Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. PSG
2.3. DNA Extraction
2.4. Genotyping of TERT Gene Polymorphisms
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- (1)
- The SNP of the TERT gene affects phasic SB intensity.
- (2)
- The absence of TERT rs2736100 T allele, male sex, and arterial hypertension are independent risk factors for phasic SB.
- (3)
- Further studies are needed to assess the role of SNP of the TERT gene and TERT activity in SB pathogenesis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lobbezoo, F.; Ahlberg, J.; Raphael, K.G.; Wetselaar, P.; Glaros, A.G.; Kato, T.; Santiago, V.; Winocur, E.; De Laat, A.; De Leeuw, R.; et al. International consensus on the assessment of bruxism: Report of a work in progress. J. Oral Rehabil. 2018, 45, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Wetselaar, P.; Vermaire, E.J.H.; Lobbezoo, F.; Schuller, A.A. The prevalence of awake bruxism and sleep bruxism in the Dutch adolescent population. J. Oral Rehabil. 2021, 48, 143–149. [Google Scholar] [CrossRef]
- Winocur, E.; Uziel, N.; Lisha, T.; Goldsmith, C.; Eli, I. Self-reported bruxism—Associations with perceived stress, motivation for control, dental anxiety and gagging. J. Oral Rehabil. 2011, 38, 3–11. [Google Scholar] [CrossRef]
- Risk Factors for Bruxism—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29533049/ (accessed on 21 December 2021).
- Yap, A.U.J.; Chua, A.P. Sleep bruxism: Current knowledge and contemporary management. J. Conserv. Dent. 2016, 19, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Bader, G.; Lavigne, G. Sleep bruxism; an overview of an oromandibular sleep movement disorder: Review article. Sleep Med. Rev. 2000, 4, 27–43. [Google Scholar] [CrossRef]
- Huynh, N.; Kato, T.; Rompré, P.H.; Okura, K.; Saber, M.; Lanfranchi, P.A.; Montplaisir, J.Y.; Lavigne, G.J. Sleep bruxism is associated to micro-arousals and an increase in cardiac sympathetic activity. J. Sleep Res. 2006, 15, 339–346. [Google Scholar] [CrossRef]
- Martynowicz, H.; Dymczyk, P.; Dominiak, M.; Kazubowska, K.; Skomro, R.; Poreba, R.; Gac, P.; Wojakowska, A.; Mazur, G.; Wieckiewicz, M. Clinical medicine evaluation of intensity of sleep bruxism in arterial hypertension. J. Clin. Med. 2018, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Sleep Bruxism Etiology: The Evolution of a Changing Paradigm—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25633110/ (accessed on 21 December 2021).
- Wieckiewicz, M.; Bogunia-Kubik, K.; Mazur, G.; Danel, D.; Smardz, J.; Wojakowska, A.; Poreba, R.; Dratwa, M.; Chaszczewska-Markowska, M.; Winocur, E.; et al. Genetic basis of sleep bruxism and sleep apnea-response to a medical puzzle. Sci. Rep. 2020, 10, 7497. [Google Scholar] [CrossRef]
- Michalek-Zrabkowska, M.; Wieckiewicz, M.; Smardz, J.; Gac, P.; Poreba, R.; Wojakowska, A.; Mazur, G.; Martynowicz, H. Determination of inflammatory markers, hormonal disturbances, and sleepiness associated with sleep bruxism among adults. Nat. Sci. Sleep 2020, 12, 969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rane, G.; Dai, X.; Shanmugam, M.K.; Arfuso, F.; Samy, R.P.; Lai, M.K.P.; Kappei, D.; Kumar, A.P.; Sethi, G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res. Rev. 2016, 25, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-regulation and roles in cancer formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, P.; Blasco, M.A. Replicating through telomeres: A means to an end. Trends Biochem. Sci. 2015, 40, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Jacome Burbano, M.S.; Gilson, E. Long-lived post-mitotic cell aging: Is a telomere clock at play? Mech. Ageing Dev. 2020, 189, 111256. