Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice
Abstract
:1. Introduction
1.1. Definition of Blue Light
1.2. Physiology of Color Vision and the Role of Blue Light
1.3. Blue Blocking Glasses and Bipolar Disorder: The Working Hypothesis
1.4. Possible Effects of Circadian Rhythm Disruption on Bipolar Disorder
1.4.1. Sleep Disruption in BD and Circadian Rhythm
1.4.2. The Effects of Stress on Circadian Rhythm in BD
1.4.3. Aging and Circadian Rhythm in BD
1.4.4. Monoamines and Circadian Rhythm in BD
1.4.5. Melatonin and Circadian Rhythm in BD
2. Materials and Methods
3. Results
3.1. Research Data So Far
3.2. Alternates to Present Research
4. Discussion
4.1. Quality of Evidence and Potential Confounders
4.2. Guidelines for Research and Practice
4.2.1. Research Setting
4.2.2. Study Populations
4.2.3. Type, Phase and Age of Onset of BD
4.2.4. Patient History Taking
4.2.5. Recording of Patient Pharmacological Treatment
4.2.6. Laboratory and Neuropsychological Testing
4.2.7. Type of BBGs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ham, W.T.; Mueller, H.A.; Ruffolo, J.J.; Clarke, A.M. Sensitivity of the retina to radiation damage as a function of wavelength. Photochem. Photobiol. 1979, 29, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Jaadane, I.; Boulenguez, P.; Chahory, S.; Carré, S.; Savoldelli, M.; Jonet, L.; Behar-Cohen, F.; Martinsons, C.; Torriglia, A. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic. Biol. Med. 2015, 84, 373–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Lely, S.; Frey, S.; Garbazza, C.; Wirz-Justice, A.; Jenni, O.G.; Steiner, R.; Wolf, S.; Cajochen, C.; Bromundt, V.; Schmidt, C. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J. Adolesc. Health 2015, 56, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, T.E.; Skrede, S.; Fasmer, O.B.; Hamre, B.; Grønli, J.; Lund, A. Blocking blue light during mania–markedly increased regularity of sleep and rapid improvement of symptoms: A case report. Bipolar Disord. 2014, 16, 894–898. [Google Scholar] [CrossRef]
- Sarzetto, A.; Cavallini, M.C.; Fregna, L.; Attanasio, F.; Pacchioni, F.; Barbini, B.; Franchini, L.; Colombo, C. Blue blocking glasses for the treatment of mania in an elderly patient: A case report with polysomnographic findings. Bipolar Disord. 2021, 23, 367–639. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.; Trenton, A.; Campeas, M.; Aziz, R.; Coluccio, M. Blue light mania and trigeminal neuralgia: Case analysis with literature review in the context of organ donation. Bipolar Disord. 2017, 19, 118. [Google Scholar]
- Phelps, J. Dark therapy for bipolar disorder using amber lenses for blue light blockade. Med. Hypotheses 2008, 70, 224–229. [Google Scholar] [CrossRef]
- Esaki, Y.; Takeuchi, I.; Tsuboi, S.; Fujita, K.; Iwata, N.; Kitajima, T. A double-blind, randomized, placebo-controlled trial of adjunctive blue-blocking glasses for the treatment of sleep and circadian rhythm in patients with bipolar disorder. Bipolar Disord. 2020, 22, 739–748. [Google Scholar] [CrossRef]
- Henriksen, T.E.; Skrede, S.; Fasmer, O.B.; Schoeyen, H.; Leskauskaite, I.; Bjørke-Bertheussen, J.; Assmus, J.; Hamre, B.; Grønli, J.; Lund, A. Blue-blocking glasses as additive treatment for mania: A randomized placebo–controlled trial. Bipolar Disord. 2016, 18, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Lamb, T.D.; Collin, S.P.; Pugh, E.N. Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosc. 2007, 8, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liao, H.-W.; Do, M.T.H.; Yau, K.-W. Non-image-forming ocular photoreception in vertebrates. Curr. Opin. Neurobiol. 2005, 15, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuboni, D.; Cramm, S.; Yan, L.; Nunez, A.; Smale, L. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus. J. Biol. Rhythm. 2012, 27, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S. Molecular evolution of vertebrate visual pigments. Prog. Retin. Eye Res. 2000, 19, 385–419. [Google Scholar] [CrossRef]
