Anatomical and Neuromuscular Factors Associated to Non-Contact Anterior Cruciate Ligament Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Anthrometric Parameters
2.3. Knee Anatomic Parameters
2.4. Isokinetic Knee Parameters
2.5. Definition of Non-Contact and Contact ACL Rupture
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.K.; Baek, K.H.; Song, K.H.; Kwon, H.S.; Lee, J.M.; Kang, M.I.; Yoon, K.H.; Cha, B.Y.; Son, H.Y.; Lee, K.W. Exercise Treadmill Test in Detecting Asymptomatic Coronary Artery Disease in Type 2 Diabetes Mellitus. Diabetes Metab. J. 2011, 35, 34. [Google Scholar] [CrossRef]
- Rahr-Wagner, L.; Lind, M. The Danish Knee Ligament Reconstruction Registry. Clin. Epidemiol. 2016, 8, 531–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mall, N.A.; Chalmers, P.N.; Moric, M.; Tanaka, M.J.; Cole, B.J.; Bach, B.R.; Paletta, G.A. Incidence and Trends of Anterior Cruciate Ligament Reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L.; et al. Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetters, N.; Weber, A.E.; Wuerz, T.H.; Schub, D.L.; Mandelbaum, B.R. Mechanism of Injury and Risk Factors for Anterior Cruciate Ligament Injury. Oper. Tech. Sports Med. 2016, 24, 2–6. [Google Scholar] [CrossRef]
- Amraee, D.; Alizadeh, M.H.; Minoonejhad, H.; Razi, M.; Amraee, G.H. Predictor Factors for Lower Extremity Malalignment and Non-Contact Anterior Cruciate Ligament Injuries in Male Athletes. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2017, 25, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, E.; Tetsworth, K.; Glatt, V.; Ngcelwane, M.; Keough, N. Medial and Lateral Posterior Tibial Slope Are Independent Risk Factors for Noncontact ACL Injury in Both Men and Women. Orthop. J. Sports Med. 2021, 9, 23259671211015940. [Google Scholar] [CrossRef]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk factors associated with non-contact anterior cruciate ligament injury: A systematic review. Int. J. Sports Phys. Ther. 2018, 13, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.N.; Kilcoyne, K.G.; Dickens, J.F.; Rue, J.-P.; Giuliani, J.; Gwinn, D.; Wilckens, J.H. Predisposing Risk Factors for Non-Contact ACL Injuries in Military Subjects. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2012, 20, 1554–1559. [Google Scholar] [CrossRef]
- Smith, H.C.; Vacek, P.; Johnson, R.J.; Slauterbeck, J.R.; Hashemi, J.; Shultz, S.; Beynnon, B.D. Risk Factors for Anterior Cruciate Ligament Injury: A Review of the Literature-Part 1: Neuromuscular and Anatomic Risk. Sports Health 2012, 4, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Uhorchak, J.M.; Scoville, C.R.; Williams, G.N.; Arciero, R.A.; St Pierre, P.; Taylor, D.C. Risk Factors Associated with Noncontact Injury of the Anterior Cruciate Ligament: A Prospective Four-Year Evaluation of 859 West Point Cadets. Am. J. Sports Med. 2003, 31, 831–842. [Google Scholar] [CrossRef]
- Hughes, G.; Watkins, J. A Risk-Factor Model for Anterior Cruciate Ligament Injury. Sports Med. Auckl. NZ 2006, 36, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Paterno, M.V.; Ford, K.R.; Quatman, C.E.; Hewett, T.E. Rehabilitation after Anterior Cruciate Ligament Reconstruction: Criteria-Based Progression through the Return-to-Sport Phase. J. Orthop. Sports Phys. Ther. 2006, 36, 385–402. [Google Scholar] [CrossRef] [Green Version]