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Fyhrquist, F.; Saijonmaa, O. Telomere length and cardiovascular aging. Ann. Med. 2012, 44, S138–S142. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, A.; Gibbons, M.A.; Allen, R.J.; Almond, H.; Beaumont, R.N.; Wood, A.R.; Lunnon, K.; Lindsay, M.A.; Wain, L.V.; Tyrrell, J.; et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: A mendelian randomisation study. Lancet Respir. Med. 2021, 9, 285–294. [Google Scholar] [CrossRef]
- Walne, A.J.; Dokal, I. Advances in the understanding of dyskeratosis congenita. Br. J. Haematol. 2009, 145, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Wynchank, D.; Bijlenga, D.; Penninx, B.W.; Lamers, F.; Beekman, A.T.; Kooij, J.J.S.; Verhoeven, J.E. Delayed sleep-onset and biological age: Late sleep-onset is associated with shorter telomere length. Sleep 2019, 42, zsz139. [Google Scholar] [CrossRef]
- Ren, C.-Y.; Liu, P.-P.; Li, J.; Li, Y.-Q.; Zhang, L.; Chen, G.-H.; Dong, F.; Hu, D.; Zhang, M. Changes in telomere length and serum neurofilament light chain levels in female patients with chronic insomnia disorder. J. Clin. Sleep Med. 2021, 9574. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, Z.; Yu, L.; Cao, L.; Zhou, D.; Kan, M.; Li, B.; Zhang, D.; He, L.; Liu, Y. Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur. J. Hum. Genet. 2011, 19, 721–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codd, V.; Mangino, M.; Van Der Harst, P.; Braund, P.S.; Kaiser, M.; Beveridge, A.J.; Rafelt, S.; Moore, J.; Nelson, C.; Soranzo, N.; et al. Common variants near TERC are associated with mean telomere length. Nat. Genet. 2010, 42, 197–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Khaldi, R.; Mojiminiyi, O.; Almulla, F.; Abdella, N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of type 2 diabetes mellitus. PLoS ONE 2015, 10, e0145721. [Google Scholar] [CrossRef]
- Dahlström, J.; Liu, T.; Yuan, X.; Saft, L.; Ghaderi, M.; Bin Wei, Y.; Lavebratt, C.; Li, P.; Zheng, C.; Björkholm, M.; et al. TERT rs2736100 genotypes are associated with differential risk of myeloproliferative neoplasms in Swedish and Chinese male patient populations. Ann. Hematol. 2016, 95, 1825–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, Y.S.; Wen, J.; Bacchetti, S. The human telomerase catalytic subunit hTERT: Organization of the gene and characterization of the promoter. Hum. Mol. Genet. 1999, 8, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Weinrich, S.L.; Pruzan, R.; Ma, L.; Ouellette, M.; Tesmer, V.M.; Holt, S.E.; Bodnar, A.G.; Lichtsteiner, S.; Kim, N.W.; Trager, J.B.; et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 1997, 17, 498–502. [Google Scholar] [CrossRef]
- Nakamura, T.M.; Morin, G.B.; Chapman, K.B.; Weinrich, S.L.; Andrews, W.H.; Lingner, J.; Harley, C.B.; Cech, T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997, 277, 955–959. [Google Scholar] [CrossRef]