- Wahl, S.; Engelhardt, M.; Schaupp, P.; Lappe, C.; Ivanov, I.V. The inner clock—Blue light sets the human rhythm. J. Biophotonics 2019, 12, e201900102. [Google Scholar] [CrossRef]
- Do, M.T.H. Melanopsin and the intrinsically photosensitive retinal ganglion cells: Biophysics to behavior. Neuron 2019, 104, 205–226. [Google Scholar] [CrossRef]
- Esaki, Y.; Kitajima, T.; Takeuchi, I.; Tsuboi, S.; Furukawa, O.; Moriwaki, M.; Fujita, K.; Iwata, N. Effect of blue-blocking glasses in major depressive disorder with sleep onset insomnia: A randomized, double-blind, placebo-controlled study. Chronobiol. Int. 2017, 34, 753–761. [Google Scholar] [CrossRef]
- Bender, A.; Werthner, P.; Samuels, C. Sleep optimization improves mood differently between Canadian national team curlers and rowers. Sleep 2017, 40, A293. [Google Scholar] [CrossRef] [Green Version]
- Bennett, S.; Alpert, M.; Kubulins, V.; Hansler, R.L. Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression. Med. Hypotheses 2009, 73, 251–253. [Google Scholar] [CrossRef]
- Çabej, N. Epigenetic Principles of Evolution; Elsevier: London, UK, 2012. [Google Scholar]
- Hedrick, P.W. What is the evidence for heterozygote advantage selection? Trends Ecol. Evol. 2012, 27, 698–704. [Google Scholar] [CrossRef]
- Soria, V.; Martínez-Amorós, È.; Escaramís, G.; Valero, J.; Pérez-Egea, R.; García, C.; Gutiérrez-Zotes, A.; Puigdemont, D.; Bayés, M.; Crespo, J.M.; et al. Differential Association of Circadian Genes with Mood Disorders: CRY1 and NPAS2 are Associated with Unipolar Major Depression and CLOCK and VIP with Bipolar Disorder. Neuropsychopharmacology 2010, 35, 1279–1289. [Google Scholar] [CrossRef]
- Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014, 24, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Loh, D.H.; Dragich, J.M.; Kudo, T.; Schroeder, A.M.; Nakamura, T.J.; Waschek, J.A.; Block, G.D.; Colwell, C.S. Effects of vasoactive intestinal peptide genotype on circadian gene expression in the suprachiasmatic nucleus and peripheral organs. J. Biol. Rhythm. 2011, 26, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, K.S.; Gordon-Smith, K.; Forty, L.; Di Florio, A.; Craddock, N.; Jones, L.; Jones, I. Sleep loss as a trigger of mood episodes in bipolar disorder: Individual differences based on diagnostic subtype and gender. Br. J. Psychiatry 2017, 211, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoffroy, P.; Scott, J.; Boudebesse, C.; Lajnef, M.; Henry, C.; Leboyer, M.; Bellivier, F.; Etain, B. Sleep in patients with remitted bipolar disorders: A meta-analysis of actigraphy studies. Acta Psychiatry Scand. 2015, 131, 89–99. [Google Scholar] [CrossRef]
- Sebela, A.; Kolenic, M.; Farkova, E.; Novak, T.; Goetz, M. Decreased need for sleep as an endophenotype of bipolar disorder: An actigraphy study. Chronobiol. Int. 2019, 36, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 2020, 41, 470–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellenbogen, M.A.; Santo, J.B.; Linnen, A.-M.; Walker, C.-D.; Hodgins, S. High cortisol levels in the offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord. 2010, 12, 77–86. [Google Scholar] [CrossRef]
- Ostiguy, C.S.; Ellenbogen, M.A.; Walker, C.D.; Walker, E.F.; Hodgins, S. Sensitivity to stress among the offspring of parents with bipolar disorder: A study of daytime cortisol levels. Psychol. Med. 2011, 41, 2447–2457. [Google Scholar] [CrossRef]
