Immunogenetic Role of IL17A Polymorphism in the Pathogenesis of Recurrent Miscarriage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Site
2.3. Study Participants
2.4. Inclusion Criteria for Patients
- Pregnant women with a history of two or more successive miscarriages ≤24 weeks of gestation.
- Pregnant women with a history of primary RM (no history of childbirth before RM) or secondary RM (history of childbirth before RM).
- All the pregnant RM patients were from the female Kashmiri population.
- Pregnant RM patients of reproductive ages between 18 and 45 years were part of this study.
- Pregnant RM patients who willingly signed the consent form were included in the study.
2.5. Exclusion Criteria for Patients
- Pregnant women with a history of only one miscarriage.
- Pregnant women with a history of two or more induced abortions and no spontaneous pregnancy losses.
- Nonpregnant women with a history of two or more spontaneous consecutive pregnancy losses.
- Pregnant women with a history of two or more spontaneous, nonconsecutive pregnancy losses.
- Pregnant women who conceived with ART/IVF.
- Pregnant RM patients who declined to participate in the study.
2.6. Inclusion Criteria for Controls
- Pregnant women with a history of one or more successful pregnancies.
- Pregnant women who belonged to the Kashmiri population.
- Pregnant women of ages between 18 and 45 years were included in the study.
2.7. Exclusion Criteria for Controls
- Pregnant women with no birth history (i.e., women carrying their first pregnancy).
- Women with no history of pregnancy.
- Pregnant women with a history of miscarriages.
- Pregnant women who conceived with ART/IVF.
- Pregnant women who declined to participate in the study.
2.8. Ethical Approval and Patient Consent
2.9. Collection of Samples
2.10. Estimation of Serum IL17A Cytokine Levels
2.11. Extraction of Whole Genomic DNA
2.12. Polymerase Chain Reaction (PCR)
2.13. Restriction Fragment-Length Polymorphism (RFLP)
2.14. Statistical Analysis
3. Results
3.1. Analysis of Serum IL17A Cytokine Estimation by ELISA
3.2. Analysis of IL17A Genotyping (PCR-RFLP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, S.; Majid, S.; Ali, M.N.; Taing, S. Evaluation of T cell cytokines and their role in recurrent miscarriage. Int. Immunopharmacol. 2020, 82, 106347. [Google Scholar]
- Ali, S.; Majid, S.; Ali, M.N.; Taing, S.; Rehman, M.U.; Arafah, A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int. Immunopharmacol. 2021, 90, 107118. [Google Scholar]
- ESHRE Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Nelen, W.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open 2018, 2018, hoy004. [Google Scholar]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2020, 113, 533–535. [Google Scholar]
- Ali, S.; Majid, S.; Ali, M.N.; Taing, S.; El-Serehy, H.A.; Al-Misned, F.A. Evaluation of etiology and pregnancy outcome in recurrent miscarriage patients. Saudi J. Biol. Sci. 2020, 27, 2809–2817. [Google Scholar]
- Alkhuriji, A.F. Association of Maternal IL-17 and IL-23R Polymorphisms with Risk of Recurrent Spontaneous Abortion in Women in Saudi Arabia. Ital. J. Gynaecol. Obstet. 2017, 29, 2385-0868. [Google Scholar]
