Profiling Plasma Cytokines by A CRISPR-ELISA Assay for Early Detection of Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CRISPR-ELISA Assay Can Sensitively Detect the Cytokines
3.2. CRISPR-ELISA Assay Can Specifically and Reproducibly Detect the Different Cytokines
3.3. Diagnostic Performance of the CRISPR-ELISA Assay for Analysis of the Cytokines in the Early Detection of Lung Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinsky, P.F.; Berg, C.D. Applying the National Lung Screening Trial eligibility criteria to the US population: What percent of the population and of incident lung cancers would be covered? J. Med. Screen. 2012, 19, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M. Screening for Lung Cancer with Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.M.; Marsland, B.J. Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity 2017, 46, 549–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, B.M.; Pine, S.R.; Chaturvedi, A.K. A combined prognostic serum interleukin-8 and interleukin-6 classifier for stage 1 lung cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. J. Thorac. Oncol. 2014, 9, 1494–1503. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Okamura, S.; Yamaji, T. Plasma cytokine levels and the presence of colorectal cancer. PLoS ONE 2019, 14, e0213602. [Google Scholar] [CrossRef] [Green Version]
- Ahirwar, R.; Bhattacharya, A.; Kumar, S. Unveiling the underpinnings of various non-conventional ELISA variants: A review article. Expert Rev. Mol. Diagn. 2022, 22, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.S.; Ma, E.; Harrington, L.B. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, J.H.; Leng, Q.; Jiang, F. A CRISPR Test for Rapidly and Sensitively Detecting Circulating EGFR Mutations. Diagnostics 2020, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Tsou, J.H.; Leng, Q.; Jiang, F. A CRISPR Test for Detection of Circulating Nuclei Acids. Transl. Oncol. 2019, 12, 1566–1573. [Google Scholar] [CrossRef]
- Zhou, H.; Tsou, J.H.; Leng, Q.; Jiang, F. Sensitive Detection of KRAS Mutations by Clustered Regularly Interspaced Short Palindromic Repeats. Diagnostics 2021, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Tsou, J.H.; Liu, H.; Stass, S.A.; Jiang, F. Rapid and Sensitive Detection of SARS-CoV-2 Using Clustered Regularly Interspaced Short Palindromic Repeats. Biomedicines 2021, 9, 239. [Google Scholar] [CrossRef]
- Zhou, H.; Tsou, J.H.; Chinthalapally, M.; Jiang, F. Detection and Differentiation of SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses by CRISPR. Diagnostics 2021, 11, 823. [Google Scholar] [CrossRef]
- Lee, I.; Kwon, S.J.; Sorci, M. Highly Sensitive Immuno-CRISPR Assay for CXCL9 Detection. Anal. Chem. 2021, 93, 16528–16534. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Deng, F.; Goldys, E.M. A simple and versatile CRISPR/Cas12a-based immunosensing platform: Towards attomolar level sensitivity for small protein diagnostics. Talanta 2022, 246, 123469. [Google Scholar] [CrossRef]
- Lin, Y.; Leng, Q.; Zhan, M.; Jiang, F. A Plasma Long Noncoding RNA Signature for Early Detection of Lung Cancer. Transl. Oncol. 2018, 11, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Leng, Q.; Wang, Y.; Jiang, F. A Direct Plasma miRNA Assay for Early Detection and Histological Classification of Lung Cancer. Transl. Oncol. 2018, 11, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Leng, Q.; Lin, Y.; Jiang, F. A plasma miRNA signature for lung cancer early detection. Oncotarget 2017, 8, 111902–111911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Liu, Z.; Todd, N.W.; Jiang, F. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 2011, 11, 374. [Google Scholar] [CrossRef]