- Scheiermann, C.; Kunisaki, Y.; Frenette, P.S. Circadian control of the immune system. Nat. Rev. Immunol. 2013, 13, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orozco-Solis, R.; Aguilar-Arnal, L. Circadian Regulation of Immunity through Epigenetic Mechanisms. Front. Cell. Infect. Microbiol. 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brod, S.; Rattazzi, L.; Piras, G.; D’Acquisto, F. ‘As above, so below’ examining the interplay between emotion and the immune system. Immunology 2014, 143, 311–318. [Google Scholar] [CrossRef]
- Pietruczuk, K.; Lisowska, K.A.; Grabowski, K.; Landowski, J.; Witkowski, J.M. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci. Rep. 2018, 8, 3327. [Google Scholar] [CrossRef] [PubMed]
- Pietruczuk, K.; Lisowska, K.A.; Grabowski, K.; Landowski, J.; Cubała, W.J.; Witkowski, J.M. Peripheral blood lymphocyte subpopulations in patients with bipolar disorder type II. Sci. Rep. 2019, 9, 5869. [Google Scholar] [CrossRef] [PubMed]
- Snijders, G.; Mesman, E.; de Wit, H.; Wijkhuijs, A.; Nolen, W.A.; Drexhage, H.A.; Hillegers, M.H.J. Immune dysregulation in offspring of a bipolar parent. Altered serum levels of immune growth factors at adolescent age. Brain Behav. Immun. 2017, 64, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.E.; Leinweber, B.; Drengberg, B.C.; Blaum, C.; Oster, H. Interaction between circadian rhythms and stress. Neurobiol. Stress 2017, 6, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandin, L.D.; Alloy, L.B.; Abramson, L.Y. The social zeitgeber theory, circadian rhythms, and mood disorders: Review and evaluation. Clin. Psychol. Rev. 2006, 26, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.H.; Alloy, L.B.; Abramson, L.Y.; Sylvia, L.G. Social rhythm regularity and the onset of affective episodes in bipolar spectrum individuals. Bipolar Disord. 2008, 10, 520–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, E.; Kupfer, D.J.; Thase, M.E.; Mallinger, A.G.; Swartz, H.A.; Fagiolini, A.M.; Grochocinski, V.; Houck, P.; Scott, J.; Thompson, W.; et al. Two-Year Outcomes for Interpersonal and Social Rhythm Therapy in Individuals with Bipolar I Disorder. Arch. Gen. Psychiatry 2005, 62, 996–1004. [Google Scholar] [CrossRef]
- Soreca, I. Circadian rhythms and sleep in bipolar disorder: Implications for pathophysiology and treatment. Curr. Opin. Psychiatry 2014, 27, 467–471. [Google Scholar] [CrossRef]
- Gold, A.K.; Sylvia, L.G. The role of sleep in bipolar disorder. Nat. Sci. Sleep 2016, 8, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Pagani, L.; St. Clair, P.A.; Teshiba, T.M.; Service, S.K.; Fears, S.C.; Araya, C.; Araya, X.; Bejarano, J.; Ramirez, M.; Castrillón, G.; et al. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proc. Natl. Acad. Sci. USA 2016, 113, E754–E761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roybal, K.; Theobold, D.; Graham, A.; DiNieri, J.A.; Russo, S.J.; Krishnan, V.; Chakravarty, S.; Peevey, J.; Oehrlein, N.; Birnbaum, S. Mania-like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. USA 2007, 104, 6406–6411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, L.B.; Costa, L.G.; Mansur, R.B.; Swardfager, W.; Belangero, S.I.; Grassi-Oliveira, R.; McIntyre, R.S.; Bauer, M.E.; Brietzke, E. The theory of bipolar disorder as an illness of accelerated aging: Implications for clinical care and research. Neurosci. Biobehav. Rev. 2014, 42, 157–169. [Google Scholar] [CrossRef]
