthy, W.; Banerjee, P.K. Oxygen saturation response to exercise VO2 at 2100 m and 4350 m in women mountaineering trainees. Indian J. Physiol. Pharmacol. 2003, 47, 43–51. [Google Scholar] [PubMed]
- Gavin, T.P.; Derchak, P.A.; Stager, J.M. Ventilation’s role in the decline in VO2max and SaO2 in acute hypoxic exercise. Med. Sci. Sports Exerc. 1998, 30, 195–199. [Google Scholar] [CrossRef]
- Roach, R.C.; Greene, E.R.; Schoene, R.B.; Hackett, P.H. Arterial oxygen saturation for prediction of acute mountain sickness. Aviat. Space Environ. Med. 1998, 69, 1182–1185. [Google Scholar]
- Burtscher, M.; Flatz, M.; Faulhaber, M. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt. Med. Biol. 2004, 5, 335–340. [Google Scholar] [CrossRef]
- Faulhaber, M.; Wille, M.; Gatterer, H.; Heinrich, D.; Burtscher, M. Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: A prospective cohort study. Sleep Breath 2014, 18, 669–674. [Google Scholar] [CrossRef]
- León-Velarde, F.; Arregui, A.; Vargas, M.; Huicho, L.; Acosta, R. Chronic mountain sickness and chronic lower respiratory tract disorders. Chest 1994, 106, 151–155. [Google Scholar] [CrossRef]
- Levine, B.D.; Zuckerman, J.H.; deFilippi, C.R. Effect of high-altitude exposure in the elderly: The Tenth Mountain Division study. Circulation 1997, 96, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Kippelen, P.; Ceugniet, F.; Gomez, V.R.; Desnot, P.; Poulain, M.; Préfaut, C. Undiagnosed exercise-induced bronchoconstriction in ski-mountaineers. Int. J. Sports Med. 2005, 26, 233–237. [Google Scholar] [CrossRef]
- Wu, T.Y.; Ding, S.Q.; Liu, J.L.; Yu, M.T.; Jia, J.H.; Chai, Z.C.; Dai, R.C.; Zhang, S.L.; Li, B.Y.; Pan, L.; et al. Who should not go high: Chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt. Med. Biol. 2007, 8, 88–107. [Google Scholar] [CrossRef]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Horstman, D.; Weiskopf, R.; Jackson, R.E. Work capacity during 3-wk sojourn at 4300 m: Effects of relative polycythemia. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1980, 49, 311–318. [Google Scholar] [CrossRef]
- Beidleman, B.A.; Muza, S.R.; Rock, P.B.; Fulco, C.S.; Lyons, T.P.; Hoyt, R.W.; Cymerman, A. Exercise responses after altitude acclimatization are retained during reintroduction to altitude. Med. Sci. Sports Exerc. 1997, 29, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; Boushel, R.; Radegran, G.; Sondergaard, H.; Wagner, P.D.; Saltin, B. Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R304–R316. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Sun, K.T.; Masar, P.; Niederhauser, H. Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am. J. Cardiol. 1998, 81, 266–270. [Google Scholar] [CrossRef]
- Schmid, J.P.; Noveanu, M.; Gaillet, R.; Hellige, G.; Wahl, A.; Saner, H. Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart 2006, 92, 921–925. [Google Scholar] [CrossRef] [Green Version]
- de Vries, S.T.; Komdeur, P.; Aalbersberg, S.; van Enst, G.C.; Breeman, A.; van Hof, A.W. Effects of altitude on exercise level and heart rate in patients with coronary artery disease and healthy controls. Neth. Heart J. 2010, 18, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Caravedo, M.A.; Mozo, K.; Morales, M.L.; Smiley, H.; Stuart, J.; Tilley, D.H.; Cabada, M.M. Risk factors for acute mountain sickness in travelers to Cusco, Peru: Coca leaves, obesity, and sex. J. Travel Med. 2021, 29, taab102. [Google Scholar] [CrossRef]