- Cua, D.J.; Tato, C.M. Innate IL-17-producing cells: The sentinels of the immune system. Nat. Rev. Immunol. 2010, 10, 479–489. [Google Scholar]
- Kim, H.Y.; Lee, H.J.; Chang, Y.J.; Pichavant, M.; Shore, S.A.; Fitzgerald, K.A.; Iwakura, Y.; Israel, E.; Bolger, K.; Faul, J.; et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 2014, 20, 54–61. [Google Scholar]
- Gladiator, A.; Wangler, N.; Trautwein-Weidner, K.; LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 2013, 190, 521–525. [Google Scholar]
- Ruiz de Morales, J.M.G.; Puig, L.; Daudén, E.; Cañete, J.D.; Pablos, J.L.; Martín, A.O.; Juanatey, C.G.; Adán, A.; Montalbán, X.; Borruel, N.; et al. Critical Role of Interleukin (IL)-17 in Inflammatory and Immune Disorders: An Updated Review of the Evidence Focusing in Controversies. Autoimmun. Rev. 2020, 19, 102429. [Google Scholar]
- Pavlov, O.; Selutin, A.; Pavlova, O.; Selkov, S. Macrophages Are a Source of IL-17 in the Human Placenta. Am. J. Reprod. Immunol. 2018, 80, e13016. [Google Scholar]
- Vacca, P.; Vitale, C.; Munari, E.; Cassatella, M.A.; Mingari, M.C.; Moretta, L. Human Innate Lymphoid Cells: Their Functional and Cellular Interactions in Decidua. Front. Immunol. 2018, 9, 1897. [Google Scholar]
- Pongcharoen, S.; Somran, J.; Sritippayawan, S.; Niumsup, P.; Chanchan, P.; Butkhamchot, P.; Tatiwat, P.; Kunngurn, S.; Searle, R.F. Interleukin-17 Expression in the Human Placenta. Placenta 2007, 28, 59–63. [Google Scholar]
- Iwakura, Y.; Nakae, S.; Saijo, S.; Ishigame, H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev. 2008, 226, 57–79. [Google Scholar]
- Reynolds, J.M.; Angkasekwinai, P.; Dong, C. IL-17 family member cytokines: Regulation and function in innate immunity. Cytok. Growth Fact. Rev. 2010, 21, 413–423. [Google Scholar]
- Wang, X.; Zhang, Y.; Yang, X.O.; Nurieva, R.I.; Chang, S.H.; Ojeda, S.S.; Kang, H.S.; Schluns, K.S.; Gui, J.; Jetten, A.M.; et al. Transcription of IL17 and IL17f is controlled by conserved noncoding sequence 2. Immunity 2012, 36, 23–31. [Google Scholar]
- Shaban, S.A.; Brakhas, S.A.; Ad’hiah, A.H. Association of interleukin-17A genetic polymorphisms with risk of asthma: A case-control study in Iraqi patients. Meta Gene 2021, 29, 100935. [Google Scholar]
- Chen, K.; Kolls, J.K. Interluekin-17A (IL17A). Gene 2017, 614, 8–14. [Google Scholar]
- Brembilla, N.C.; Senra, L.; Boehncke, W.H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front. Immunol. 2018, 9, 1682. [Google Scholar]
- Frieman, M.; Heise, M.; Baric, R. SARS coronavirus and innate immunity. Virus Res. 2008, 133, 101–112. [Google Scholar]
- Shibali, D.; Shabaana, K. Yin and yang of interleukin-17 in host immunity to infection. F1000Research 2017, 6, 741. [Google Scholar]
- Li, Y.; Wei, C.; Xu, H.; Jia, J.; Wei, Z.; Guo, R.; Jia, Y.; Wu, Y.; Li, Y.; Qi, X.; et al. The immunoregulation of Th17 in host against intracellular bacterial infection. Mediat. Inflamm. 2018, 2018, 6587296. [Google Scholar]
- Chamoun, M.N.; Blumenthal, A.; Sullivan, M.J.; Schembri, M.A.; Ulett, G.C. Bacterial pathogenesis and interleukin-17: Interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection. Crit. Rev. Microbiol. 2018, 44, 465–486. [Google Scholar]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front. Immunol. 2020, 11, 2025. [Google Scholar]
