Determinants of Adherence to a “GRADIOR” Computer-Based Cognitive Training Program in People with Mild Cognitive Impairment (MCI) and Mild Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Neuropsychological Assessment
2.4. Computer-Based Cognitive Training (CCT) and Adherence
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Adherence Prediction Model to CCT Program
4. Discussion
4.1. Socio-Demographic Variables and Adherence
4.2. Cognitive Profile and Adherence
4.3. Physical-Health Variables and Adherence
4.4. Psychological Profile and Adherence
4.5. Previous Use of Technology and Adherence
4.6. Strengths and Limitations
4.7. Recommendations and Implications
- Make an adequate neuropsychological evaluation, focused on processes such as the following: attention, WM, numerical reasoning, phonological verbal fluency, and cognitive flexibility. To identify those people with the greatest commitment of these processes and, therefore, carry out a more personalized accompaniment and increase the probability of adherence to the CCT.
- Design personalized CCT plans focused on tasks that involve executive functioning training, specifically in attention, WM, number reasoning, phonological verbal fluency, and cognitive flexibility. Additionally, in turn, modify the level of difficulty of each of the tasks associated with each of the cognitive processes, considering the level and cognitive profile of each of the patients. This will prevent the person from getting bored by the ease of the task or frustrated by its difficulty [74]. In this way, it will be possible to increase the degree of adherence.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADASCog | Alzheimer’s Disease Assessment Scale—Cognitive Sub-scale |
CAMCOG | Cambridge Cognition Examination. |
CCT | Computer-based cognitive training. |
EQ-5D-5L | EuroQol. |
EF | Executive function. |
GDS | Yesavage Geriatric Depression Scale. |
GPs | General Practitioners. |
iCST | Cognitive Stimulation Therapy. |
LVF | Lexical Verbal Fluency. |
MCI | Mild Cognitive Impairment. |
MMSE | Mini-Mental State Exam. |
PwD | People with Dementia. |
RBMT | Rivermead Behavior Memory Test. |
RCT | Randomized clinical trial. |
SVF | Semantic Verbal Fluency. |
TMT | Trail Making Test form A–B. |
WAIS-III | Wechsler Adult Intelligence Scale. |
WM | Working Memory |
Appendix A
Determinants | Test | Sub-Scale | Measure | Measurement Scale |
---|---|---|---|---|
Cognition | MMSE | GCS | Score: 0–30 | |
ADAS-Cog | GCS | Score: 0–70. | ||
70 = Worse or lower cognitive performance | ||||
Memory of words | Memory: Verbal free recall | 10 = maximum number of words not remembered | ||
Word recognition | Memory: verbal recognition | 12 = maximum number of words not remembered | ||
TMT-A | Time | Processing speed | Time (Percentile): 5–95 | |
Mistakes | EF: Selective-sustained attention. Cognitive flexibility. | Mistakes = 0–4. 4 = Maximum number of mistakes | ||
WAIS-III | Total Digits | EF: WM. Auditory immediate memory and attention | Scalar score: 1–19 | |
Digit Symbol | EF: WM and attention | |||
Arithmetic | EF: attention. WM. Numerical reasoning | |||
CAMCOG | Visual Reasoning | FE: Visual abstract reasoning | Score: 0–6. | |
6 = Maximum number of hits | ||||
RBMT | Drawing recognition | Memory: Visual Recognition | Score: 0–10. 10 = Maximum number of hits | |
SVF | EF: Fluency, cognitive flexibility, categorization, and monitoring of performance | Scalar score: 2–18 | ||
LVF-P | ||||
LVF-M | ||||
LVF-R | ||||
Psychological | GDS | Depression level | Score: 0–15 points. | |
15 = maximum symptoms of depression | ||||
Motivation | Attend | Do you need someone to encourage you to attend GRADIOR? | Score: 1–5. 1 = Nothing. 2 = Something. 3 = I am not sure. 4 = Quite a lot. 5 = A lot | |
Expectations | Memory | I think GRADIOR will help my memory? | ||
Quality of Life | Do I think my quality of life will improve after GRADIOR? | |||
Free time | Do I think that the workshop with GRADIOR will occupy my time in a pleasant way? | |||
Relating | I would like to meet new people in the workshop with GRADIOR? | |||
physical health | EQ-5D-5L | Mobility | Subjective perception of mobility problems | Score: 1–5. 1 = I have no problems. 2 = minor problems. 3 = moderate problems. 4 = serious problems. 5 = I cannot |