- Ri-Li, G.; Chase, P.J.; Witkowski, S.; Wyrick, B.L.; Stone, J.A.; Levine, B.D.; Babb, T.G. Obesity: Associations with acute mountain sickness. Ann. Intern. Med. 2003, 139, 253–257. [Google Scholar] [CrossRef]
- Miele, C.H.; Schwartz, A.R.; Gilman, R.H.; Pham, L.; Wise, R.A.; Davila-Roman, V.G.; Jun, J.C.; Polotsky, V.Y.; Miranda, J.J.; Leon-Velarde, F.; et al. Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude. High Alt. Med. Biol. 2016, 17, 93–100. [Google Scholar] [CrossRef]
- Ge, R.L.; Stone, J.A.; Levine, B.D.; Babb, T.G. Exaggerated respiratory chemosensitivity and association with SaO2 level at 3568 m in obesity. Respir. Physiol. Neurobiol. 2005, 146, 47–54. [Google Scholar] [CrossRef]
- Mohajeri, S.; Perkins, B.A.; Brubaker, P.L.; Riddell, M.C. Diabetes, trekking and high altitude: Recognizing and preparing for the risks. Diabet. Med. 2015, 32, 1425–1437. [Google Scholar] [CrossRef]
- Furian, M.; Flueck, D.; Latshang, T.D.; Scheiwiller, P.M.; Segitz, S.D.; Mueller-Mottet, S.; Murer, C.; Steiner, A.; Ulrich, S.; Rothe, T.; et al. Exercise performance and symptoms in lowlanders with COPD ascending to moderate altitude: Randomized trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 3529–3538. [Google Scholar] [CrossRef] [Green Version]
- Latshang, T.D.; Tardent, R.P.M.; Furian, M.; Flueck, D.; Segitz, S.D.; Mueller-Mottet, S.; Kohler, M.; Ulrich, S.; Bloch, K.E. Sleep and breathing disturbances in patients with chronic obstructive pulmonary disease traveling to altitude: A randomized trial. Sleep 2018, 42, zsy203. [Google Scholar] [CrossRef]
- Kuehne, T.; Furian, M.; Latshang, T.D.; Aeschbacher, S.S.; Huber, F.; Flueck, D.; Hasler, E.D.; Ulrich, S.; Scheiwiller, P.M.; Ulrich, S.; et al. Exercise performance in lowlanders with COPD travelling to 2048 m. J Eur. Respir. 2018, 52, PA2455. [Google Scholar] [CrossRef]
- Gutweniger, S.; Latshang, T.D.; Aeschbacher, S.S.; Huber, F.; Flueck, D.; Lichtblau, M.; Ulrich, S.; Hasler, E.D.; Scheiwiller, P.M.; Ulrich, S.; et al. Effect of nocturnal oxygen therapy on exercise performance of COPD patients at 2048 m: Data from a randomized clinical trial. Sci. Rep. 2021, 11, 20355. [Google Scholar] [CrossRef] [PubMed]
- Kind, R.; Furian, M.; Buergin, A.; Scheiwiller, P.; Mayer, L.; Schneider, S.; Mademilov, M.; Emilov, B.; Lichtblau, M.; Muralt, L.; et al. Effects of acetazolamide on exercise performance in patients with COPD at high altitude. RCT. J Eur. Respir. 2019, 54, PA1631. [Google Scholar] [CrossRef]
- Wehrlin, J.P.; Hallén, J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur. J. Appl. Physiol. 2006, 96, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Treml, B.; Gatterer, H.; Burtscher, J.; Kleinsasser, A.; Burtscher, M. A Focused Review on the Maximal Exercise Responses in Hypo- and Normobaric Hypoxia: Divergent Oxygen Uptake and Ventilation Responses. Int. J. Environ. Res. Public Health 2020, 17, 5239. [Google Scholar] [CrossRef]
- Burtscher, M.; Faulhaber, M.; Flatz, M.; Likar, R.; Nachbauer, W. Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int. J. Sports Med. 2006, 27, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Ponchia, A. The risk of cardiovascular events during leisure time activities at altitude. Prog. Cardiovasc. Dis. 2010, 52, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M. Risk of cardiovascular events during mountain activities. Adv. Exp. Med. Biol. 2007, 618, 1–11. [Google Scholar] [PubMed]