- Rex, D.A.B.; Dagamajalu, S.; Gouda, M.M.; Suchitha, G.P.; Chanderasekaran, J.; Raju, R.; Prasad, T.S.; Bhandary, Y.P. A comprehensive network map of IL-17A signaling pathway. J. Cell Comm. Signal. 2022, 1–7. [Google Scholar] [CrossRef]
- Ge, Y.; Huang, M.; Yao, Y.M. Biology of interleukin-17 and its pathophysiological significance in sepsis. Front. Immunol. 2020, 11, 1558. [Google Scholar]
- Berry, S.D.G.; Dossou, C.; Kashif, A.; Sharifinejad, N.; Azizi, G.; Hamedifar, H.; Sabzvari, A.; Zian, Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int. Immunopharmacol. 2022, 102, 108402. [Google Scholar]
- Heidt, S.; Segundo, D.S.; Chadha, R.; Wood, K.J. The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr. Opin. Organ Transpl. 2010, 15, 456–461. [Google Scholar]
- Hanidziar, D.; Koulmanda, M. Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr. Opin. Organ Transpl. 2010, 15, 411–415. [Google Scholar]
- Wang, W.J.; Hao, C.F.; Yin, G.J.; Bao, S.H.; Qiu, L.H.; Lin, Q.D. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol. 2010, 84, 164–170. [Google Scholar]
- Chen, H.; Wang, W.; Xie, H.; Xu, X.; Wu, J.; Jiang, Z.; Zhang, M.; Zhou, L.; Zheng, S. A pathogenic role of IL-17 at the early stage of corneal allograft rejection. Transpl. Immunol. 2009, 21, 155–161. [Google Scholar]
- Yuan, X.; Paez-Cortez, J.; Schmitt-Knosalla, I.; D’Addio, F.; Mfarrej, B.; Donnarumma, M.; Habicht, A.; Clarkson, M.R.; Iacomini, J.; Glimcher, L.H.; et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J. Exp. Med. 2008, 205, 3133–3144. [Google Scholar]
- Wang, W.J.; Liu, F.J.; Qu, H.M.; Hao, C.F.; Qu, Q.L.; Bao, H.C.; Wang, X.R. Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J. Reprod. Immunol. 2013, 99, 39–45. [Google Scholar]
- Lawrence, S.M.; Ruoss, J.L.; Wynn, J.L. IL-17 in neonatal health and disease. Am. J. Reprod. Immunol. 2018, 79, e12800. [Google Scholar]
- Piccinni, M.P.; Raghupathy, R.; Saito, S.; Szekeres-Bartho, J. Cytokines, Hormones and Cellular Regulatory Mechanisms Favoring Successful Reproduction. Front. Immunol. 2021, 12, 717808. [Google Scholar]
- Muyayalo, K.P.; Li, Z.H.; Mor, G.; Liao, A.H. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol. 2018, 80, e13018. [Google Scholar]
- Lee, S.K.; Kim, J.Y.; Lee, M.; Gilman-Sachs, A.; Kwak-Kim, J. Th17 and regulatory T cells in women with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2012, 67, 311–318. [Google Scholar]
- Liu, Y.S.; Wu, L.; Tong, X.H.; Wu, L.M.; He, G.P.; Zhou, G.X.; Luo, L.H.; Luan, H.B. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol. 2011, 65, 503–511. [Google Scholar]
- Fu, B.; Tian, Z.; Wei, H. TH17 Cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol. Immunol. 2014, 11, 564–570. [Google Scholar]
- Gao, Y.; Wang, P.; Zou, T.; Zhang, Z.; Liang, W. Increased Th17 and reduced Treg cells in patients with unexplained recurrent spontaneous abortion. Clin. Experim. Obstet. Gynecol. 2019, 46, 458–460. [Google Scholar]
