Postural Stability in Single-Leg Quiet Stance in Highly Trained Athletes: Sex and Sport Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrysomallis, C. Balance Ability and Athletic Performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assaiante, C.; Mallau, S.; Viel, S.; Jover, M.; Schmitz, C. Development of postural control in healthy children: A functional approach. Neural Plast. 2005, 12, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiers, H.; Van Dieën, J.; Dekkers, H.; Wittink, H.; Vanhees, L. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance. Sports Med. 2013, 43, 1171–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressel, E.; Yonker, J.C.; Kras, J.; Heath, E.M. Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. J. Athl. Train. 2007, 42, 42. [Google Scholar]
- Davlin, C.D. Dynamic balance in high level athletes. Percept. Mot. Skills 2004, 98, 1171–1176. [Google Scholar] [CrossRef]
- Negahban, H.; Aryan, N.; Mazaheri, M.; Norasteh, A.A.; Sanjari, M.A. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task. Gait Posture 2013, 38, 226–230. [Google Scholar] [CrossRef]
- Thalassinos, M.; Fotiadis, G.; Arabatzi, F.; Isableu, B.; Hatzitaki, V. Sport Skill—Specific expertise biases sensory integration for spatial referencing and postural control. J. Mot. Behav. 2018, 50, 426–435. [Google Scholar] [CrossRef]
- Jastrzębska, A.D. Gender differences in postural stability among 13-year-old alpine skiers. Int. J. Environ. Res. Public Health 2020, 17, 3859. [Google Scholar] [CrossRef]
- Butz, S.M.; Sweeney, J.K.; Roberts, P.L.; Rauh, M.J. Relationships among age, gender, anthropometric characteristics, and dynamic balance in children 5 to 12 years old. Pediatr. Phys. Ther. 2015, 27, 126–133. [Google Scholar] [CrossRef]
- Steindl, R.; Kunz, K.; Schrott-Fischer, A.; Scholtz, A.W. Effect of age and sex on maturation of sensory systems and balance control. Dev. Med. Child Neurol. 2006, 48, 477–482. [Google Scholar] [CrossRef]
- Dorneles, P.P.; Pranke, G.I.; Mota, C.B. Comparison of postural balance between female and male adolescents. Fisioter. Pesq. 2013, 20, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Ulmer, F.; Wong, D. Gender differences in postural stability among children. J. Hum. Kinet. 2012, 33, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.Y.; Lin, W.-H. The influence of gender and somatotype on single-leg upright standing postural stability in children. J. Appl. Biomech. 2007, 23, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6–18 years of age: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214434. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Mamo, C.; Fanì, M.; Saccavino, P.; Rocca, F.; Momenté, M.; Fratta, M. Single stance stability and proprioceptive control in older adults living at home: Gender and age differences. J. Aging Res. 2013, 2013, 561695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błaszczyk, J.W.; Beck, M.; Sadowska, D. Assessment of postural stability in young healthy subjects based on directional features of posturographic data: Vision and gender effects. Acta Neurobiol. Exp. 2014, 74, 433–442. [Google Scholar]