- Lo, M.Y.; Daniels, J.D.; Levine, B.D.; Burtscher, M. Sleeping altitude and sudden cardiac death. Am. Heart J. 2013, 166, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Martin, D.; Dodd, S. Exercise-induced hypoxaemia in elite endurance athletes. Incidence, causes and impact on VO2max. Sports Med. 1993, 16, 14–22. [Google Scholar] [CrossRef]
- Durand, F.; Mucci, P.; Préfaut, C. Evidence for an inadequate hyperventilation inducing arterial hypoxemia at submaximal exercise in all highly trained endurance athletes. Med. Sci. Sports Exerc. 2000, 32, 926–932. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Morgan, B.J. Humans in hypoxia: A conspiracy of maladaptation? Physiology 2015, 30, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Severinghaus, J.W.; Powell, F.L.; Xu, F.D.; Spellman, M.J., Jr. Augmented hypoxic ventilatory response in men at altitude. J. Appl. Physiol. 1992, 73, 101–107. [Google Scholar] [CrossRef]
- Brothers, M.D.; Wilber, R.L.; Byrnes, W.C. Physical fitness and hematological changes during acclimatization to moderate altitude: A retrospective study. High Alt. Med. Biol. 2007, 8, 213–224. [Google Scholar] [CrossRef]
- Schuler, B.; Thomsen, J.J.; Gassmann, M.; Lundby, C. Timing the arrival at 2340 m altitude for aerobic performance. Scand. J. Med. Sci. Sports 2007, 17, 588–594. [Google Scholar] [CrossRef]
- Burtscher, M.; Gatterer, H.; Kleinsasser, A. Cardiorespiratory Fitness of High Altitude Mountaineers: The Underestimated Prerequisite. High Alt. Med. Biol. 2015, 16, 169–170. [Google Scholar] [CrossRef] [PubMed]
- Pühringer, R.; Gatterer, H.; Berger, M.; Said, M.; Faulhaber, M.; Burtscher, M. Does Moderate Altitude Affect VO2max in Acclimatized Mountain Guides? High Alt. Med. Biol. 2022, 23, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Stoneham, M.D.; Pethybridge, R.J. Acclimatization to altitude: Effects on arterial oxygen saturation and pulse rate during prolonged exercise at altitude. J. R. Nav. Med. Serv. 1993, 79, 3–9. [Google Scholar] [PubMed]
- Townsend, N.E.; Gore, C.J.; Ebert, T.R.; Martin, D.T.; Hahn, A.G.; Chow, C.M. Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists. Eur. J. Sports Sci. 2016, 16, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Niedermeier, M.; Burtscher, J.; Pesta, D.; Suchy, J.; Strasser, B. Preparation for Endurance Competitions at Altitude: Physiological, Psychological, Dietary and Coaching Aspects. A Narrative Review. Front. Physiol. 2018, 9, 1504. [Google Scholar] [CrossRef]
- Millet, G.P.; Roels, B.; Schmitt, L.; Woorons, X.; Richalet, J.P. Combining hypoxic methods for peak performance. Sports Med. 2010, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Heinicke, K.; Heinicke, I.; Schmidt, W.; Wolfarth, B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int. J. Sports Med. 2005, 26, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A.; Schmitt, L.; Troesch, S.; Saugy, J.J.; Cejuela-Anta, R.; Faiss, R.; Robinson, N.; Wehrlin, J.P.; Millet, G.P. Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes. Med. Sci. Sports Exerc. 2016, 48, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Bärtsch, P.; Gibbs, J.S. Effect of altitude on the heart and the lungs. Circulation 2007, 116, 2191–2202. [Google Scholar] [CrossRef] [Green Version]