- Meyerson, M.; Counter, C.M.; Eaton, E.N.; Ellisen, L.W.; Steiner, P.; Caddle, S.D.; Ziaugra, L.; Beijersbergen, R.L.; Davidoff, M.J.; Qingyun, L.; et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997, 90, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Kilian, A.; Bowtell, D.D.L.; Abud, H.E.; Hime, G.R.; Venter, D.J.; Keese, P.K.; Duncan, E.L.; Reddel, R.R.; Jefferson, R.A. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 1997, 6, 2011–2019. [Google Scholar] [CrossRef]
- Taylor, J.; Tyekucheva, S.; King, D.C.; Hardison, R.C.; Miller, W.; Chiaromonte, F. ESPERR: Learning strong and weak signals in genomic sequence alignments to identify functional elements. Genome Res. 2006, 16, 1596–1604. [Google Scholar] [CrossRef] [Green Version]
- Codd, V.; Nelson, C.P.; Albrecht, E.; Mangino, M.; Deelen, J.; Buxton, J.L.; Hottenga, J.J.; Fischer, K.; Esko, T.; Surakka, I.; et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 2013, 45, 422–427. [Google Scholar] [CrossRef] [Green Version]
- McKay, J.D.; Hung, R.J.; Gaborieau, V.; Boffetta, P.; Chabrier, A.; Byrnes, G.; Zaridze, D.; Mukeria, A.; Szeszenia-Dabrowska, N.; Lissowska, J.; et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 2008, 40, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Zhang, X.Y.; Jin, B. TERT genetic polymorphism rs2736100 was associated with lung cancer: A meta-analysis based on 14,492 subjects. Genet. Test. Mol. Biomark. 2013, 17, 937–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushiroda, T.; Wattanapokayakit, S.; Takahashi, A.; Nukiwa, T.; Kudoh, S.; Ogura, T.; Taniguchi, H.; Kubo, M.; Kamatani, N.; Nakamura, Y. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J. Med. Genet. 2008, 45, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Tsakiri, K.D.; Cronkhite, J.T.; Kuan, P.J.; Xing, C.; Raghu, G.; Weissler, J.C.; Rosenblatt, R.L.; Shay, J.W.; Garcia, C.K. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl. Acad. Sci. USA 2007, 104, 7552–7557. [Google Scholar] [CrossRef] [Green Version]
- Armanios, M.Y.; Chen, J.J.-L.; Cogan, J.D.; Alder, J.K.; Ingersoll, R.G.; Markin, C.; Lawson, W.E.; Xie, M.; Vulto, I.; Phillips, J.A.; et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2007, 356, 1317–1326. [Google Scholar] [CrossRef] [Green Version]
- Spilsbury, A.; Miwa, S.; Attems, J.; Saretzki, G. The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J. Neurosci. 2015, 35, 1659–1674. [Google Scholar] [CrossRef] [Green Version]
- Baruch-Eliyahu, N.; Rud, V.; Braiman, A.; Priel, E. Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes. Sci. Rep. 2019, 9, 18118. [Google Scholar] [CrossRef] [Green Version]
- Wan, T.; Weir, E.J.; Johnson, M.; Korolchuk, V.I.; Saretzki, G.C. Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy. Prog. Neurobiol. 2021, 199, 101953. [Google Scholar] [CrossRef]
- Saretzki, G.; Wan, T. Telomerase in brain: The new kid on the block and its role in neurodegenerative diseases. Biomedicines 2021, 9, 490. [Google Scholar] [CrossRef]
- Flanary, B.E.; Streit, W.J. Telomeres shorten with age in rat cerebellum and cortex in vivo. J. Anti-Aging. Med. 2003, 6, 299–308. [Google Scholar] [CrossRef]