- Beynnon, B.D.; Vacek, P.M.; Newell, M.K.; Tourville, T.W.; Smith, H.C.; Shultz, S.J.; Slauterbeck, J.R.; Johnson, R.J. The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2014, 42, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jaén, T.; López-Alcorocho, J.M.; Rodriguez-Iñigo, E.; Castellán, F.; Hernández, J.C.; Guillén-García, P. The Importance of the Intercondylar Notch in Anterior Cruciate Ligament Tears. Orthop. J. Sports Med. 2015, 3, 2325967115597882. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, M.; Waldén, M. Risk Factors for Acute Knee Injury in Female Youth Football. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2016, 24, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.; Choi, N.-H.; Hwangbo, B.-H.; Victoroff, B.N. An Increased Lateral Femoral Condyle Ratio in Addition to Increased Posterior Tibial Slope and Narrower Notch Index Is a Risk Factor for Female Anterior Cruciate Ligament Injury. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 2021, in press. [Google Scholar] [CrossRef]
- Bayer, S.; Meredith, S.J.; Wilson, K.W.; de Sa, D.; Pauyo, T.; Byrne, K.; McDonough, C.M.; Musahl, V. Knee Morphological Risk Factors for Anterior Cruciate Ligament Injury: A Systematic Review. J. Bone Jt. Surg. Am. 2020, 102, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Kızılgöz, V.; Sivrioğlu, A.K.; Ulusoy, G.R.; Aydın, H.; Karayol, S.S.; Menderes, U. Analysis of the Risk Factors for Anterior Cruciate Ligament Injury: An Investigation of Structural Tendencies. Clin. Imaging 2018, 50, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Jin, Z.-G.; Dong, Q.-R.; Li, L.-B. Anatomical Risk Factors of Anterior Cruciate Ligament Injury. Chin. Med. J. 2018, 131, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Vauhnik, R.; Morrissey, M.C.; Rutherford, O.M.; Turk, Z.; Pilih, I.A.; Pohar, M. Knee Anterior Laxity: A Risk Factor for Traumatic Knee Injury among Sportswomen? Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2008, 16, 823–833. [Google Scholar] [CrossRef]
- Woodford-Rogers, B.; Cyphert, L.; Denegar, C.R. Risk Factors for Anterior Cruciate Ligament Injury in High School and College Athletes. J. Athl. Train. 1994, 29, 343–346. [Google Scholar] [PubMed]
- Ramesh, R.; Von Arx, O.; Azzopardi, T.; Schranz, P.J. The Risk of Anterior Cruciate Ligament Rupture with Generalised Joint Laxity. J. Bone Jt. Surg. Br. 2005, 87, 800–803. [Google Scholar] [CrossRef]
- Loudon, J.K.; Jenkins, W.; Loudon, K.L. The Relationship between Static Posture and ACL Injury in Female Athletes. J. Orthop. Sports Phys. Ther. 1996, 24, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, L.C.; Denegar, C.R.; Buckley, W.E.; Hertel, J. Factors Associated with Anterior Cruciate Ligament Injury: History in Female Athletes. J. Sports Med. Phys. Fit. 2007, 47, 446–454. [Google Scholar]
- Rafeeuddin, R.; Sharir, R.; Staes, F.; Dingenen, B.; George, K.; Robinson, M.A.; Vanrenterghem, J. Mapping Current Research Trends on Neuromuscular Risk Factors of Non-Contact ACL Injury. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2016, 22, 101–113. [Google Scholar] [CrossRef]