- Shen, J.; Todd, N.W.; Zhang, H.; Jiang, F. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab. Investig. 2011, 91, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezel, P.; Valaperti, A.; Steiner, U. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol. Immunother. 2021, 70, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.R.; Fanidi, A.; Grankvist, K. Inflammatory Cytokines and Lung Cancer Risk in 3 Prospective Studies. Am. J. Epidemiol. 2017, 185, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Holden, V.K.; Deepak, J.; Jiang, F. Autoantibodies against tumor-associated antigens in sputum as biomarkers for lung cancer. Transl. Oncol. 2021, 14, 100991. [Google Scholar] [CrossRef]
- Chen, L.; Eitenmiller, R.R. Single laboratory method performance evaluation for the analysis of total food folate by trienzyme extraction and microplate assay. J. Food Sci. 2007, 72, C243–C247. [Google Scholar] [CrossRef]
NSCLC Cases (n = 68) | Controls (n = 69) | p-Value | |
---|---|---|---|
Age | 64.58 (SD 10.16) | 60.34 (SD 12.18) | 0.12 |
Sex | 0.33 | ||
Female | 27 | 28 | |
Male | 41 | 41 | |
Smoking pack-years (median) | 32.8 | 31.6 | 0.27 |
Stage | |||
Stage I | 34 | ||
Stage II | 15 | ||
Stage III | 11 | ||
Stage IV | 8 | ||
Histological type | |||
Adenocarcinoma | 37 | ||
Squamous cell carcinoma | 31 |
NSCLC Cases (n = 59) | Controls (n = 56) | p-Value | |
---|---|---|---|
Age | 64.29 (SD 9.37) | 61.48 (SD 11.35) | 0.15 |
Sex | 0.38 | ||
Female | 24 | 23 | |
Male | 35 | 33 | |
Smoking pack-years (median) | 32.8 | 31.6 | 0.23 |
Stage | |||
Stage I | 30 | ||
Stage II | 11 | ||
Stage III | 12 | ||
Stage IV | 6 | ||
Histological type | |||
Adenocarcinoma | 32 | ||
Squamous cell carcinoma | 27 |
Cytokines | p-Value | AUC (95% CI) | Sensitivity (%) (95% CI) | Specificity (%) (95% CI) |
---|---|---|---|---|
IL-6 | <0.0001 | 0.6726 (0.6102 to 0.7349) | 67.55 (59.46% to 74.93%) | 60.13 (51.91% to 67.95%) |
IL-8 | 0.0002 | 0.7174 (0.6166 to 0.8182) | 66.00 (51.23% to 78.79%) | 68.00 (53.30% to 80.48%) |
IL-10 | 0.0001 | 0.7179 (0.6156 to 0.8202) | 67.31 (52.89% to 79.67%) | 76.00 (61.83% to 86.94%) |
IL-12p70 | <0.0001 | 0.7650 (0.6688 to 0.8612) | 72.00 (57.51% to 83.77%) | 74.00 (59.66% to 85.37%) |
IFN-γ | <0.0001 | 0.7394 (0.6418 to 0.8370) | 73.08 (58.98% to 84.43%) | 68.00 (53.30% to 80.48%) |
TNF-α | <0.0001 | 0.7499 (0.6488 to 0.8510) | 69.81 (55.66% to 81.66%) | 73.33 (58.06% to 85.40%) |
The Development Cohort | The Validation Cohort | |
---|---|---|
p-value | <0.0001 | <0.0001 |
AUC (95% CI) | 0.7924 (0.7209 to 0.8639) | 0.7781 (0.7017 to 0.8545) |
Sensitivity (%) (95% CI) | 80.62.78 (72.74% to 87.05%) | 78.26 (71.09% to 84.37%) |
Specificity (%) (95% CI) | 82.00 (68.56% to 91.42%) | 80.65 (62.53% to 92.55%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Chinthalapally, M.; Holden, V.K.; Deepak, J.; Dhilipkannah, P.; Fan, J.M.; Todd, N.W.; Jiang, F. Profiling Plasma Cytokines by A CRISPR-ELISA Assay for Early Detection of Lung Cancer. J. Clin. Med. 2022, 11, 6923. https://doi.org/10.3390/jcm11236923
Li N, Chinthalapally M, Holden VK, Deepak J, Dhilipkannah P, Fan JM, Todd NW, Jiang F. Profiling Plasma Cytokines by A CRISPR-ELISA Assay for Early Detection of Lung Cancer. Journal of Clinical Medicine. 2022; 11(23):6923. https://doi.org/10.3390/jcm11236923
Chicago/Turabian StyleLi, Ning, Molangur Chinthalapally, Van K. Holden, Janaki Deepak, Pushpa Dhilipkannah, Jonathan M. Fan, Nevins W. Todd, and Feng Jiang. 2022. "Profiling Plasma Cytokines by A CRISPR-ELISA Assay for Early Detection of Lung Cancer" Journal of Clinical Medicine 11, no. 23: 6923. https://doi.org/10.3390/jcm11236923
APA StyleLi, N., Chinthalapally, M., Holden, V. K., Deepak, J., Dhilipkannah, P., Fan, J. M., Todd, N. W., & Jiang, F. (2022). Profiling Plasma Cytokines by A CRISPR-ELISA Assay for Early Detection of Lung Cancer. Journal of Clinical Medicine, 11(23), 6923. https://doi.org/10.3390/jcm11236923