- Tannheimer, M.; Fusch, C.; Böning, D.; Thomas, A.; Engelhardt, M.; Schmidt, R. Changes of hematocrit and hemoglobin concentration in the cold Himalayan environment in dependence on total body fluid. Sleep Breath 2010, 14, 193–199. [Google Scholar] [CrossRef]
- Calbet, J.A.; Rådegran, G.; Boushel, R.; Søndergaard, H.; Saltin, B.; Wagner, P.D. Effect of blood haemoglobin concentration on VO2max and cardiovascular function in lowlanders acclimatised to 5260 m. J. Physiol. 2002, 545, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; Boushel, R.; Rådegran, G.; Søndergaard, H.; Wagner, P.D.; Saltin, B. Determinants of maximal oxygen uptake in severe acute hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R291–R303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luks, A.M.; Swenson, E.R. Pulse oximetry at high altitude. High Alt. Med. Biol. 2011, 12, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Windsor, J.S. Pulse oximetry and predicting acute mountain sickness: Are we asking the right questions? Wilderness Environ. Med. 2012, 23, 112–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windsor, J.S.; Rodway, G.W. Con: Pulse oximetry is useful in predicting acute mountain sickness. High Alt. Med. Biol. 2014, 15, 442–443. [Google Scholar] [CrossRef]
- Tannheimer, M.; Lechner, R. The correct measurement of oxygen saturation at high altitude. Sleep Breath 2019, 23, 1101–1106. [Google Scholar] [CrossRef]
- O’Connor, T.; Dubowitz, G.; Bickler, P.E. Pulse oximetry in the diagnosis of acute mountain sickness. High Alt. Med. Biol. 2004, 5, 341–348. [Google Scholar] [CrossRef]
- Wagner, D.R.; Knott, J.R.; Fry, J.P. Oximetry fails to predict acute mountain sickness or summit success during a rapid ascent to 5640 meters. Wilderness Environ. Med. 2012, 23, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Karinen, H.M.; Peltonen, J.E.; Kahonen, M.; Tikkanen, H.O. Prediction of acute mountain sickness by monitoring arterial oxygen saturation during ascent. High Alt. Med. Biol. 2010, 11, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Tannheimer, M.; Thomas, A.; Gerngross, H. Oxygen saturation course and altitude symptomatology during an expedition to Broad Peak (8047 m). Int. J. Sports Med. 2002, 23, 329–335. [Google Scholar] [CrossRef]
- Grocott, M.P.; Martin, D.S.; Levett, D.Z.; McMorrow, R.; Windsor, J.; Montgomery, H.E.; Caudwell Xtreme Everest Research. Arterial blood gases and oxygen content in climbers on Mount Everest. N. Engl. J. Med. 2009, 360, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Benoit, H.; Costes, F.; Feasson, L.; Lacour, J.R.; Roche, F.; Denis, C.; Geyssant, A.; Barthelemy, J.C. Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Sendak, M.J.; Harris, A.P.; Donham, R.T. Accuracy of pulse oximetry during arterial oxyhemoglobin desaturation in dogs. Anesthesiology 1988, 68, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Boxer, R.A.; Gottesfeld, I.; Singh, S.; LaCorte, M.A.; Parnell, V.A., Jr.; Walker, P. Noninvasive pulse oximetry in children with cyanotic congenital heart disease. Crit. Care Med. 1987, 15, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Lazzell, V.; Jopling, M. Accuracy of Pulse Oximetry in Cyanotic Congenital Heart Disease. Anesthesiology 1987, 67, 169. [Google Scholar] [CrossRef]
- Netzer, N.C.; Rausch, L.K.; Frieß, M.; Strohl, K.P.; Schilz, R.; Decker, M.; Pramsohler, S. Expiratory Peak Flow and Minute Ventilation Are Significantly Increased at High Altitude versus Simulated Altitude in Normobaria. Life 2022, 12, 306. [Google Scholar] [CrossRef]