- Sereshki, N.; Gharagozloo, M.; Ostadi, V.; Ghahiri, A.; Roghaei, M.A.; Mehrabian, F.; Andalib, A.A.; Hassanzadeh, A.; Hosseini, H.; Rezaei, A. Variations in T-helper 17 and regulatory T cells during the menstrual cycle in peripheral blood of women with recurrent spontaneous abortion. Int. J. Fert. Steril. 2014, 8, 59. [Google Scholar]
- Wu, L.; Luo, L.H.; Zhang, Y.X.; Li, Q.; Xu, B.; Zhou, G.X.; Luan, H.B.; Liu, Y.S. Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reprod. Biol. Endocrinol. 2014, 12, 74. [Google Scholar]
- Li, N.; Wu, H.; Hang, F.; Zhang, Y.S.; Li, M.J. Women with recurrent spontaneous abortion have decreased 25 (OH) vitamin D and VDR at the fetal-maternal interface. Brazil. J. Med. Biol. Res. 2017, 50, 1–6. [Google Scholar]
- Farshchi, M.; Abdollahi, E.; Saghafi, N.; Hosseini, A.; Fallahi, S.; Rostami, S.; Rostami, P.; Rafatpanah, H.; Habibagahi, M. Evaluation of Th17 and Treg cytokines in patients with unexplained recurrent pregnancy loss. J. Clin. Transl. Res. 2022, 8, 256. [Google Scholar]
- Baqer, N.N.; Saheb, E.J.; Ahmed, N.S. Genetic polymorphism of IL-17A (rs2275913) in Iraqi women with recurrent abortion and its relationship with susceptibility to toxoplasmosis. Meta Gene 2021, 29, 100939. [Google Scholar]
- Al-Dahmoshi, H.O.; Al-Mammori, R.T.; ShareefHasanain, K.I.; Al-Khafagee Noor, S.K. Study of IL-8 and IL-17 levels among certain group of Repeated Spontaneous Abortion Women with or without Toxoplasmosis, Iraq. Int. Res. J. Biol. Sci. 2013, 2, 37–41. [Google Scholar]
- Li, J.; Xu, L.; Zhao, W.; Pan, J.; Lu, J.; Lu, H.; Yan, J.; Weng, J.; Liu, F. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diab./Metabol. Res. Rev. 2022, 38, e3547. [Google Scholar]
- Sha, J.; Liu, F.; Zhai, J.; Liu, X.; Zhang, Q.; Zhang, B. Alteration of Th17 and Foxp3+ regulatory T cells in patients with unexplained recurrent spontaneous abortion before and after the therapy of hCG combined with immunoglobulin. Exp. Ther. Med. 2017, 14, 1114–1118. [Google Scholar]
- Najafi, S.; Hadinedoushan, H.; Eslami, G.; Aflatoonian, A. Association of IL-17A and IL-17 F gene polymorphisms with recurrent pregnancy loss in Iranian women. J. Assist. Reprod. Genet. 2014, 3, 1491–1496. [Google Scholar]
- Padhi, S.; Sarangi, S.; Nayak, N.; Barik, D.; Pati, A.; Panda, A.K. Interleukin 17A rs2275913 polymorphism is associated with susceptibility to systemic lupus erythematosus: A meta and trial sequential analysis. Lupus 2022, 31, 674–683. [Google Scholar]
- Gubina, M.A.; Solovieva, I.G.; Babenko, V.N.; Sokolov, A.V.; Gubina, E.Y. Polymorphism of the Interleukin Genes IL-17A G197A and IL-17F A7488G in Patients with Gastric Cancer in the West Siberian Region. Russ. J. Genet. 2022, 58, 823–828. [Google Scholar]
- Bertol, B.C.; de Araújo, J.N.; de Carvalho, K.T.; Dos Santos, M.G.; Martelli-Palomino, G.; de Figueiredo Feitosa, N.L.; Maciel, L.M.; Silbiger, V.N.; Lucena-Silva, N.; Freitas, J.C.; et al. Polymorphisms at the IL17A and IL17RA Genes are Associated with Prognosis of Papillary Thyroid Carcinoma. Arc. Med. Res. 2022, 53, 163–169. [Google Scholar]
- Wang, W.J.; Hao, C.F.; Qu, Q.L.; Wang, X.; Qiu, L.H.; Lin, Q.D. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum. Reprod. 2010, 25, 2591–2596. [Google Scholar]