- Caporaso, G.L.; Lim, D.A.; Alvarez-Buylla, A.; Chao, M.V. Telomerase activity in the subventricular zone of adult mice. Mol. Cell. Neurosci. 2003, 23, 693–702. [Google Scholar] [CrossRef]
- Eitan, E.; Tichon, A.; Daniel, G.; Priel, E. Telomerase expression in adult and old mouse Purkinje neurons. Rejuvenation Res. 2012, 15, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Zhang, W.; Zhang, Y.; Zhang, M.; Zhang, Y.; Niu, X.; Zhao, Q.; Liu, Z.; Li, Y.; Diao, A. Caffeine promotes the expression of telomerase reverse transcriptase to regulate cellular senescence and aging. Food Funct. 2021, 12, 2914–2924. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Rhee, J.; Park, J.E.; Lee, D.K.; Choi, C.S.; Kim, J.W.; Lee, H.W.; Song, M.R.; Yoo, H.J.; Chung, C.H.; et al. Overexpression of telomerase reverse transcriptase induces autism-like excitatory phenotypes in mice. Mol. Neurobiol. 2016, 53, 7312–7328. [Google Scholar] [CrossRef]
- Rhee, J.; Park, K.; Kim, K.C.; Shin, C.Y.; Chung, C. Impaired hippocampal synaptic plasticity and enhanced excitatory transmission in a novel animal model of autism spectrum disorders with telomerase reverse transcriptase overexpression. Mol. Cells 2018, 41, 486–494. [Google Scholar] [CrossRef]
- Maluly, M.; Andersen, M.L.; Dal-Fabbro, C.; Garbuio, S.; Bittencourt, L.; de Siqueira, J.T.T.; Tufik, S. Polysomnographic study of the prevalence of sleep bruxism in a population sample. J. Dent. Res. 2013, 92, S97–S103. [Google Scholar] [CrossRef]
- Michalek-Zrabkowska, M.; Wieckiewicz, M.; Macek, P.; Gac, P.; Smardz, J.; Wojakowska, A.; Poreba, R.; Mazur, G.; Martynowicz, H. The relationship between simple snoring and sleep bruxism: A polysomnographic study. Int. J. Environ. Res. Public Health 2020, 17, 8960. [Google Scholar] [CrossRef]
- Han, K.; Wang, C.; Zhong, Z.; Xu, M.; Zou, X.; Yu, B.; Wang, K.; Yao, D. Characterisation of the relationships between rhythmic masticatory muscle activities and limb movements in patients with sleep bruxism. J. Oral Rehabil. 2019, 46, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, L.; Li, Z.; Zhou, D.; Liu, W.; Shen, Q.; Wu, Y.; Zhang, D.; Hu, X.; Wang, T.; et al. A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS ONE 2014, 9, e85043. [Google Scholar] [CrossRef]
- Zgheib, N.K.; Sleiman, F.; Nasreddine, L.; Nasrallah, M.; Nakhoul, N.; Isma’eel, H.; Tamim, H. Short telomere length is associated with aging, central obesity, poor sleep and hypertension in Lebanese individuals. Aging Dis. 2018, 9, 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempaku, P.; Hirotsu, C.; Mazzotti, D.; Xavier, G.; Maurya, P.; Brietzke, E.; Belangero, S.; Poyares, D.; Bittencourt, L.; Tufik, S. Long sleep duration, insomnia, and insomnia with short objective sleep duration are independently associated with short telomere length. J. Clin. Sleep Med. 2018, 14, 2037–2045. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, T.; Wieckiewicz, M.; Smardz, J.; Wojakowska, A.; Michalek-Zrabkowska, M.; Mazur, G.; Martynowicz, H. Sleep structure in sleep bruxism: A polysomnographic study including bruxism activity phenotypes across sleep stages. J. Sleep Res. 2020, 29, e13028. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean | Median | Minimum | Maximum | SD |
---|---|---|---|---|---|