- Roemer, K.; Raisbeck, L. Temporal dependency of sway during single leg stance changes with age. Clin. Biomech. 2015, 30, 66–70. [Google Scholar] [CrossRef]
- Huurnink, A.; Fransz, D.P.; Kingma, I.; de Boode, V.A.; van Dieën, J.H. The assessment of single-leg drop jump landing performance by means of ground reaction forces: A methodological study. Gait Posture 2019, 73, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Kozinc, Ž.; Löfler, S.; Hofer, C.; Carraro, U.; Šarabon, N. Diagnostic balance tests for assessing risk of falls and distinguishing older adult fallers and non-fallers: A systematic review with meta-analysis. Diagnostics 2020, 10, 667. [Google Scholar] [CrossRef]
- Matsuda, S.; Demura, S.; Uchiyama, M. Centre of pressure sway characteristics during static one-legged stance of athletes from different sports. J. Sports Sci. 2008, 26, 775–779. [Google Scholar] [CrossRef]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D. Postural Stability in Athletes: The Role of Age, Sex, Performance Level, and Athlete Shoe Features. Sports 2020, 8, 89. [Google Scholar] [CrossRef]
- Riemann, B.L.; Schmitz, R. The relationship between various modes of single leg postural control assessment. Int. J. Sports Phys. Ther. 2012, 7, 257–266. [Google Scholar] [PubMed]
- Nevitt, M.C.; Cummings, S.R.; Hudes, E.S. Risk Factors for Injurious Falls: A Prospective Study. J. Gerontol. 1991, 46, M164–M170. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Noé, F.; Rivière, T.; Marion, V.; Montoya, R.; Dupui, P. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition. J. Athl. Train. 2006, 41, 172–176. [Google Scholar] [PubMed]
- Kozinc, Ž.; Žitnik, J.; Smajla, D.; Šarabon, N. The difference between squat jump and countermovement jump in 770 male and female participants from different sports. Eur. J. Sport Sci. 2021, 1–24. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Šarabon, N. Bilateral deficit in countermovement jump and its association with change of direction performance in basketball and tennis players. Sport. Biomech. 2021, 1–14. [Google Scholar] [CrossRef]
- Sarabon, N.; Kern, H.; Loefler, S.; Jernej, R. Selection of body sway parameters according to their sensitivity and repeatability. Eur. J. Transl. Myol. 2010, 20, 5. [Google Scholar] [CrossRef]
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef]
- Hertel, J.; Olmsted-Kramer, L.C.; Challis, J.H. Time-to-boundary measures of postural control during single leg quiet standing. J. Appl. Biomech. 2006, 22, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Grace Gaerlan, M.; Alpert, P.T.; Cross, C.; Louis, M.; Kowalski, S. Postural balance in young adults: The role of visual, vestibular and somatosensory systems. J. Am. Acad. Nurse Pract. 2012, 24, 375–381. [Google Scholar] [CrossRef]