- Dünnwald, T.; Kienast, R.; Niederseer, D.; Burtscher, M. The use of pulse oximetry in the assessment of acclimatization to high altitude. Sensors 2021, 21, 1263. [Google Scholar] [CrossRef]
- Bärtsch, P.; Saltin, B. General introduction to altitude adaptation and mountain sickness. Scand. J. Med. Sci. Sports 2008, 18 (Suppl. S1), 1–10. [Google Scholar] [CrossRef]
- Netzer, N.; Strohl, K.; Faulhaber, M.; Gatterer, H.; Burtscher, M. Hypoxia-related altitude illnesses. J. Travel. Med. 2013, 20, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Maher, J.T.; Jones, L.G.; Hartley, L.H. Effects of high-altitude exposure on submaximal endurance capacity of men. J. Appl. Physiol. 1974, 37, 895–898. [Google Scholar] [CrossRef]
- Buskirk, E.; Kollias, J.; Akers, R.; Prokop, E.; Reategui, E.P. Maximal performance at altitude and on return from altitude in conditioned runners. J. Appl. Physiol. 1967, 23, 259–266. [Google Scholar] [CrossRef]
- Friedmann, B.; Frese, F.; Menold, E.; Bärtsch, P. Individual variation in the reduction of heart rate and performance at lactate thresholds in acute normobaric hypoxia. Int. J. Sports Med. 2005, 26, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Wehrlin, J.P.; Marti, B.; Hallén, J. Hemoglobin mass and aerobic performance at moderate altitude in elite athletes. Hypoxia 2016, 357–374. [Google Scholar]
- Chapman, R.F.; Emery, M.; Stager, J.M. Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia. Med. Sci. Sports Exerc. 1999, 31, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Gore, C.J.; Hahn, A.G.; Scroop, G.; Watson, D.; Norton, K.; Wood, R.; Campbell, D.; Emonson, D. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J. Appl. Physiol. 1996, 80, 2204–2210. [Google Scholar] [CrossRef]
- Terrados, N.; Mizuno, M.; Andersen, H. Reduction in maximal oxygen uptake at low altitudes; role of training status and lung function. Clin. Physiol. 1985, 5, 75–79. [Google Scholar] [CrossRef]
- Fulco, C.S.; Rock, P.B.; Cymerman, A. Maximal and Submaximal Exercise Performance at Altitude. Aviat. Space Environ. Med. 1998, 69, 793–801. [Google Scholar]
- Burtscher, M. Endurance performance of the elderly mountaineer: Requirements, limitations, testing, and training. Wien Klin Wochenschr. 2004, 116, 703–714. [Google Scholar] [CrossRef]
- Küpper, T.; Morrison, A. Mountaineers as Comrade Rescuers—Deficiencies in First Aid Knowledge and Minimum Technical Requirements. Dtsch. Z. Sportmed. 2020, 71, 280–285. [Google Scholar] [CrossRef]
- Oelz, O.; Howald, H.; Di Prampero, P.E.; Hoppeler, H.; Claassen, H.; Jenni, R.; Buhlmann, A.; Ferretti, G.; Bruckner, J.C.; Veicsteinas, A.; et al. Physiological profile of world-class high-altitude climbers. J. Appl. Physiol. 1986, 60, 1734–1742. [Google Scholar] [CrossRef]
- Millet, G.P.; Jornet, K. On Top to the Top-Acclimatization Strategy for the “Fastest Known Time” to Everest. Int. J. Sport. Physiol. Perform. 2019, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cerretelli, P. Energy sources for muscular exercise. Int. J. Sports. Med. 1992, 13 (Suppl. S1), S106–S110. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Strasser, B.; Burtscher, M.; Millet, G.P. The Impact of Training on the Loss of Cardiorespiratory Fitness in Aging Masters Endurance Athletes. Int. J. Environ. Res. Public Health 2022, 19, 11050. [Google Scholar] [CrossRef] [PubMed]