- Saifi, B.; Rezaee, S.A.; Tajik, N.; Ahmadpour, M.E.; Ashrafi, M.; Vakili, R.; SoleimaniAsl, S.; Aflatoonian, R.; Mehdizadeh, M. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reprod. Biomed. Online 2014, 29, 481–489. [Google Scholar]
- Badiee, M.; Ghafourian, M.; Ghadiri, A.A.; Salehi, A.M.; Nikbakhat, R.; Chinipardaz, R. Decrease in Regulatory T-cells and Increase in T Helper 17 Cells in Women With Recurrent Spontaneous Abortion. Res. Sq. 2021, 1–15. [Google Scholar] [CrossRef]
- Cai, J.; Li, M.; Huang, Q.; Fu, X.; Wu, H. Differences in cytokine expression and STAT3 activation between healthy controls and patients of unexplained recurrent spontaneous abortion (URSA) during early pregnancy. PLoS ONE 2016, 11, e0163252. [Google Scholar]
- Toldi, G.; Rigó, J., Jr.; Stenczer, B.; Vásárhelyi, B.; Molvarec, A. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am. J. Reprod. Immunol. 2011, 66, 223–229. [Google Scholar]
- Zhang, Z.; Long, S.; Huang, Z.; Tan, J.; Wu, Q.; Huang, O. Regulatory effect of daphnetin on the balance of Th17 and Treg cells in the peripheral blood mononuclear cells from patients with unexplained recurrent pregnancy loss. Cent. Europ. J. Immunol. 2020, 45, 403–408. [Google Scholar]
- Kaminski, V.D.; Ellwanger, J.H.; Matte, M.C.; Savaris, R.F.; Vianna, P.; Chies, J.A. IL-17 blood levels increase in healthy pregnancy but not in spontaneous abortion. Mol. Bio. Rep. 2018, 45, 1565–1568. [Google Scholar]
- Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003, 52, 65–70. [Google Scholar]
- Ouyang, W.; Kolls, J.K.; Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008, 28, 454–467. [Google Scholar]
- Nakashima, A.; Ito, M.; Yoneda, S.; Shiozaki, A.; Hidaka, T.; Saito, S. Circulating and decidual Th17 cell levels in healthy pregnancy. Am. J. Reprod. Immunol. 2010, 63, 104–109. [Google Scholar]
- Lee, J.Y.; Lee, M.; Lee, S.K. Role of endometrial immune cells in implantation. Clin. Experim. Reprod. Med. 2011, 38, 119. [Google Scholar]
- Kitaya, K. Prevalence of chronic endometritis in recurrent miscarriages. Fertil. Steril. 2011, 95, 1156–1158. [Google Scholar]
- McQueen, D.B.; Perfetto, C.O.; Hazard, F.K.; Lathi, R.B. Pregnancy Outcomes in Women with Chronic Endometritis and Recurrent Pregnancy Loss. Fertil. Steril. 2015, 104, 927–931. [Google Scholar]
- Xu, Y.; Mei, J.; Diao, L.; Li, Y.; Ding, L. Chronic endometritis and reproductive failure: Role of syndecan-1. Am. J. Reprod. Immunol. 2020, 84, e13255. [Google Scholar]
- Demirdag, E.; Guler, I.; Cevher Akdulum, M.F.; Sahin, E.; Erdem, O.; Erdem, A.; Erdem, M. Subsequent IVF Outcomes Following Antibiotic Therapy for Chronic Endometritis in Patients with Recurrent Implantation Failure. J. Obstet. Gynaecol. Res. 2021, 47, 4350–4356. [Google Scholar]
- Kitaya, K.; Matsubayashi, H.; Takaya, Y.; Nishiyama, R.; Yamaguchi, K.; Takeuchi, T.; Ishikawa, T. Live Birth Rate Following Oral Antibiotic Treatment for Chronic Endometritis in Infertile Women with Repeated Implantation Failure. Am. J. Reprod. Immunol. 2017, 78, e12719. [Google Scholar]
- Wang, W.-J.; Zhang, H.; Chen, Z.-Q.; Zhang, W.; Liu, X.-M.; Fang, J.-Y.; Liu, F.-J.; Kwak-Kim, J. Endometrial TGF-β, IL-10, IL-17 and Autophagy Are Dysregulated in Women with Recurrent Implantation Failure with Chronic Endometritis. Reprod. Biol. Endocrinol. 2019, 17, 2. [Google Scholar]