BMI | 28.54 | 28.00 | 20.00 | 54.00 | 5.44 |
Age | 46.27 | 45.50 | 20.00 | 78.00 | 15.49 |
AHI (n/h) | 16.48 | 8.75 | 0.00 | 100.10 | 19.48 |
SL (min) | 22.06 | 15.40 | 0.00 | 112.60 | 21.04 |
WASO (min) | 48.93 | 33.80 | 1.00 | 195.50 | 41.35 |
SE (%) | 82.90 | 85.40 | 52.40 | 98.30 | 10.31 |
N1 (% of TST) | 4.94 | 3.30 | 0.10 | 36.10 | 5.15 |
N2 (% of TST) | 46.68 | 48.20 | 15.20 | 75.80 | 10.09 |
N3 (% of TST) | 25.98 | 25.60 | 2.60 | 54.90 | 10.47 |
REM (% of TST) | 22.42 | 23.10 | 4.10 | 38.40 | 7.65 |
Arousals (n/h) | 5.80 | 3.30 | 0.00 | 51.00 | 8.01 |
Obstructive apneas (n/h) | 5.77 | 0.40 | 0.00 | 76.90 | 13.31 |
Mixed apneas (n/h) | 0.31 | 0.00 | 0.00 | 25.20 | 2.40 |
Central apneas (n/h) | 0.56 | 0.10 | 0.00 | 15.10 | 1.79 |
Cheyne-Stokes breathing (% of TST) | 0.56 | 0.00 | 0.00 | 15.80 | 1.93 |
ODI (n/h) | 16.31 | 9.30 | 0.00 | 83.40 | 18.77 |
Mean SpO2 (%) | 93.39 | 93.75 | 83.30 | 97.30 | 2.42 |
Minimal SpO2 (%) | 84.22 | 85.00 | 54.00 | 95.00 | 7.94 |
Average Desat Drop (% of TST) | 4.31 | 3.65 | 2.10 | 19.80 | 2.23 |
BEI (n/h) | 4.18 | 2.35 | 0.00 | 24.70 | 4.58 |
Phasic BEI (n/h) | 2.35 | 0.75 | 0.00 | 19.30 | 3.39 |
Tonic BEI (n/h) | 1.05 | 0.70 | 0.00 | 6.40 | 1.17 |
Mixed BEI (n/h) | 0.64 | 0.45 | 0.00 | 4.00 | 0.70 |
TERT rs2736100 | TERT rs2853669 | ||||
---|---|---|---|---|---|
Genotype | n | % | Genotype | n | % |
TG | 54 | 48.65 | TT | 63 | 56.76 |
TT | 39 | 35.14 | TC | 41 | 39.94 |
GG | 18 | 16.21 | CC | 7 | 6.3 |
Allele | Allele | ||||
T | 93 | 83.78 | C | 48 | 43.24 |
G | 72 | 64.86 | T | 104 | 93.69 |
SB Parameter | T Allele − | T Allele + | p | G Allele − | G Allele + | p |
---|---|---|---|---|---|---|
BEI (n/h) | 6.57 ± 7.2 | 4.13 ± 6.44 | 0.15 | 4.54 ± 8.99 | 4.52 ± 4.90 | 0.99 |
Phasic BEI (n/h) | 3.97 ± 5.53 | 2.06 ± 2.75 | 0.02 | 2.25 ± 3.33 | 2.44 ± 3.46 | 0.78 |
Tonic BEI (n/h) | 1.30 ± 1.64 | 1.00 ± 1.08 | 0.33 | 0.79 ± 0.68 | 1.19 ± 1.35 | 0.08 |
Mixed BEI (n/h) | 0.87 ± 0.98 | 0.59 ± 0.63 | 0.11 | 0.57 ± 0.54 | 0.67 ± 0.77 | 0.48 |
T Allele + | T Allele − | |
---|---|---|
Phasic BEI ≤ 0.8 | 50 (67%) | 6 (33%) |
Phasic BEI ≥ 0.8 | 43 (46%) | 12 (67%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macek, P.; Wieckiewicz, M.; Poreba, R.; Gac, P.; Bogunia-Kubik, K.; Dratwa, M.; Wojakowska, A.; Mazur, G.; Martynowicz, H. Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism. J. Clin. Med. 2022, 11, 525. https://doi.org/10.3390/jcm11030525
Macek P, Wieckiewicz M, Poreba R, Gac P, Bogunia-Kubik K, Dratwa M, Wojakowska A, Mazur G, Martynowicz H. Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism. Journal of Clinical Medicine. 2022; 11(3):525. https://doi.org/10.3390/jcm11030525
Chicago/Turabian StyleMacek, Piotr, Mieszko Wieckiewicz, Rafal Poreba, Pawel Gac, Katarzyna Bogunia-Kubik, Marta Dratwa, Anna Wojakowska, Grzegorz Mazur, and Helena Martynowicz. 2022. "Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism" Journal of Clinical Medicine 11, no. 3: 525. https://doi.org/10.3390/jcm11030525
APA StyleMacek, P., Wieckiewicz, M., Poreba, R., Gac, P., Bogunia-Kubik, K., Dratwa, M., Wojakowska, A., Mazur, G., & Martynowicz, H. (2022). Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism. Journal of Clinical Medicine, 11(3), 525. https://doi.org/10.3390/jcm11030525