Self-Care | Subjective perception of problems bathing and dressing | |||
Everyday Activities | Subjective perception of problems to perform DLA | |||
Pain/Discomfort | Subjective perception of pain or discomfort | |||
Anxiety/Depression | Subjective perception of depression or anxiety | |||
Health Condition | Subjective perception of general health status | Score: 0–100. 100 = Excellent health | ||
Technology | Prior Use of Technology | 1 = yes. 2 = No |
References
- Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to dementia. Alzheimer’s Dis. Int. Lond. 2019. [Google Scholar]
- Nousia, A.; Siokas, V.; Aretouli, E.; Messinis, L.; Aloizou, A.-M.; Martzoukou, M.; Karala, M.; Koumpoulis, C.; Nasios, G.; Dardiotis, E. Beneficial Effect of Multidomain Cognitive Training on the Neuropsychological Performance of Patients with Early-Stage Alzheimer’s Disease. Neural Plast. 2018, 2018, 2845176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukontapol, C.; Kemsen, S.; Chansirikarn, S.; Nakawiro, D.; Kuha, O.; Taemeeyapradit, U. The effectiveness of a cognitive training program in people with mild cognitive impairment: A study in urban community. Asian J. Psychiatr. 2018, 35, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Arlt, S.; Lindner, R.; Rösler, A.; von Renteln-Kruse, W. Adherence to medication in patients with dementia: Predictors and strategies for improvement. Drugs Aging 2008, 25, 1033–1047. [Google Scholar] [CrossRef]
- Coley, N.; Ngandu, T.; Lehtisalo, J.; Soininen, H.; Vellas, B.; Richard, E.; Kivipelto, M.; Andrieu, S. Adherence to multidomain interventions for dementia prevention: Data from the FINGER and MAPT trials. Alzheimers Dement. 2019, 15, 729–741. [Google Scholar] [CrossRef]
- Sabaté, E. Adherence to Long-Term Therapies: Evidence for Action; World Health Organization, Ed.; World Health Organization: Ginebra, Switzerland, 2003. [Google Scholar]
- Cramer, J.A.; Roy, A.; Burrell, A.; Fairchild, C.J.; Fuldeor, M.J.; Ollendorf, D.A.; Wong, P.K. Medication compliance and persistence: Terminology and definitions. Value Health 2008, 11, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Dilla, T.; Valladares, A.; Lizán, L.; Sacristán, J.A. Treatment adherence and persistence: Causes, consequences and improvement strategies. Aten Primaria 2009, 41, 342–348. [Google Scholar] [CrossRef] [Green Version]
- SEFAC. Plan. de Adherencia al Tratamiento. Uso Responsable del Medicamento. 2010. Available online: https://www.sefac.org/sites/default/files/sefac2010/private/documentos_sefac/documentos/farmaindustria-plan-de-adherencia.pdf (accessed on 18 February 2022).
- Alfian, S.D.; Denig, P.; Coelho, A.; Hak, E. Pharmacy-based predictors of non-adherence, non-persistence and reinitiation of antihypertensive drugs among patients on oral diabetes drugs in the Netherlands. PLoS ONE 2019, 14, e0225390. [Google Scholar] [CrossRef]
- Scase, M.; Marandure, B.; Hancox, J.; Kreiner, K.; Hanke, S.; Kropf, J. Development of and Adherence to a Computer-Based Gamified Environment Designed to Promote Health and Wellbeing in Older People with Mild Cognitive Impairment. Stud. Health Technol. Inform. 2017, 236, 348–355. [Google Scholar]
- Evers, A.; Klusmann, V.; Schwarzer, R.; Heuser, I. Improving cognition by adherence to physical or mental exercise: A moderated mediation analysis. Aging Ment. Health 2011, 15, 446–455. [Google Scholar] [CrossRef]
- Park, J.H.; Liao, Y.; Kim, D.R.; Song, S.; Lim, J.H.; Park, H.; Lee, Y.; Park, K.W. Feasibility and Tolerability of a Culture-Based Virtual Reality (VR) Training Program in Patients with Mild Cognitive Impairment: A Randomized Controlled Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 3030. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.; Hokkanen, L.; Bäckman, L.; Stigsdotter-Neely, A.; Hänninen, T.; Paajanen, T.; Soininen, H.; Kivipelto, M.; Ngandu, T. Computer-based cognitive training for older adults: Determinants of adherence. PLoS ONE 2019, 14, e0219541. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Oh, K.; Yoo, S.; Kim, E.; Ahn, K.-H.; Son, Y.-J.; Kim, T.H.; Chi, Y.K.; Kim, K.W. Development of the ubiquitous spaced retrieval-based memory advancement and rehabilitation training program. Psychiatry Investig. 2014, 11, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson-Hanley, C.; Arciero, P.J.; Barcelos, N.; Nimon, J.; Rocha, T.; Thurin, M.; Maloney, M. Executive function and self-regulated exergaming adherence among older adults. Front. Hum. Neurosci. 2014, 8, 989. [Google Scholar] [CrossRef] [Green Version]