- Buzzaccarini, G.; Vitagliano, A.; Andrisani, A.; Santarsiero, C.M.; Cicinelli, R.; Nardelli, C.; Ambrosini, G.; Cicinelli, E. Chronic Endometritis and Altered Embryo Implantation: A Unified Pathophysiological Theory from a Literature Systematic Review. J. Assist. Reprod. Genet. 2020, 37, 2897–2911. [Google Scholar]
- Kitaya, K.; Yasuo, T. Aberrant Expression of Selectin E, CXCL1, and CXCL13 in Chronic Endometritis. Mod. Pathol. 2010, 23, 1136–1146. [Google Scholar]
- Di Pietro, C.; Cicinelli, E.; Guglielmino, M.R.; Ragusa, M.; Farina, M.; Palumbo, M.A.; Cianci, A. Altered Transcriptional Regulation of Cytokines, Growth Factors, and Apoptotic Proteins in the Endometrium of Infertile Women with Chronic Endometritis. Am. J. Reprod. Immunol. 2013, 69, 509–517. [Google Scholar]
- Wu, D.; Kimura, F.; Zheng, L.; Ishida, M.; Niwa, Y.; Hirata, K.; Takebayashi, A.; Takashima, A.; Takahashi, K.; Kushima, R.; et al. Chronic Endometritis Modifies Decidualization in Human Endometrial Stromal Cells. Reprod. Biol. Endocrinol. 2017, 15, 16. [Google Scholar]
- Cicinelli, E.; Vitagliano, A.; Loizzi, V.; De Ziegler, D.; Fanelli, M.; Bettocchi, S.; Nardelli, C.; Trojano, G.; Cicinelli, R.; Minervini, C.F.; et al. Altered Gene Expression Encoding Cytochines, Grow Factors and Cell Cycle Regulators in the Endometrium of Women with Chronic Endometritis. Diagnostics 2021, 11, 471. [Google Scholar]
- Gogacz, M.; Winkler, I.; Bojarska-Junak, A.; Tabarkiewicz, J.; Semczuk, A.; Rechberger, T.; Adamiak, A. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J. Reprod. Immunol. 2016, 117, 39–44. [Google Scholar]
- Liu, Z.; Liu, L.; Zhong, Y.; Cai, M.; Gao, J.; Tan, C.; Han, X.; Guo, R.; Han, L. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosc. 2019, 9, 84. [Google Scholar]
- Abbas, W.A.; Shaheed, H.S. Evaluation of CA-125 and IL-17 in a Sample of Iraqi Women with Endometriosis. Int. J. Drug Deliv. Technol. 2022, 12, 383–386. [Google Scholar]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000; pp. 160–164. [Google Scholar]
- Golovatyuk, K.P. Role of gene polymorphism of IL-4 and IL-17 in recurrent miscarriage, came in art cycles. Reprod. Endocrinol. 2017, 26–31. [Google Scholar]
- Bahadori, M.; Zarei, S.; Zarnani, A.H.; Zarei, O.; Idali, F.; Hadavi, R.; JeddiTehrani, M. IL-6, IL-10 and IL-17 gene polymorphisms in Iranian women with recurrent miscarriage. Iran. J. Immunol. 2014, 11, 97–104. [Google Scholar]
- Zidan, H.E.; Rezk, N.A.; Alnemr, A.A.; Moniem, M.I. Interleukin-17 and leptin genes polymorphisms and their levels in relation to recurrent pregnancy loss in Egyptian females. Immunogenetics 2015, 67, 665–673. [Google Scholar]
- Tatarkova, E.A.; Tuguz, A.R.; Tsikunib, A.A.; Shumilov, D.S.; Smolkov, I.V.; Rudenko, K.A.; Muzhenya, D.V. Gene polymorphisms of IL-1β (C511T), IL-17A (G197A), IL-12B (A1188C), TNFα (G308A) and IL-4 (C589T) associated with threat of early reproductive losses. Med. Immunol. 2020, 21, 1179–1186. [Google Scholar]