- Konishi, Y.; Aihara, Y.; Sakai, M.; Ogawa, G.; Fukubayashi, T. Gamma Loop Dysfunction in the Quadriceps Femoris of Patients Who Underwent Anterior Cruciate Ligament Reconstruction Remains Bilaterally. Scand. J. Med. Sci. Sports 2007, 17, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Söderman, K.; Alfredson, H.; Pietilä, T.; Werner, S. Risk Factors for Leg Injuries in Female Soccer Players: A Prospective Investigation during One out-Door Season. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2001, 9, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Foss, K.D.B.; Liu, C.; Nick, T.G.; Hewett, T.E. The Relationship of Hamstrings and Quadriceps Strength to Anterior Cruciate Ligament Injury in Female Athletes. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2009, 19, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Noncontact Anterior Cruciate Ligament Injuries: Mechanisms and Risk Factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of Noncontact Anterior Cruciate Ligament Injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of Non-Contact Anterior Cruciate Ligament Injuries in Soccer Players. Part 1: Mechanisms of Injury and Underlying Risk Factors. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Pantano, K.J.; White, S.C.; Gilchrist, L.A.; Leddy, J. Differences in Peak Knee Valgus Angles between Individuals with High and Low Q-Angles during a Single Limb Squat. Clin. Biomech. Bristol Avon 2005, 20, 966–972. [Google Scholar] [CrossRef]
- Pangaud, C.; Laumonerie, P.; Dagneaux, L.; LiArno, S.; Wellings, P.; Faizan, A.; Sharma, A.; Ollivier, M. Measurement of the Posterior Tibial Slope Depends on Ethnicity, Sex, and Lower Limb Alignment: A Computed Tomography Analysis of 378 Healthy Participants. Orthop. J. Sports Med. 2020, 8, 2325967119895258. [Google Scholar] [CrossRef] [Green Version]
- Arendt, E.; Dick, R. Knee Injury Patterns among Men and Women in Collegiate Basketball and Soccer. NCAA Data and Review of Literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, Prediction, and Prevention of ACL Injuries: Cut Risk with Three Sharpened and Validated Tools. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of Second ACL Injuries 2 Years After Primary ACL Reconstruction and Return to Sport. Am. J. Sports Med. 2014, 42, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Swärd, P.; Kostogiannis, I.; Roos, H. Risk Factors for a Contralateral Anterior Cruciate Ligament Injury. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2010, 18, 277–291. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Paterno, M.V.; Nick, T.G.; Hewett, T.E. The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes. Am. J. Sports Med. 2008, 36, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Jardin, C.; Chantelot, C.; Migaud, H.; Gougeon, F.; Debroucker, M.J.; Duquennoy, A. Reliability of the KT-1000 arthrometer in measuring anterior laxity of the knee: Comparative analysis with Telos of 48 reconstructions of the anterior cruciate ligament and intra- and interobserver reproducibility. Rev. Chir. Orthop. Reparatrice Appar. Mot. 1999, 85, 698–707. [Google Scholar]