- Fries, G.R.; Zamzow, M.J.; Andrews, T.; Pink, O.; Scaini, G.; Quevedo, J. Accelerated aging in bipolar disorder: A comprehensive review of molecular findings and their clinical implications. Neurosci. Biobehav. Rev. 2020, 112, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Timothy, J.W.S.; Klas, N.; Sanghani, H.R.; Al-Mansouri, T.; Hughes, A.T.L.; Kirshenbaum, G.S.; Brienza, V.; Belle, M.D.C.; Ralph, M.R.; Clapcote, S.J.; et al. Circadian Disruptions in the Myshkin Mouse Model of Mania Are Independent of Deficits in Suprachiasmatic Molecular Clock Function. Biol. Psychiatry 2018, 84, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Parekh, P.K.; Becker-Krail, D.; Sundaravelu, P.; Ishigaki, S.; Okado, H.; Sobue, G.; Huang, Y.; McClung, C.A. Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockΔ19 Model of Bipolar Mania. Biol. Psychiatry 2018, 84, 817–826. [Google Scholar] [CrossRef]
- Albrecht, U. Molecular Connections Between Circadian Clocks and Mood-related Behaviors. J. Mol. Biol. 2020, 432, 3714–3721. [Google Scholar] [CrossRef]
- Verma, V. Classic studies on the interaction of cocaine and the dopamine transporter. Clin. Psychopharmacol. Neurosci. 2015, 13, 227. [Google Scholar] [CrossRef] [Green Version]
- Kokkinou, M.; Ashok, A.H.; Howes, O.D. The effects of ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders. Mol. Psychiatry 2018, 23, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Willner, P.; Hale, A.S.; Argyropoulos, S. Dopaminergic mechanism of antidepressant action in depressed patients. J. Affect. Dis. 2005, 86, 37–45. [Google Scholar] [CrossRef]
- Engert, V.; Pruessner, J.C. Dopaminergic and noradrenergic contributions to functionality in ADHD: The role of methylphenidate. Curr. Neuropharm. 2008, 6, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, R.J.; Repass, R.; El-Mallakh, R.S. Effect of dopamine on intracellular sodium: A common pathway for pharmacological mechanism of action in bipolar illness. World J. Biol. Psychiatry 2010, 11, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.; Hawes, D.J.; Hunt, C.; Frankland, A.; Roberts, G.; Mitchell, P.B. Prevalence of psychopathology in bipolar high-risk offspring and siblings: A meta-analysis. Eur. Child Adolesent Psychiatry 2018, 27, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-J.; Mwangi, B.; Passos, I.C.; Bauer, I.E.; Cao, B.; Frazier, T.W.; Zunta-Soares, G.B.; Soares, J.C. Prediction of vulnerability to bipolar disorder using multivariate neurocognitive patterns: A pilot study. Int. J. Bipolar Disord. 2017, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Morin, L.P. Serotonin and the regulation of mammalian circadian rhythmicity. Ann. Med. 1999, 31, 12–33. [Google Scholar] [CrossRef]
- Daut, R.A.; Fonken, L.K. Circadian regulation of depression: A role for serotonin. Front. Neuroendocrinol. 2019, 54, 100746. [Google Scholar] [CrossRef]
- Fang, L.; Yu, Q.; Yin, F.; Yu, J.; Zhang, Y.; Zhang, Y.; Zhu, D.; Qin, X. Combined cortisol and melatonin measurements with detailed parameter analysis can assess the circadian rhythms in bipolar disorder patients. Brain Behav. 2021, 11, e02186. [Google Scholar] [CrossRef]
- Etain, B.; Dumaine, A.; Bellivier, F.; Pagan, C.; Francelle, L.; Goubran-Botros, H.; Moreno, S.; Deshommes, J.; Moustafa, K.; Le Dudal, K.; et al. Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum. Mol. Genet. 2012, 21, 4030–4037. [Google Scholar] [CrossRef] [Green Version]
- Alexis Geoffroy, P.; Etain, B.; Micoulaud Franchi, J.-A.; Bellivier, F.; Ritter, P. Melatonin and melatonin agonists as adjunctive treatments in bipolar disorders. Curr. Pharm. Des. 2015, 21, 3352–3358. [Google Scholar] [CrossRef]