- Storen, O.; Helgerud, J.; Saebo, M.; Stoa, E.; Bratland-Sanda, S.; Unhjem, R.; Hoff, J.; Wang, E. The effect of age on the VO2max response to high-intensity interval training. Med. Sci. Sports Exerc. 2017, 49, 78–85. [Google Scholar] [CrossRef]
- Shakarchi, A.F.; Assi, L.; Gami, A.; Kohn, C.; Ehrlich, J.R.; Swenor, B.K.; Reed, N.S. The Association of Vision, Hearing, and Dual-Sensory Loss with Walking Speed and Incident Slow Walking: Longitudinal and Time to Event Analyses in the Health and Retirement Study. Semin. Hear. 2021, 42, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Raberin, A.; Burtscher, J.; Connes, P.; Millet, G.P. Hypoxia and hemorheological properties in older individuals. Ageing Res. Rev. 2022, 79, 101650. [Google Scholar] [CrossRef]
- Horiuchi, M.; Kirihara, Y.; Fukuoka, Y.; Pontzer, H. Sex differences in respiratory and circulatory cost during hypoxic walking: Potential impact on oxygen saturation. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dominelli, P.B.; Foster, G.E.; Dominelli, G.S.; Henderson, W.R.; Koehle, M.S.; McKenzie, D.C.; Sheel, A.W. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J. Physiol. 2013, 591, 3017–3034. [Google Scholar] [CrossRef]
- Woorons, X.; Mollard, P.; Lamberto, C.; Letournel, M.; Richalet, J.P. Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med. Sci. Sports Exerc. 2005, 37, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Burtscher, M.; Viscor, G. How important is V̇O2 max when climbing Mt. Everest (8,849 m)? Respir. Physiol. Neurobiol. 2022, 297, 103833. [Google Scholar] [CrossRef]
- Burtscher, M.; Philadelphy, M.; Gatterer, H.; Burtscher, J.; Likar, R. Submaximal exercise testing at low altitude for prediction of exercise tolerance at high altitude. J. Travel. Med. 2018, 25, tay011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, P.D.; Franklin, B.A.; Balady, G.J.; Blair, S.N.; Corrado, D.; Estes, N.A.; Fulton, J.E.; Gordon, N.F.; Haskell, W.L.; Link, M.S.; et al. Exercise and acute cardiovascular events placing the risks into perspective: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation 2007, 115, 2358–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, C.J.; Gavin, M. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease. High Alt. Med. Biol. 2017, 18, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 2010, 52, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Bonadei, I.; Sciatti, E.; Vizzardi, E.; Berlendis, M.; Bozzola, G.; Metra, M. Coronary Artery Disease and High Altitude: Unresolved Issues. Res. Cardiovasc. Med. 2016, 5, e32645. [Google Scholar] [CrossRef] [Green Version]
- Bilo, G.; Villafuerte, F.C.; Faini, A.; Anza-Ramirez, C.; Revera, M.; Giuliano, A.; Caravita, S.; Gregorini, F.; Lombardi, C.; Salvioni, E.; et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high altitude: The High Altitude Cardiovascular Research-Andes study. Hypertension 2015, 65, 1266–1272. [Google Scholar] [CrossRef]
- Rimoldi, S.F.; Sartori, C.; Seiler, C.; Delacretaz, E.; Mattle, H.P.; Scherrer, U.; Allemann, Y. High-altitude exposure in patients with cardiovascular disease: Risk assessment and practical recommendations. Prog. Cardiovasc. Dis. 2010, 52, 512–524. [Google Scholar] [CrossRef]
- Parati, G.; Agostoni, P.; Basnyat, B.; Bilo, G.; Brugger, H.; Coca, A.; Festi, L.; Giardini, G.; Lironcurti, A.; Luks, A.M.; et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur. Heart. J. 2018, 39, 1546–1554. [Google Scholar] [CrossRef]