- Quan, Y.; Zhou, B.; Wang, Y.; Duan, R.; Wang, K.; Gao, Q.; Shi, S.; Song, Y.; Zhang, L.; Xi, M. Association between IL17 polymorphisms and risk of cervical cancer in Chinese women. Clin. Develop. Immunol. 2012, 2012, 258293. [Google Scholar]
- Wu, W.; Zeng, Y.; Lin, J.; Chen, T.; Xun, Z.; Li, B.; Wang, C.; Qin, X.; Qiu, Y.; Li, Y.; et al. IL-17 and IL-21 polymorphisms in relation to HBV related hepatocellular carcinoma in Chinese Han population. Infect. Genet. Evol. 2021, 87, 104638. [Google Scholar]
- Li, G.; Ma, J.; Zhang, N.; Li, X.; Li, F.; Jiang, Y. The associations between interleukin-17 single-nucleotide polymorphism and colorectal cancer susceptibility: A systematic review and meta-analysis. World J. Surg. Oncol. 2022, 20, 116. [Google Scholar]
- Javadirad, E.; Sadeghi, M.; Oltulu, P.; Sadafi, S. Associations of IL-4, IL-4R, IL-17A, and IL-17F Polymorphisms with Colorectal Cancer Risk: A Meta-Analysis, Meta-Regression, and Trial Sequential Analysis. J. Interf. Cytok. Res. 2022, 42, 203–219. [Google Scholar]
- Shao, M.; Xu, S.; Yang, H.; Xu, W.; Deng, J.; Chen, Y.; Gao, X.; Guan, S.; Xu, S.; Shuai, Z.; et al. Association between IL-17A and IL-17F gene polymorphism and susceptibility in inflammatory arthritis: A meta-analysis. Clin. Immunol. 2020, 213, 108374. [Google Scholar]
- Liao, H.; Huang, Z.; Zhang, J.; Yang, B. Association of genetic polymorphisms in IL-23R and IL-17A with the susceptibility to IgA nephropathy in a Chinese Han population. Gen. Immun. 2022, 23, 33–41. [Google Scholar]
- Zou, L.; Cheng, Y.; Yang, L.; Zhang, F.; Zhao, H.; Nian, L.; Li, Y.; Feng, Y. Association of IL-17A gene polymorphism rs2275913 with the polycystic ovary syndrome in Yunnan Province, China. Eur. J. Obstet. Gynecol. Reprod. Bio. 2022, 271, 27–30. [Google Scholar]
- Nazarian, A.; Hejazian, S.M.; Ahmadian, E.; Vahed, S.Z.; Haghi, M.; Mobasseri, M.; Ardalan, M. IL-17A rs2275913 gene polymorphism in patients with diabetic nephropathy. Immunopathol. Per. 2022, 1–5. [Google Scholar]
- Hu, Y.; Xu, D.; Xia, H.; Zhang, M.; Liang, C. Associations of IL-17A-197G/A and IL-17F 7488T/C polymorphisms with cancer risk in Asians: An updated meta-analysis from 43 studies. Gene 2021, 804, 145901. [Google Scholar]
- Lang, X.; Liu, W.; Hou, Y.; Zhao, W.; Yang, X.; Chen, L.; Yan, Q.; Cheng, W. IL-17A polymorphism (rs2275913) and levels are associated with preeclampsia pathogenesis in Chinese patients. BMC Med. Genom. 2021, 14, 5. [Google Scholar]
- Chen, P.; Li, Y.; Li, L.; Zhang, G.; Zhang, F.; Tang, Y.; Zhou, L.; Yang, Y.; Li, J. Association between the interleukin (IL)-17A rs2275913 polymorphism and rheumatoid arthritis susceptibility: A meta-analysis and trial sequential analysis. J. Int. Med. Res. 2021, 49, 03000605211053233. [Google Scholar]
- Villalpando-Vargas, F.V.; Rivera-Valdés, J.J.; Alvarado-Navarro, A.; Huerta-Olvera, S.G.; Macías-Barragán, J.; Martínez-López, E.; Graciano-Machuca, O. Association between IL-17A, IL-17F and IL-17RA gene polymorphisms and susceptibility to psoriasis and psoriatic arthritis: A meta-analysis. Inflamm. Res. 2021, 70, 1201–1210. [Google Scholar]