- Fornaro, M.; McCarthy, M.J.; De Berardis, D.; De Pasquale, C.; Tabaton, M.; Martino, M.; Colicchio, S.; Cattaneo, C.I.; D’Angelo, E.; Fornaro, P. Adjunctive agomelatine therapy in the treatment of acute bipolar II depression: A preliminary open label study. Neuropsychiatry Dis. Treat. 2013, 9, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Drews, H.J.; Scott, J.; Langsrud, K.; Vethe, D.; Kallestad, H. Chronobiologically informed inpatient milieu in psychiatric institutions. Lancet Psychiatry 2020, 7, 1013–1014. [Google Scholar] [CrossRef]
- Scott, J.; Langsrud, K.; Goulding, I.R.; Kallestad, H. Let there be blue-depleted light: In-patient dark therapy, circadian rhythms and length of stay. BJPsych Adv. 2021, 27, 73–84. [Google Scholar] [CrossRef]
- Vethe, D.; Scott, J.; Engstrøm, M.; Salvesen, Ø.; Sand, T.; Olsen, A.; Morken, G.; Heglum, H.S.; Kjørstad, K.; Faaland, P.M. The evening light environment in hospitals can be designed to produce less disruptive effects on the circadian system and improve sleep. Sleep 2021, 44, zsaa194. [Google Scholar] [CrossRef] [PubMed]
- Cegla-Schvartzman, F.B.; Ovejero, S.; López-Castroman, J.; Baca-García, E. Diagnostic Stability in Bipolar Disorder: A Narrative Review. Harv. Rev. Psychiatry 2019, 27, 3–14. [Google Scholar] [CrossRef]
- Malhi, G.S.; Outhred, T.; Irwin, L. Bipolar II Disorder Is a Myth. Can. J. Psychiatry 2019, 64, 531–536. [Google Scholar] [CrossRef]
- Bolton, S.; Warner, J.; Harriss, E.; Geddes, J.; Saunders, K.E.A. Bipolar disorder: Trimodal age-at-onset distribution. Bipolar Disord. 2021, 23, 341–356. [Google Scholar] [CrossRef]
- Herane-Vives, A.; Arnone, D.; de Angel, V.; Papadopoulos, A.; Wise, T.; Alameda, L.; Chua, K.-C.; Young, A.H.; Cleare, A.J. Cortisol levels in unmedicated patients with unipolar and bipolar major depression using hair and saliva specimens. Int. J. Bipolar Disord. 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Braun, R.; Kath, W.L.; Iwanaszko, M.; Kula-Eversole, E.; Abbott, S.M.; Reid, K.J.; Zee, P.C.; Allada, R. Universal method for robust detection of circadian state from gene expression. Proc. Natl. Acad. Sci. USA 2018, 115, E9247–E9256. [Google Scholar] [CrossRef] [Green Version]
- Anafi, R.C.; Francey, L.J.; Hogenesch, J.B.; Kim, J. CYCLOPS reveals human transcriptional rhythms in health and disease. Proc. Natl. Acad. Sci. USA 2017, 114, 5312–5317. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, H.S.; Khuu, S.K.; Roy, M. Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions. Clin. Exp. Optom. 2020, 103, 339–346. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Dijk, D.-J.; Kronauer, R.E.; Brown, E.N.; Czeisler, C.A. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000, 526, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Comparetto, R.; Farini, A. Mitigating retinal damage and circadian rhythm modification by blue-blocking spectacles lenses: Evaluation parameters. Eur. Phys. J. Plus 2019, 134, 494. [Google Scholar] [CrossRef]
Study | Design | Patients | Intervention | Outcome Measure | Main Results | Conclusions |
---|---|---|---|---|---|---|
Phelps [7] | Case series | 21 consecutive inpatients | Patients received BBG to wear from 20:00 h to bedtime. All had insomnia. Duration of treatment was undisclosed | Clinical Global Improvement Scale (CGI) score | 52% of patients improved in CGI, most of them (42%) very much so. 38% did not respond | Results were promising but lack of control or placebo limited their significance |