- de Wit, L.; Chandler, M.; Amofa, P.; DeFeis, B.; Mejia, A.; O’Shea, D.; Locke, D.; Fields, J.; Smith, G. Memory Support System training in mild cognitive impairment: Predictors of learning and adherence. Neuropsychol. Rehabil. 2019, 31, 210–220. [Google Scholar] [CrossRef]
- Tedim Cruz, V.; Pais, J.; Alves, I.; Ruano, L.; Mateus, C.; Barreto, R.; Bento, V.; Colunas, M.; Rocha, N.; Coutinho, P. Web-based cognitive training: Patient adherence and intensity of treatment in an outpatient memory clinic. J. Med. Internet Res. 2014, 16, e122. [Google Scholar] [CrossRef]
- Orrell, M.; Yates, L.; Leung, P.; Kang, S.; Hoare, Z.; Whitaker, C.; Burns, A.; Knapp, M.; Leroi, I.; Moniz-Cook, E.; et al. The impact of individual Cognitive Stimulation Therapy (iCST) on cognition, quality of life, caregiver health, and family relationships in dementia: A randomised controlled trial. PLoS Med. 2017, 14, e1002269. [Google Scholar] [CrossRef] [Green Version]
- Vanova, M.; Irazoki, E.; García-Casal, J.A.; Martínez-Abad, F.; Botella, C.; Shiells, K.R.; Franco-Martín, M.A. The effectiveness of ICT-based neurocognitive and psychosocial rehabilitation programmes in people with mild dementia and mild cognitive impairment using GRADIOR and ehcoBUTLER: Study protocol for a randomised controlled trial. Trials 2018, 19, 100. [Google Scholar] [CrossRef] [Green Version]
- Diaz Baquero, A.A.; Franco-Martín, M.A.; Parra Vidales, E.; Toribio-Guzmán, J.M.; Bueno-Aguado, Y.; Martínez Abad, F.; Perea Bartolomé, M.V.; Asl, A.M.; van der Roest, H.G. The Effectiveness of GRADIOR: A Neuropsychological Rehabilitation Program for People with Mild Cognitive Impairment and Mild Dementia. Results of a Randomized Controlled Trial After 4 and 12 Months of Treatment. J. Alzheimer’s Dis. 2022, 86, 1–17. [Google Scholar] [CrossRef]
- Franco-Martín, M.A. Evaluation of GRADIOR, a neuropsychological rehabilitation programme for people with mild dementia and mild cognitive impairment. ISRCTN Registry 2017. [Google Scholar] [CrossRef]
- Petersen, R.C. Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 2011, 364, 2227–2234. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Blesa, R.; Pujol, M.; Aguilar, M. Clinical Validity of the“Mini-Mental State” for Spanish speaking communities. Neuropsychologia 2001, 39, 1150–1157. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Rosen, W.G.; Mohs, R.C.; Davis, K.L. A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 1984, 141, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2004, 19, 203–214. [Google Scholar] [CrossRef]
- Wechsler, D. WAIS-III administration and scoring manual. Psychol. Corp. 1997. [Google Scholar]
- Wilson, B.; Cockburn, J.; Baddeley, A.; Hiorns, R. The development and validation of a test battery for detecting and monitoring everyday memory problems. J. Clin. Exp. Neuropsychol. 1989, 11, 855–870. [Google Scholar] [CrossRef]
- Roth, M.; Tym, E.; Mountjoy, C.Q.; Huppert, F.A.; Hendrie, H.; Verma, S.; Goddard, R. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br. J. Psychiatry J. Ment. Sci. 1986, 149, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Benton, A.L. Differential behavioral effects in frontal lobe disease. Psychology 1968, 6, 53–60. [Google Scholar] [CrossRef]
- Sheikh, J.I.; Yesavage, J.A. Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clin. Gerontol. 1986, 5, 165–173. [Google Scholar] [CrossRef]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toribio-Guzmán, J.M.; Vidales, E.P.; Rodríguez, M.J.V.; Aguado, Y.B.; Bartolomé, M.T.C.; Franco-Martin, M. Rehabilitación cognitiva por ordenador en personas mayores: Programa gradior. Ed. Univ. De Salamanca 2018, 24, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Franco-Martin, M.A.; Diaz-Baquero, A.A.; Bueno-Aguado, Y.; Cid-Bartolomé, M.T.; Parra Vidales, E.; Perea Bartolomé, M.V.; de la Torre Díez, I.; van der Roest, H.G. Computer-based cognitive rehabilitation program GRADIOR for mild dementia and mild cognitive impairment: New features. BMC J. BMC Med. Inform. Decis. Mak. 2020, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Franco-Martín, M.; Palau, F.G.; Ruiz, Y.; Vargas, E.; Solis, A.; Mellado, J.G.; Bartolomé, L. Usability of a cognitive (gradior) and physical training program based in new software technologies in patients with mild dementia, mild cognitive impairment and healthy elderly people: Long Lasting Memories preliminary findings. Neurosci. Lett. 2011, 500, e6. [Google Scholar] [CrossRef]