- Robert, H.; Nouveau, S.; Gageot, S.; Gagnière, B. A New Knee Arthrometer, the GNRB: Experience in ACL Complete and Partial Tears. Orthop. Traumatol. Surg. Res. OTSR 2009, 95, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Boyer, P.; Djian, P.; Christel, P.; Paoletti, X.; Degeorges, R. Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: Comparison with Telos in 147 knees. Rev. Chir. Orthop. Reparatrice Appar. Mot. 2004, 90, 757–764. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Bizzini, M.; Rampinini, E.; Cereda, F.; Maffiuletti, N.A. Reliability of Isokinetic Strength Imbalance Ratios Measured Using the Cybex NORM Dynamometer. Clin. Physiol. Funct. Imaging 2008, 28, 113–119. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Webster, K.E.; Yut, L.; Galloway, M.T.; Heidt, R.S.; Kaeding, C.C.; Kremcheck, T.E.; Magnussen, R.A.; Parikh, S.N.; et al. Anterior Cruciate Ligament Injury Risk in Sport: A Systematic Review and Meta-Analysis of Injury Incidence by Sex and Sport Classification. J. Athl. Train. 2019, 54, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Bahr, R.; Holme, I. Risk Factors for Sports Injuries–a Methodological Approach. Br. J. Sports Med. 2003, 37, 384–392. [Google Scholar] [CrossRef]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and Optimal Cut-Point Estimated from Observations Affected by a Lower Limit of Detection. Biom. J. Biom. Z. 2008, 50, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, D.G.; Bland, J.M. Diagnostic Tests 3: Receiver Operating Characteristic Plots. BMJ 1994, 309, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, J. When Can Odds Ratios Mislead? Odds Ratios Should Be Used Only in Case-Control Studies and Logistic Regression Analyses. BMJ 1998, 317, 1155–1156; author reply 1156–1157. [Google Scholar] [CrossRef] [PubMed]
- Van Tiggelen, D.; Wickes, S.; Stevens, V.; Roosen, P.; Witvrouw, E. Effective Prevention of Sports Injuries: A Model Integrating Efficacy, Efficiency, Compliance and Risk-Taking Behaviour. Br. J. Sports Med. 2008, 42, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.E.; Useh, U.; Mtshali, B.F. Q-Angle, Pelvic Width, and Intercondylar Notch Width as Predictors of Knee Injuries in Women Soccer Players in South Africa. Afr. Health Sci. 2012, 12, 174–180. [Google Scholar] [CrossRef] [PubMed]
Sports | Noncontact Group (n = 195) | Contact Group (n = 112) |
---|---|---|
Soccer, n (%) | 79 (40.5%) | 56 (50%) |
Basketball, n (%) | 38 (19.5%) | 12 (10.7%) |
Ski, n (%) | 29 (14.9%) | 8 (7.1%) |
Handball, n (%) | 16 (8.2%) | 6 (5.4%) |
Rugby, n (%) | 5 (2.6%) | 7 (6.3%) |
Other sports, n (%) | 23 (20.5%) | 28 (14.4%) |
Non Contact Group (n = 195) | Contact Group (n = 112) | OR | 95%CI | p | |
---|---|---|---|---|---|
Gender male (n = 206) | 61.2% | 38.8% | 0.73 | 0.44–1.20 | 0.22 |
Gender female (n = 101) | 70.7% | 29.3% | 1.50 | 0.87–2.58 | 0.17 |
Age (years) | 27 ± 9 | 24 ± 8 | 1.04 | 1.01–1.07 | 0.002 |
Weight (kg) | 72 ± 13 | 69 ± 10 | 1.02 | 1.00–1.04 | 0.04 |
Height (cm) | 174 ± 8 | 173 ± 8 | 1.01 | 0.98–1.04 | 0.41 |
BMI (kg/m2) | 23.7 ± 3.6 | 22.9 ± 2.5 | 1.08 | 1.00–1.17 | 0.04 |
Q60 (Nm/kg) | 2.49 ± 0.50 | 2.64 ± 0.45 | 0.53 | 0.33–0.87 | 0.01 |
Q180 (Nm/kg) | 1.60 ± 0.31 | 1.71 ± 0.31 | 0.34 | 0.16–0.73 | 0.006 |
H60 (Nm/kg) | 1.30 ± 0.29 | 1.42 ± 0.29 | 0.25 | 0.11–0.56 | 0.001 |
H180 (Nm/kg) | 0.98 ± 0.22 | 1.07 ± 0.22 | 0.17 | 0.06–0.49 | 0.001 |
H/Q60 (%) | 52.5 ± 8.1 | 54.1 ± 8.2 | 0.09 | 0.006–1.70 | 0.11 |
H/Q180 (%) | 61.6 ± 10.5 | 63.1 ± 9.6 | 0.23 | 0.02–2.3 | 0.21 |
P K VL (mm) | 1.8 ± 2.8 | 0.7 ± 1.7 | 1.24 | 1.09–1.40 | 0.001 |
P K E (°) | 6.2 ± 4.4 | 4.0 ± 4.1 | 1.13 | 1.06–1.19 | 0.001 |
Knee Laxity (mm) | 3.8 ± 1.6 | 3.3 ± 1.6 | 1.19 | 1.03–1.37 | 0.01 |
B | Wald | OR | 95%CI | p | |
---|---|---|---|---|---|
All population | |||||
Age | 0.049 | 10.0 | 1.05 | 1.02–1.08 | 0.001 |
H strength at 180°/s | −1.30 | 5.4 | 0.27 | 0.09–0.80 | 0.01 |
P K E | 0.135 | 19.1 | 1.14 | 1.07–1.21 | 0.001 |
Constant | −0.055 | 0.005 | 0.15 | ||
Men (n = 206) | |||||
Age | 0.054 | 7.76 | 1.01 | 1.01–1.09 | 0.005 |
H strength at 180°/s | −1.56 | 3.89 | 0.04 | 0.04–0.98 | 0.048 |
P K E | 0.136 | 14.0 | 1.06 | 1.06–1.23 | 0.001 |
Constant | 0.065 | 0.003 | 1.06 | ||
Women (n = 101) | |||||
P K VL | 0.244 | 6.66 | 1.27 | 1.06–1.53 | 0.01 |
Constant | 0.238 | 0.72 | 1.18 | ||
Age ≤ 23.5 year (n = 145) | |||||
P K E | 0.088 | 4.37 | 1.09 | 1.01–1.18 | 0.03 |
H strength at 60°/s | −1.26 | 4.74 | 0.28 | 0.09–0.88 | 0.02 |
Constant | 1.55 | 3.00 | 4.75 | ||
BMI ≥ 22.5 kg/m2 (n = 180) | |||||
P K VL | 0.193 | 5.89 | 1.21 | 1.03–1.41 | 0.01 |
P K E | 0.152 | 11.4 | 1.16 | 1.06–1.27 | 0.001 |
Age | 0.056 | 8.26 | 1.05 | 1.01–1.09 | 0.004 |
Constant | −1.98 | 9.1 | 0.13 | ||
KT1000 ≥ 4.5 mm (n = 109) | |||||
H strength at 180°/s | −2.51 | 5.93 | 0.08 | 0.01–0.61 | 0.01 |
Constant | 3.46 | 10.4 | 31 |
ROC Curve Area | 95%CI | Se (%) | Sp (%) | LR+ | LR− | |
---|---|---|---|---|---|---|
P K E = 4 degrees | 0.643 | 0.579–0.708 | 61 | 58.9 | 1.48 | 0.66 |
P K VL = 15 mm | 0.605 | 0.542–0.669 | 41 | 79.5 | 2 | 0.74 |
Age = 23.5 years | 0.602 | 0.538–0.667 | 67.2 | 47.3 | 1.27 | 0.69 |
BMI = 22.5 Kg/m2 | 0.556 | 0.491–0.621 | 60 | 46.4 | 1.12 | 0.86 |
Knee Laxity = 4.5 mm | 0.585 | 0.519–0.650 | 40.5 | 73.2 | 1.51 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dauty, M.; Crenn, V.; Louguet, B.; Grondin, J.; Menu, P.; Fouasson-Chailloux, A. Anatomical and Neuromuscular Factors Associated to Non-Contact Anterior Cruciate Ligament Injury. J. Clin. Med. 2022, 11, 1402. https://doi.org/10.3390/jcm11051402
Dauty M, Crenn V, Louguet B, Grondin J, Menu P, Fouasson-Chailloux A. Anatomical and Neuromuscular Factors Associated to Non-Contact Anterior Cruciate Ligament Injury. Journal of Clinical Medicine. 2022; 11(5):1402. https://doi.org/10.3390/jcm11051402
Chicago/Turabian StyleDauty, Marc, Vincent Crenn, Bastien Louguet, Jérôme Grondin, Pierre Menu, and Alban Fouasson-Chailloux. 2022. "Anatomical and Neuromuscular Factors Associated to Non-Contact Anterior Cruciate Ligament Injury" Journal of Clinical Medicine 11, no. 5: 1402. https://doi.org/10.3390/jcm11051402
APA StyleDauty, M., Crenn, V., Louguet, B., Grondin, J., Menu, P., & Fouasson-Chailloux, A. (2022). Anatomical and Neuromuscular Factors Associated to Non-Contact Anterior Cruciate Ligament Injury. Journal of Clinical Medicine, 11(5), 1402. https://doi.org/10.3390/jcm11051402