- Torres, S.F.; Reis, J.G.; de Abreu, D.C.C. Influence of gender and physical exercise on balance of healthy young adults. Fisioter. Mov. 2014, 27, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Nolan, L.; Grigorenko, A.; Thorstensson, A. Balance control: Sex and age differences in 9- to 16-year-olds. Dev. Med. Child Neurol. 2005, 47, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Duzgun, I.; Kanbur, N.O.; Baltaci, G.; Aydin, T. Effect of Tanner stage on proprioception accuracy. J. Foot Ankle Surg. 2011, 50, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, G.; Galli, D.; Carubbi, C.; Pelosi, A.; Lillia, M.; Gatti, R.; Queirolo, V.; Costantino, C.; Vitale, M.; Saccavini, M. Assessment of body plantar pressure in elite athletes: An observational study. Sport Sci. Health 2013, 9, 13–18. [Google Scholar] [CrossRef]
- Crotts, D.; Thompson, B.; Nahom, M.; Ryan, S.; Newton, R.A. Balance abilities of professional dancers on select balance tests. J. Orthop. Sport. Phys. Ther. 1996, 23, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E.; McIlroy, W.E. The role of limb movements in maintaining upright stance: The “change-in-support” strategy. Phys. Ther. 1997, 77, 488–507. [Google Scholar] [CrossRef]
- Bruyneel, A.V.; Mesure, S.; Paré, J.C.; Bertrand, M. Organization of postural equilibrium in several planes in ballet dancers. Neurosci. Lett. 2010, 485, 228–232. [Google Scholar] [CrossRef]
- Borzucka, D.; Kręcisz, K.; Rektor, Z.; Kuczyński, M. Postural control in top-level female volleyball players. BMC Sports Sci. Med. Rehabil. 2020, 12, 65. [Google Scholar] [CrossRef]
- Horak, F.B.; Henry, S.M.; Shumway-Cook, A. Postural perturbations: New insights for treatment of balance disorders. Phys. Ther. 1997, 77, 517–533. [Google Scholar] [CrossRef]
- Cheng, H.; Law, C.; Pan, H.; Hsiao, Y.; Hu, J.; Chuang, F.; Huang, M. Preliminary results of dancing exercise on postural stability in adolescent females. Kaohsiung J. Med. Sci. 2011, 27, 566–572. [Google Scholar] [CrossRef] [Green Version]
n | Age (years) | Body Height (cm) | Body Mass (kg) | Weekly Training | Years of Training | |
---|---|---|---|---|---|---|
Basketball—M | 107 | 17.4 (2.2) | 189.3 (8.2) | 81.4 (12.9) | 6.4 (1.9) | 6.9 (2.4) |
Basketball—F | 58 | 16.7 (1.6) | 175.2 (5.6) | 70.2 (11.2) | 5.5 (1.3) | 6.4 (2.5) |
Dance—M | 23 | 24.2 (5.9) | 179.0 (4.9) | 71.7 (6.6) | 5.9 (2.2) | 12.0 (4.4) |
Dance—F | 54 | 22.3 (7.0) | 166.9 (5.3) | 55.3 (6.1) | 6.6 (2.6) | 9.9 (4.0) |
Track and Field—M | 21 | 17.8 (2.6) | 180.5 (5.8) | 73.8 (7.9) | 5.4 (1.6) | 6.5 (3.1) |
Track and Field—M | 8 | 17.7 (3.0) | 167.2 (3.7) | 60.3 (5.8) | 5.4 (1.1) | 6.3 (2.2) |
Running—M | 31 | 29.2 (8.8) | 181.2 (5.6) | 77.2 (6.8) | 5.2 (2.5) | 11.0 (8.8) |
Running—F | 18 | 36.9 (10.9) | 166.0 (8.1) | 60.9 (7.6) | 4.0 (1.7) | 7.7 (4.5) |
Tennis—M | 68 | 17.2 (10.4) | 175.0 (11.1) | 65.2 (12.1) | 6.1 (2.8) | 8.9 (3.6) |
Tennis—F | 42 | 15.9 (3.0) | 168.5 (8.4) | 60.0 (9.9) | 6.3 (3.2) | 8.2 (3.9) |
Martial arts—M | 18 | 19.9 (3.1) | 180.3 (6.0) | 75.5 (8.9) | 5.6 (1.3) | 7.7 (2.5) |
Martial arts—F | 17 | 19.7 (3.4) | 169.1 (6.6) | 60.1 (5.1) | 5.1 (1.4) | 7.7 (2.8) |
Speed skating—M | 12 | 16.8 (5.1) | 169.5 (15.5) | 61.3 (16.5) | 5.3 (1.9) | 6.9 (3.4) |
Speed skating—M | 7 | 16.9 (3.4) | 161.1 (8.4) | 57.3 (10.9) | 4.9 (2.0) | 6.0 (3.9) |
Basketball | Dance | Track and Field | Tennis | Martial Arts | Speed Skating | Running | Sport × Sex F; p Value | Sport F; p Value | Sex F; p Value | ||