- Mortada, M.I.; Shahin, D.; Abousamra, N.; Aladle, D.A.; El-Ashwah, S.; Ghobrial, F.E.; ElBaiomy, M.A.; Soliman, E.A.; Ghannam, M.A. MM-191: Association between IL17A Polymorphism and Clinicopathological Parameters in Egyptian Multiple Myeloma Patients. Clin. Lymph. Myel. Leuk. 2021, 21, S427–S428. [Google Scholar]
- Mazurek-Mochol, M.; Kozak, M.; Malinowski, D.; Safranow, K.; Pawlik, A. IL-17F Gene rs763780 and IL-17A rs2275913 Polymorphisms in Patients with Periodontitis. Int. J. Environ. Res. Public Health 2021, 18, 1081. [Google Scholar]
Buffer | 2 μL |
---|---|
Restriction enzyme (FastDigestion, BioLabs) | EcoNI (1 μL) |
Nuclease-free H2O | 7 μL |
PCR product | 6 μL |
Incubation temperature (Drybath, Thermo Scientific, Korea) | 37 °C |
Incubation duration | 1 h |
PCR product size | 815 bp |
Restriction enzyme cut site | CCTNN/NNNAGG |
Reference SNP cluster ID | rs2275913 |
Restriction digestion products | 815, 529, 286, and 270 bp fragments |
Cytokine | N | Mean | Mean ± SD | SE | Cl (95%) | p-Value | |
---|---|---|---|---|---|---|---|
IL17A | Case | 97 | 73.06 | 73.06.9 ± 35.8 | 3.6 | 7.2 | 0.9741 |
Control | 97 | 73.21 | 73.21 ± 29.9 | 3.04 | 6.0 |
Genotype | RM Patients | Controls | OR (95% CI); p-Value | RR (95% CI) | χ2; Pearson’s p-Value (Overall) | |
---|---|---|---|---|---|---|
(N = 97) | (N = 97) | |||||
Models Inherited | GG | 50 51.50% | 50 51.50% | 1.0 (Reference) | ||
GG vs. GA (heterozygous) | GA | 29 29.90% | 44 45.40% | 1.517 (0.814–2.755); 0.2169 | 1.259 (0.907–1.795) | 13.80; 0.0010 13.80; 0.0032 14.62; 0.0055 |
GG vs. AA (homozygous) | AA | 18 18.60% | 3 3.09% | 0.166 (0.050–0.584); 0.0031 | 0.583 (0.454–0.800) | |
GG vs. GA + AA (dominant) | GA + AA | 47 48.50% | 47 48.50% | 1.00 (0.559–1.787); >0.9999 | 1.00 (0.754–1.329) | |
AA vs. GA + GG (recessive) | GA + GG | 79 81.40% | 94 96.90% | 7.139 (2.177–23.42); 0.0008 | 1.877 (1.385–2.326) | |
Allele | ||||||
G vs. A (allelic/codominant) | G | 129 66.50% | 144 74.20% | 1.0 (Reference) 0.689 (0.446–1.077); 0.119 | 0.836 (0.686–1.033) | 2.781: 0.0954 |
A | 65 33.50% | 50 25.80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Majid, S.; Ali, M.N.; Banday, M.Z.; Taing, S.; Wani, S.; Almuqbil, M.; Alshehri, S.; Shamim, K.; Rehman, M.U. Immunogenetic Role of IL17A Polymorphism in the Pathogenesis of Recurrent Miscarriage. J. Clin. Med. 2022, 11, 7448. https://doi.org/10.3390/jcm11247448
Ali S, Majid S, Ali MN, Banday MZ, Taing S, Wani S, Almuqbil M, Alshehri S, Shamim K, Rehman MU. Immunogenetic Role of IL17A Polymorphism in the Pathogenesis of Recurrent Miscarriage. Journal of Clinical Medicine. 2022; 11(24):7448. https://doi.org/10.3390/jcm11247448
Chicago/Turabian StyleAli, Shafat, Sabhiya Majid, Md. Niamat Ali, Mujeeb Zafar Banday, Shahnaz Taing, Saima Wani, Mansour Almuqbil, Sultan Alshehri, Kashif Shamim, and Muneeb U. Rehman. 2022. "Immunogenetic Role of IL17A Polymorphism in the Pathogenesis of Recurrent Miscarriage" Journal of Clinical Medicine 11, no. 24: 7448. https://doi.org/10.3390/jcm11247448
APA StyleAli, S., Majid, S., Ali, M. N., Banday, M. Z., Taing, S., Wani, S., Almuqbil, M., Alshehri, S., Shamim, K., & Rehman, M. U. (2022). Immunogenetic Role of IL17A Polymorphism in the Pathogenesis of Recurrent Miscarriage. Journal of Clinical Medicine, 11(24), 7448. https://doi.org/10.3390/jcm11247448