Esaki et al. [8] | RCT | 43 outpatients with BD and insomnia divided in two groups | Research group received BBG and placebo group clear glasses to wear from 20:00 h to bedtime for 2 weeks | Visual Analog Scale (VAS) self-assessment of sleep quality, Morningness–Eveningness Questionnaire, sleep actigraphy, evaluation of mood | No difference in VAS, sleep actigraphy or mood symptoms, improvement in sleep rhythm | BBG may be useful as adjunctive treatment for BD |
Henriksen et al. [9] | RCT | 32 inpatients with BD divided in two groups, after drop-outs 12 patients in the research and 11 patients in the placebo group | Research group received BBG and placebo group clear glasses to wear from 18:00–20:00 h for 1 week | Young Mania Rating Scale (YMRS), actigraphy recording of motor activity | Statistically significant difference in improvement of YMRS score in favor of research group | BBG are effective and feasible as add-on treatment for bipolar mania |
Research Variable | Suggestion |
---|---|
Setting | A clinical setting may be more easily controlled and provides the opportunity for a control population. Naturalistic settings should be organized during the same seasons and locations that do not vary considerably in latitude for all patients. |
Population | Ideally, non-affected siblings of BD patients. If a patient population, then refractory-to-treatment patients and patients with mixed episodes should be examined separately. Include age of onset and duration of untreated and treated disease as confounders if matching on these variables is unfeasible. |
Type of bipolar disorder | Bipolar I or II, provided the diagnosis has already been established and the patient has been followed previously to avoid issues with diagnostic accuracy. |
Phase | Manic or depressive episode in clinical settings, euthymic in naturalistic settings. |
Patient history | Record information on chronotype, social rhythms, seasonality, line of work and work shifts. For patients studied in a naturalistic setting, this information should ideally be unchanged for the duration of the study. Record any changes in this information in clinical patients prior to the latest episode. |
Current treatment | Careful recording of type and duration of current treatment. Record separate variables for lithium, valproate, antidepressants and sedating medication. Record previous treatment regime if discontinued prior to relapse and level of response. |
Laboratory tests | Cortisol secretion via measurement in hair and saliva, saliva melatonin measurement, activity, portable actigraph measurements of sleep quality and latency; new machine-learning approaches may assess circadian time from blood samples and will become widely available in the near future. |
Neuropsychological examination | Measures of impulsivity, risk-taking behavior, arousal, aggression and hostility. |
Type of blue-blocking glasses | Amber lenses for a clinical setting, appropriate lenses that do not skew color perception for naturalistic settings. Any type of lenses should be assessed for its effectiveness. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mylona, I.; Floros, G.D. Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice. J. Clin. Med. 2022, 11, 1380. https://doi.org/10.3390/jcm11051380
Mylona I, Floros GD. Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice. Journal of Clinical Medicine. 2022; 11(5):1380. https://doi.org/10.3390/jcm11051380
Chicago/Turabian StyleMylona, Ioanna, and Georgios D. Floros. 2022. "Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice" Journal of Clinical Medicine 11, no. 5: 1380. https://doi.org/10.3390/jcm11051380
APA StyleMylona, I., & Floros, G. D. (2022). Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice. Journal of Clinical Medicine, 11(5), 1380. https://doi.org/10.3390/jcm11051380