---|---|---|---|---|---|---|---|---|---|---|---|
CoP velocity (mm/s) | |||||||||||
Total | male | 49.8 ± 12.8 b | 37.2 ± 10.6 ac | 49.1 ± 13.9 b 45.2 ± 10.2 be | 45.1 ± 8.8 | 47.1 ± 8.9 | 44.1 ± 9.7 38.5 ± 13.4 | 44.4 ± 9.5 45.6 ± 14.8 be | 5.01; 0.01 | 5.58; 0.01 | 12.31; 0.01 |
female | 36.3 ± 8.0 | 34.4 ± 6.3 g | 41.3 ± 8.8 b | 31.6 ± 6.8 g | |||||||
AP | male | 31.5 ± 8.7 be 22.1 ± 19.9 | 21.2 ± 6.9 acd 19.9 ± 4.5 dg | 28.9 ± 7.9 b 22.9 ± 4.3 b | 27.7 ± 6.1 ab 25.2 ± 6.0 be | 27.4 ± 4.4 16.9 ± 4.1 dg | 26.2 ± 7.1 | 26.9 ± 6.1 27.6 ± 8.9 be | 5.85; 0.01 | 7.67; 0.01 | 24.44; 0.01 |
female | 19.2 ± 6.7 | ||||||||||
ML | male | 32.2 ± 8.6 24.2 ± 5.8 c | 26.1 ± 7.1 c | 33.6 ± 10.5 b 34.1 ± 9.4 abe | 29.7 ± 6.1 27.4 ± 5.7 | 32.8 ± 7.5 | 30.2 ± 5.9 29.6 ± 10.7 | 30.1 ± 6.9 31.0 ± 10.1 | 3.94; 0.01 | 5.62; 0.01 | 3.68; 0.06 |
female | 24.0 ± 4.6 c | 23.1 ± 5.2 c | |||||||||
CoP amplitude (mm) | |||||||||||
AP | male | 7.1 ± 2.1 bcf | 4.5 ± 1.2 adeg | 5.6 ± 1.5 a | 6.2 ± 1.5 b 5.6 ± 1.3 bef | 6.3 ± 1.2 b 3.6 ± 1.3 d | 5.1 ± 1.8 a 3.0 ± 0.8 d | 6.3 ± 1.7 b 5.5 ± 1.9 | 5.97; 0.01 | 8.17; 0.01 | 21.43; 0.01 |
female | 4.8 ± 1.3 | 4.3 ± 1.3 d | 5.0 ± 1.1 | ||||||||
ML | male | 7.9 ± 2.6 bcf | 4.7 ± 1.6 adeg | 4.6 ± 2.8 adeg | 8.4 ± 2.1 bcf 7.9 ± 2.1 abcefg | 7.3 ± 1.9 bcf 4.1 ± 1.1 d | 4.3 ± 1.8 ade 2.9 ± 1.2 adg | 7.5 ± 1.6 bc 6.7 ± 2.8 bdf | 3.86; 0.01 | 26.37; 0.01 | 7.01; 0.01 |
female | 5.2 ± 1.7 bdf | 3.8 ± 1.4 adg | 4.7 ± 2.0 d | ||||||||
CoP Frequency (Hz) | |||||||||||
AP | male | 4.5± 0.5 cf | 4.7± 0.9 | 5.1± 0.4 ad | 4.5± 0.6 cf 4.4 ± 0.5 fg | 4.3± 0.6 f 4.9 ± 0.9 f | 5.4 ± 1.5 ad | 4.3 ± 0.4 f | 4.51; 0.01 | 10.36; 0.01 | 1.82; 0.18 |
female | 4.7± 0.6 f | 4.7 ± 0.7 f | 4.6 ± 0.6 f | 6.6 ± 2.6 abcdeg | 5.1 ± 0.6 df | ||||||
ML | male | 4.2 ± 0.6 bcf | 5.8 ± 1.5 acdg | 8.0 ± 2.3 abdeg | 3.7 ± 1.1 bcf 3.5 ± 0.9 abcef | 4.6 ± 0.7 cf 5.8 ± 1.2 df | 7.7 ± 2.5 adeg 10.2 ± 3.4 abdeg | 4.2± 0.6 bcf 4.8 ± 0.7 bcg | 2.45; 0.02 | 46.42; 0.01 | 8.22; 0.01 |
female | 5.0 ± 1.1 bcdf | 7.2 ± 3.5 adfg | 7.8 ± 2.4 adg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trajković, N.; Smajla, D.; Kozinc, Ž.; Šarabon, N. Postural Stability in Single-Leg Quiet Stance in Highly Trained Athletes: Sex and Sport Differences. J. Clin. Med. 2022, 11, 1009. https://doi.org/10.3390/jcm11041009
Trajković N, Smajla D, Kozinc Ž, Šarabon N. Postural Stability in Single-Leg Quiet Stance in Highly Trained Athletes: Sex and Sport Differences. Journal of Clinical Medicine. 2022; 11(4):1009. https://doi.org/10.3390/jcm11041009
Chicago/Turabian StyleTrajković, Nebojša, Darjan Smajla, Žiga Kozinc, and Nejc Šarabon. 2022. "Postural Stability in Single-Leg Quiet Stance in Highly Trained Athletes: Sex and Sport Differences" Journal of Clinical Medicine 11, no. 4: 1009. https://doi.org/10.3390/jcm11041009
APA StyleTrajković, N., Smajla, D., Kozinc, Ž., & Šarabon, N. (2022). Postural Stability in Single-Leg Quiet Stance in Highly Trained Athletes: Sex and Sport Differences. Journal of Clinical Medicine, 11(4), 1009. https://doi.org/10.3390/jcm11041009