- Lazio, M.P.; Van Roo, J.D.; Pesce, C.; Malik, S.; Courtney, D.M. Postexercise peripheral oxygen saturation after completion of the 6-minute walk test predicts successfully reaching the summit of Aconcagua. Wilderness Environ. Med. 2010, 21, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Valentini, M.; Revera, M.; Bilo, G.; Caldara, G.; Savia, G.; Styczkiewicz, K.; Parati, S.; Gregorini, F.; Faini, A.; Branzi, G.; et al. Effects of beta-blockade on exercise performance at high altitude: A randomized, placebo-controlled trial comparing the efficacy of nebivolol versus carvedilol in healthy subjects. Cardiovasc. Ther. 2012, 30, 240–248. [Google Scholar] [CrossRef]
- Faulhaber, M.; Flatz, M.; Burtscher, M. Beta-blockers may provoke oxygen desaturation during submaximal exercise at moderate altitudes in elderly persons. High Alt. Med. Biol. 2003, 4, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Mellor, A.; Boos, C.; Holdsworth, D.; Begley, J.; Hall, D.; Lumley, A.; Burnett, A.; Hawkins, A.; O’Hara, J.; Ball, S.; et al. Cardiac biomarkers at high altitude. High Alt. Med. Biol. 2014, 15, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Wilms, B.; Ernst, B.; Thurnheer, M.; Spengler, C.M.; Schultes, B. Type 2 Diabetes is Associated with Lower Cardiorespiratory Fitness Independent of Pulmonary Function in Severe Obesity. Exp. Clin. Endocrinol. Diabetes 2017, 125, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Zavorsky, G.S.; Hoffman, S.L. Pulmonary gas exchange in the morbidly obese. Obes. Rev. 2008, 9, 326–339. [Google Scholar] [CrossRef]
- Yang, B.; Sun, Z.J.; Cao, F.; Zhao, H.; Li, C.W.; Zhang, J. Obesity is a risk factor for acute mountain sickness: A prospective study in Tibet railway construction workers on Tibetan plateau. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Peppard, P.E.; Ward, N.R.; Morrell, M.J. The impact of obesity on oxygen desaturation during sleep-disordered breathing. Am. J. Respir. Crit. Care. Med. 2009, 180, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zeng, J.; Yan, Y.; Xu, F. Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. Int. J. Environ. Res. Public Health 2021, 18, 9078. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Zakynthinos, S. Factors limiting exercise tolerance in chronic lung diseases. Compr. Physiol. 2012, 2, 1779–1817. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.; Barrero, M.; Maldonado, D. Exercise Capacity, Ventilatory Response, and Gas Exchange in COPD Patients with Mild to Severe Obstruction Residing at High Altitude. Front. Physiol. 2021, 12, 668144. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; Laveneziana, P. The clinical importance of dynamic lung hyperinflation in COPD. Copd 2006, 3, 219–232. [Google Scholar] [CrossRef]
- Zafar, M.A.; Tsuang, W.; Lach, L.; Eschenbacher, W.; Panos, R.J. Dynamic hyperinflation correlates with exertional oxygen desaturation in patients with chronic obstructive pulmonary disease. Lung 2013, 191, 177–182. [Google Scholar] [CrossRef]
- Furian, M.; Mademilov, M.; Buergin, A.; Scheiwiller Philipp, M.; Mayer, L.; Schneider, S.; Emilov, B.; Lichtblau, M.; Bitos, K.; Muralt, L.; et al. Acetazolamide to Prevent Adverse Altitude Effects in COPD and Healthy Adults. NEJM Evid. 2022, 1, EVIDoa2100006. [Google Scholar] [CrossRef]