- Góngora Alonso, S.; Toribio Guzmán, J.M.; Sainz de Abajo, B.; Muñoz Sánchez, J.L.; Martín, M.F.; de la Torre Díez, I. Usability evaluation of the eHealth Long Lasting Memories program in Spanish elderly people. Health Inform. J. 2019, 26, 1728–1741. [Google Scholar] [CrossRef] [Green Version]
- Irazoki, E.; Sánchez-Gómez, M.C.; Contreras-Somoza, L.M.; Toribio-Guzmán, J.M.; Martín-Cilleros, M.V.; Verdugo-Castro, S.; Jenaro-Río, C.; Franco-Martín, M.A. A Qualitative Study of the Cognitive Rehabilitation Program GRADIOR for People with Cognitive Impairment: Outcomes of the Focus Group Methodology. J. Clin. Med. 2021, 10, 859. [Google Scholar] [CrossRef]
- Heesch, K.C.; Mâsse, L.C.; Dunn, A.l.; Frankowski, R.F.; Mullen, P.D. Does adherence to a lifestyle physical activity intervention predict changes in physical activity? J. Behav Med. 2003, 26, 333–348. [Google Scholar] [CrossRef]
- Sjösten, N.M.; Salonoja, M.; Piirtola, M.; Vahlberg, T.J.; Isoaho, R.; Hyttinen, H.K.; Aarnio, P.T.; Kivelä, S.-L. A multifactorial fall prevention programme in the community-dwelling aged: Predictors of adherence. Eur. J. Public Health 2007, 17, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Leslie, S.R.; Gwadry-Sridhar, F.; Thiebaud, P.; Patel, B.V. Calculating medication compliance, adherence and persistence in administrative pharmacy claims databases. Pharm. Program. 2008, 1, 13–19. [Google Scholar] [CrossRef]
- IBM-Corp. IBM SPSS Statistics for Windows 25.0; IBM-Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Moore, V.; Cahill, S. Diagnosis and disclosure of dementia--a comparative qualitative study of Irish and Swedish General Practitioners. Aging Ment. Health 2013, 17, 77–84. [Google Scholar] [CrossRef]
- Maseda, A.; Millán-Calenti, J.C.; Lorenzo-López, L.; Núñez-Naveira, L. Efficacy of a computerized cognitive training application for older adults with and without memory impairments. Aging Clin. Exp. Res. 2013, 25, 411–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatil, E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front. Aging Neurosci. 2013, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagwell, D.; West, R. Assessing compliance: Active versus inactive trainees in a memory intervention. Clin. Interv. Aging 2008, 3, 371–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traykov, L.; Raoux, N.; Latour, F.; Gallo, L.; Hanon, O.; Baudic, S.; Bayle, C.; Wenisch, E.; Remy, P.; Rigaud, A.S. Executive functions deficit in mild cognitive impairment. Cogn. Behav. Neurol. 2007, 20, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainville, C.; Amieva, H.; Lafont, S.; Dartigues, J.F.; Orgogozo, J.M.; Fabrigoule, C. Executive function deficits in patients with dementia of the Alzheimer’s type: A study with a Tower of London task. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2002, 17, 513–530. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, G.; Panza, F.; Sancarlo, D.; Addante, F.; Solfrizzi, V.; Cantarini, C.; Mangiacotti, A.; Lauriola, M.; Cascavilla, L.; Paris, F.; et al. Executive Dysfunction Detected with the Frontal Assessment Battery in Alzheimer’s Disease Versus Vascular Dementia. J. Alzheimer’s Dis. 2018, 62, 699–711. [Google Scholar] [CrossRef]
- Baudic, S.; Barba, G.D.; Thibaudet, M.C.; Smagghe, A.; Remy, P.; Traykov, L. Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2006, 21, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Mansbach, W.E.; Mace, R.A. Predicting Functional Dependence in Mild Cognitive Impairment: Differential Contributions of Memory and Executive Functions. Gerontologist 2019, 59, 925–935. [Google Scholar] [CrossRef]
- Hyer, L.; Scott, C.; Atkinson, M.M.; Mullen, C.M.; