Role of New Potential Biomarkers in the Risk of Thromboembolism in Atrial Fibrillation
Abstract
:1. Introduction
2. CHA2DS2-VASc Score
3. ABC Stroke Risk Score
4. Biomarkers
4.1. Clinical Biomarkers
- AF characteristics: type, duration, and burden
- Cardiac imaging:
- o
- Left atrial appendage (LAA) morphology, the position of the LAA orifice, LAA flow velocity
- o
- Left atrium diameter, atrial fibrosis, left atrial strain
- o
- Left ventricle relative wall thickness, left ventricular ejection fraction
- o
- Epicardial fat thickness, left atrium spontaneous echo contrast
- ECG:
- o
- P wave terminal force in lead V1
- o
- P wave duration
- o
- Maximum P wave
- o
- Advanced interatrial block
- Atherosclerosis:
- o
- Carotid intima-media thickness
- o
- Carotid plaques
- o
- Flow-mediated dilation
4.2. Circulating Biomarkers
4.2.1. Cardiac Troponins
4.2.2. BNP and NT-proBNP
4.2.3. D-Dimer
4.2.4. Red Cell Distribution Width
4.2.5. Neutrophil-to-Lymphocyte Ratio
4.2.6. Mean Platelet Volume
4.2.7. Von Willebrand Factor
4.2.8. Plasma Fibrinogen
4.2.9. Cholesterol and Lipoproteins
4.3. Biomarkers of Inflammation
4.3.1. C-Reactive Protein
4.3.2. Uricemia
4.3.3. Soluble CD40L
4.3.4. Homocysteine
4.3.5. GDF-15, TMAO, IL-1ra, IL-6
4.4. Other Biomarkers
4.4.1. Galectin-3
4.4.2. ST-2
4.4.3. Protein Biomarker Discovery Platforms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.B.; Lip, G.Y.; Hansen, M.L.; Hansen, P.R.; Tolstrup, J.S.; Lindhardsen, J.; Selmer, C.; Ahlehoff, O.; Olsen, A.M.; Gislason, G.H.; et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: Nationwide cohort study. BMJ 2011, 342, d124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Yang, P.S.; Yu, H.T.; Jang, E.; Uhm, J.S.; Kim, J.Y.; Pak, H.-N.; Lee, M.-H.; Joung, B.; Lip, G.Y. Age threshold for ischemic stroke risk in atrial fibrillation. Stroke 2018, 49, 1872–1879. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zeng, X.; Xu, L.; Wang, T.; Lin, W.; Li, Y.; Luo, Y.; Luo, B. Optimized stratification of risk factors in and beyond the CHA 2 DS 2 -VASc score to differentiate the real thromboembolic risk in mainland China: A systematic review and meta-analysis. Ann. Palliat. Med. 2020, 9, 4252–4261. [Google Scholar] [CrossRef] [PubMed]
- Golwala, H.; Jackson, L.R., 2nd; Simon, D.N.; Piccini, J.P.; Gersh, B.; Go, A.S.; Hylek, E.M.; Kowey, P.R.; Mahaffey, K.W.; Thomas, L.; et al. Racial/ethnic differences in atrial fibrillation symptoms, treatment patterns, and outcomes: Insights from outcomes registry for better informed treatment for atrial fibrillation registry. Am. Heart J. 2016, 174, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Song, I.U.; Chung, S.W.; Kim, J.S.; Koo, J.; Lee, K.S. Serum D-dimer levels are proportionally associated with left atrial enlargement in patients with an acute ischemic stroke due to non-valvular atrial fibrillation. Intern. Med. 2016, 55, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
- Kodani, E.; Akao, M. Atrial fibrillation and stroke prevention: State of the art—Epidemiology and pathophysiology: New risk factors, concepts and controversies. Eur. Heart J. Suppl. 2020, 22, O1–O13. [Google Scholar] [CrossRef]
- Borre, E.D.; Goode, A.; Raitz, G.; Shah, B.; Lowenstern, A.; Chatterjee, R.; Sharan, L.; Lapointe, N.M.A.; Yapa, R.; Davis, J.K.; et al. Predicting thromboembolic and bleeding event risk in patients with non- valvular atrial fibrillation: A systematic review. Thromb. Haemost. 2018, 118, 2171–2187. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Lindbäck, J.; Alexander, J.H.; Hanna, M.; Held, C.; Hylek, E.M.; Lopes, R.D.; Oldgren, J.; Siegbahn, A.; Stewart, R.A.; et al. ARISTOTLE and STABILITY Investigators. The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 2016, 37, 1582–1590. [Google Scholar] [CrossRef] [Green Version]
- Berg, D.D.; Ruff, C.T.; Jarolim, P.; Giugliano, R.P.; Nordio, F.; Lanz, H.J.; Mercuri, M.F.; Antman, E.M.; Braunwald, E.; Morrow, D.A. Performance of the ABC Scores for Assessing the Risk of Stroke or Systemic Embolism and Bleeding in Patients with Atrial Fibrillation in ENGAGE AF-TIMI 48. Circulation 2019, 139, 760–771. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, L.; Guo, Y.; Sun, H.; Zhang, X.; Bo, Y.; Zhou, X.; Tang, B. A Review of Biomarkers for Ischemic Stroke Evaluation in Patients with Non-valvular Atrial Fibrillation. Front. Cardiovasc. Med. 2021, 8, 682538. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Z.; Oldgren, J.; Siegbahn, A.; Granger, C.B.; Wallentin, L. Biomarkers in atrial fibrillation: A clinical review. Eur. Heart J. 2013, 34, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Z.; Wallentin, L.; Siegbahn, A.; Andersson, U.; Christersson, C.; Ezekowitz, J.; Gersh, B.J.; Hanna, M.; Hohnloser, S.; Horowitz, J.; et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: Insights from the ARISTOTLE trial (Apixaban for the Prevention of Stroke in Subjects with Atrial Fibrillation). J. Am. Coll. Cardiol. 2013, 61, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Vinereanu, D.; Siegbahn, A.; Yusuf, S.; et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: A Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation 2012, 125, 1605–1616. [Google Scholar] [CrossRef] [Green Version]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Murphy, S.A.; Brown, K.; Jarolim, P.; Mercuri, M.; Antman, E.M.; Morrow, D.A. Cardiovascular biomarker score and clinical outcomes in patients with atrial fibrillation: A subanalysis of the ENGAGE AF-TIMI 48 randomized clinical trial. JAMA Cardiol. 2016, 1, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Roldán, V.; Marín, F.; Díaz, J.; Gallego, P.; Jover, E.; Romera, M.; Manzano-Fernández, S.; Casas, T.; Valdés, M.; Vicente, V.; et al. High sensitivity cardiac troponin T and interleukin-6 predict adverse cardiovascular events and mortality in anticoagulated patients with atrial fibrillation. J. Thromb. Haemost. 2012, 10, 1500–1507. [Google Scholar] [CrossRef] [Green Version]
- Broersen, L.H.A.; Stengl, H.; Nolte, C.H.; Westermann, D.; Endres, M.; Siegerink, B.; Scheitz, J.F. Association between high-sensitivity cardiac troponin and risk of stroke in 96 702 individuals: A meta-analysis. Stroke 2020, 51, 1085–1093. [Google Scholar] [CrossRef]
- Roldán, V.; Vílchez, J.A.; Manzano-Fernández, S.; Jover, E.; Gálvez, J.; Puche, C.M.; Valdés, M.; Vicente, V.; Lip, G.Y.; Marin, F. Usefulness of N-terminal pro-B-type natriuretic Peptide levels for stroke risk prediction in anticoagulated patients with atrial fibrillation. Stroke 2014, 45, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Christersson, C.; Wallentin, L.; Andersson, U.; Alexander, J.H.; Ansell, J.; De Caterina, R.; Gersh, B.J.; Granger, C.B.; Hanna, M.; Horowitz, J.; et al. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation–observations from the ARISTOTLE trial. J. Thromb. Haemost. 2014, 12, 1401–1412. [Google Scholar] [CrossRef]
- Mahé, I.; Bergmann, J.F.; Chassany, O.; dit-Sollier, C.B.; Simoneau, G.; Drouet, L. A multicentric prospective study in usual care: D-dimer and cardiovascular events in patients with atrial fibrillation. Thromb. Res. 2012, 129, 693–699. [Google Scholar] [CrossRef]
- Nozawa, T.; Inoue, H.; Hirai, T.; Iwasa, A.; Okumura, K.; Lee, J.D.; Shimizu, A.; Hayano, M.; Yano, K. D-dimer level influences thromboembolic events in patients with atrial fibrillation. Int. J. Cardiol. 2006, 109, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Siegbahn, A.; Oldgren, J.; Andersson, U.; Ezekowitz, M.D.; Reilly, P.A.; Connolly, S.J.; Yusuf, S.; Wallentin, L.; Eikelboom, J.W.; Siegbahn, A. D-dimer and factor VIIa in atrial fibrillation—Prognostic values for cardiovascular events and effects of anticoagulation therapy. A RE-LY substudy. Thromb. Haemost. 2016, 115, 921–930. [Google Scholar] [CrossRef] [PubMed]
- You, L.R.; Tang, M. The association of high D-dimer level with high risk of ischemic stroke in nonvalvular atrial fibrillation patients: A retrospective study. Medicine 2018, 97, e12622. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.J.; Lee, H.S.; Kim, H.M.; Jung, J.H.; Choi, E.K.; Oh, S. Association between red cell distribution width and thromboembolic events in patients with atrial fibrillation. Eur. J. Intern. Med. 2017, 46, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Uthamalingam, S.; Patvardhan, E.A.; Subramanian, S.; Ahmed, W.; Martin, W.; Daley, M.; Capodilupo, R. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure. Am. J. Cardiol. 2011, 107, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Saliba, W.; Barnett-Griness, O.; Elias, M.; Rennert, G. Neutrophil to lymphocyte ratio and risk of a first episode of stroke in patients with atrial fibrillation: A cohort study. J. Thromb. Haemost. 2015, 13, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Chen, S.; Zhu, Y.; Gu, X. Mean platelet volume: A new predictor of ischaemic stroke risk in patients with nonvalvular atrial fibrillation. BMC Cardiovasc. Disord. 2020, 20, 241. [Google Scholar] [CrossRef]
- Lip, G.Y.; Lowe, G.D.; Rumley, A.; Dunn, F.G. Increased markers of thrombogenesis in chronic atrial fibrillation: Effects of warfarin treatment. Br. Heart J. 1995, 73, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Ancedy, Y.; Berthelot, E.; Lang, S.; Ederhy, S.; Boyer-Chatenet, L.; Di Angelantonio, E.; Dufour, L.S.; Etienney, A.; Adavane-Scheublé, S.; Boccara, F.; et al. Is von Willebrand factor associated with stroke and death at midterm in patients with non-valvular atrial fibrillation? Arch. Cardiovasc. Dis. 2018, 111, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Tuttolomondo, A.; Casuccio, A.; Di Raimondo, D.; Di Sciacca, R.; Arnao, V.; Licata, G. Immuno-inflammatory predictors of stroke at follow-up in patients with chronic non-valvular atrial fibrillation (NVAF). Clin. Sci. 2009, 116, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Weymann, A.; Sabashnikov, A.; Ali-Hasan-Al-Saegh, S.; Popov, A.F.; Jalil Mirhosseini, S.; Baker, W.L.; Lotfaliani, M.; Liu, T.; Dehghan, H.; Yavuz, S.; et al. Predictive role of coagulation, fibrinolytic, and endothelial markers in patients with atrial fibrillation, stroke, and thromboembolism: A meta-analysis, meta-regression, systematic review. Med. Sci. Monit. Basic Res. 2017, 23, 97–140. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.C.; Zhang, S.T.; Liu, J.F.; Lin, J.; Yang, T.T.; Zhang, S.H.; Liu, M. Association between fibrinogen and leukoaraiosis in patients with ischemic stroke and atrial fibrillation. J. Stroke Cereb. Dis. 2017, 26, 2630–2637. [Google Scholar] [CrossRef] [PubMed]
- Liles, J.; Liles, J.; Wanderling, C.; Syed, M.; Hoppensteadt, D.; Fareed, J. Increased Level of Thrombotic Biomarkers in Patients with Atrial Fibrillation Despite Traditional and New Anticoagulant Therapy. Clin. Appl. Thromb. Hemost. Novemb. 2016, 22, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Chen, H.; Wen, Z.; Yuan, F.; Ni, H.; Gao, W.; Shen, J.; Li, J.; Lin, Y.; Shan, Y.; et al. Relation of low-density lipoprotein cholesterol to ischemic stroke in patients with nonvalvular atrial fibrillation. Am. J. Cardiol. 2017, 119, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Wei, M.; Shang, L.X.; Lu, Y.M.; Zhang, L.; Li, Y.D.; Zhang, J.-H.; Xing, Q.; Tu-Erhong, Z.K.; Tang, B.-P.; et al. LDLC/HDL-C is associated with ischaemic stroke in patients with non-valvular atrial fibrillation: A case-control study. Lipids Health Dis. 2020, 19, 217. [Google Scholar] [CrossRef]
- Okura, H.; Inoue, H.; Tomon, M.; Nishiyama, S.; Yoshikawa, T. Increased plasma lipoprotein(a) level in cardioembolic stroke with non-valvular atrial fibrillation. Intern. Med. 1998, 37, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dernellis, J.; Panaretou, M. Left atrial function in patients with a high Creactive protein level and paroxysmal atrial fibrillation. Acta Cardiol. 2006, 61, 507–511. [Google Scholar] [CrossRef]
- Lip, G.Y.; Patel, J.V.; Hughes, E.; Hart, R.G. High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: Relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke 2007, 38, 1229–1237. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zheng, R.; Li, H.; Guo, J. Serumuric acid and incident atrial fibrillation: A systematic review and dose-response meta-analysis. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1774–1782. [Google Scholar] [CrossRef]
- Numa, S.; Hirai, T.; Nakagawa, K.; Ohara, K.; Fukuda, N.; Nozawa, T.; Inoue, H. Hyperuricemia and transesophageal echocardiographic thromboembolic risk in patients with atrial fibrillation at clinically low-intermediate risk. Circ. J. 2014, 78, 1600–1605. [Google Scholar] [CrossRef] [Green Version]
- Tarnowski, D.; Poitz, D.M.; Plichta, L.; Heidrich, F.M.; Wiedemann, S.; Ruf, T.; Mierke, J.; Löhn, T.; Jellinghaus, S.; Strasser, R.H.; et al. Comparison of diverse platelet activation markers as indicators for left atrial thrombus in atrial fibrillation. Platelets 2018, 29, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Duygu, H.; Barisik, V.; Kurt, H.; Turk, U.; Ercan, E.; Kose, S. Prognostic value of plasma soluble CD40 ligand in patients with chronic non-valvular atrial fibrillation. Europace 2008, 10, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ay, H.; Arsava, E.M.; Tokgözoglu, S.L.; Ozer, N.; Saribas, O. Hyperhomocysteinemia is associated with the presence of left atrial thrombus in stroke patients with nonvalvular atrial fibrillation. Stroke 2003, 34, 909–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loffredo, L.; Violi, F.; Fimognari, F.L.; Cangemi, R.; Sbrighi, P.S.; Sampietro, F.; Mazzola, G.; Di Lecce, V.N.; D’Angelo, A. The association between hyperhomocysteinemia and ischemic stroke in patients with non-valvular atrial fibrillation. Haematologica 2005, 90, 1205–1211. [Google Scholar] [PubMed]
- Hu, X.F.; Zhan, R.; Xu, S.; Wang, J.; Wu, J.; Liu, X.; Chen, L. Growth differentiation factor 15 is associated with left atrial/left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Clin. Cardiol. 2018, 41, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Dong, Z.; Guo, M.; Shen, Z.; Yin, D.; Hu, S.; Hai, X. Trimethylamine Noxide as a risk marker for ischemic stroke in patients with atrial fibrillation. J. Biochem. Mol. Toxicol. 2019, 33, e22246. [Google Scholar] [CrossRef]
- Yuan, S.; Lin, A.; He, Q.Q.; Burgess, S.; Larsson, S.C. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: A two-sample Mendelian randomization study. Int. J. Cardiol. 2020, 313, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Merino-Merino, A.; Gonzalez-Bernal, J.; Fernandez-Zoppino, D.; Saez-Maleta, R.; Perez-Rivera, J.-A. The Role of Galectin-3 and ST2 in Cardiology: A Short Review. Biomolecules 2021, 11, 1167. [Google Scholar] [CrossRef]
- Tang, Z.; Zeng, L.; Lin, Y.; Han, Z.; Gu, J.; Wang, C.; Zhang, H. Circulating Galectin-3 is associated with left atrial appendage remodelling and thrombus formation in patients with atrial fibrillation. Heart Lung Circ. 2019, 28, 923–931. [Google Scholar] [CrossRef]
- Okar, S.; Kaypakli, O.; Sahin, D.Y.; Koc, M. Fibrosis Marker Soluble ST2 Predicts Atrial Fibrillation Recurrence after Cryoballoon Catheter Ablation of Nonvalvular Paroxysmal Atrial Fibrillation. Korean Circ. J. 2018, 48, 920–929. [Google Scholar] [CrossRef]
Score | IS % Risk (per Year) |
---|---|
0 | 0.78 (0.58–1.04) |
1 | 2.01 (1.70–2.36) |
2 | 3.71 (3.36–4.09) |
3 | 5.92 (5.53–6.34) |
4 | 9.27 (8.71–9.86) |
5 | 15.26 (14.35–16.24) |
6 | 19.74 (18.21–21.41) |
7 | 21.50 (18.75–24.64) |
8 | 22.38 (16.29–30.76) |
9 | 23.64 (10.62–52.61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzo, M.P.; Tufano, A.; Franchini, M. Role of New Potential Biomarkers in the Risk of Thromboembolism in Atrial Fibrillation. J. Clin. Med. 2022, 11, 915. https://doi.org/10.3390/jcm11040915
Pezzo MP, Tufano A, Franchini M. Role of New Potential Biomarkers in the Risk of Thromboembolism in Atrial Fibrillation. Journal of Clinical Medicine. 2022; 11(4):915. https://doi.org/10.3390/jcm11040915
Chicago/Turabian StylePezzo, Mario Piergiulio, Antonella Tufano, and Massimo Franchini. 2022. "Role of New Potential Biomarkers in the Risk of Thromboembolism in Atrial Fibrillation" Journal of Clinical Medicine 11, no. 4: 915. https://doi.org/10.3390/jcm11040915
APA StylePezzo, M. P., Tufano, A., & Franchini, M. (2022). Role of New Potential Biomarkers in the Risk of Thromboembolism in Atrial Fibrillation. Journal of Clinical Medicine, 11(4), 915. https://doi.org/10.3390/jcm11040915