- Schneider, S.R.; Mayer, L.C.; Lichtblau, M.; Berlier, C.; Schwarz, E.I.; Saxer, S.; Tan, L.; Furian, M.; Bloch, K.E.; Ulrich, S. Effect of a day-trip to altitude (2500 m) on exercise performance in pulmonary hypertension: Randomised crossover trial. ERJ Open Res. 2021, 7, 00314–2021. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Hefti, U.; Hefti, J.P. High-altitude illnesses: Old stories and new insights into the pathophysiology, treatment and prevention. Sports Med. Health Sci. 2021, 3, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Millet, G.P.; Burtscher, J. Hypoxia Conditioning for High-Altitude Pre-acclimatization. J. Sci. Sport Exerc. 2022. [Google Scholar] [CrossRef]
- Tannheimer, M.; Lechner, R. Rapid ascents of Mt Everest: Normobaric hypoxic preacclimatization. J. Travel Med. 2020, 27, taa099. [Google Scholar] [CrossRef]
- Gong, H., Jr.; Tashkin, D.P.; Lee, E.Y.; Simmons, M.S. Hypoxia-altitude simulation test. Evaluation of patients with chronic airway obstruction. Am. Rev. Respir. Dis. 1984, 130, 980–986. [Google Scholar] [CrossRef]
- Furian, M.; Lichtblau, M.; Aeschbacher, S.S.; Estebesova, B.; Emilov, B.; Sheraliev, U.; Marazhapov, N.H.; Mademilov, M.; Osmonov, B.; Bisang, M.; et al. Effect of Dexamethasone on Nocturnal Oxygenation in Lowlanders with Chronic Obstructive Pulmonary Disease Traveling to 3100 Meters: A Randomized Clinical Trial. JAMA Netw. Open 2019, 2, e190067. [Google Scholar] [CrossRef]
Reference | N, Sex | Mean Age, Years | Altitude, m | Exposure Duration | Sea Level (SL) | Acute Altitude (AA) | Chronic Altitude (CA) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
VO2max mL/min/kg | SpO2max % | VO2max mL/min/kg (Change from SL) | SpO2max % (Change from SL) | VO2max mL/min/kg (Change from SL; from AA) | SpO2max % (Change from SL; from AA) | Change in Ventilation [Hb or Hct] from AA | |||||
HRmax, bpm Q, L/min | CaO2 mL/dL | HRmax bpm Q, L/min | CaO2 mL/dL | HRmax bpm Q, L/min | CaO2 mL/dL | CaO2, % SL | |||||
Horstman et al., 1980 [23] | 9 males | 21 | 4300 m | 15 days | 50.6 | 94.5 | 35.3 (−30%) | 69.7 (−26%) | 38.8 (−23%); (+10%) | 74.2 (−21.5%) (+6.5%) | +10% [+13%] |
174 19.5 | 22.1 | 167 19 | 16.8 | 161 17 | 19.9 | 90% | |||||
Beidleman et al., 1997 [24] | 6 males | 31 | 4300 m | 18 days | 57.0 | 97.0 | 40.0 (−30%) | 69.0 (−29%) | 42.0 (−26%) (+5%) | 73 (−25%) (+6%) | +11% [+11%} |
190 --- | 19.8 | 177 --- | 14.2 | 170 --- | 16.7 | 84% | |||||
Calbet et al., 2003 [25] | 4 males 3 females | 24 | 5260 m | 9–10 weeks | 56.3 | 95.9 | 30.0 (−46%) | 67.8 (−29%) | 34.0 (−40%) (+13%) | 72.5 (−24%) (+7%) | +29% [+36%] |
182 23 | 18.9 | 168 19 | 13.2 | 147 20.5 | 19.2 | 102% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furian, M.; Tannheimer, M.; Burtscher, M. Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease. J. Clin. Med. 2022, 11, 6699. https://doi.org/10.3390/jcm11226699
Furian M, Tannheimer M, Burtscher M. Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease. Journal of Clinical Medicine. 2022; 11(22):6699. https://doi.org/10.3390/jcm11226699
Chicago/Turabian StyleFurian, Michael, Markus Tannheimer, and Martin Burtscher. 2022. "Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease" Journal of Clinical Medicine 11, no. 22: 6699. https://doi.org/10.3390/jcm11226699
APA StyleFurian, M., Tannheimer, M., & Burtscher, M. (2022). Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease. Journal of Clinical Medicine, 11(22), 6699. https://doi.org/10.3390/jcm11226699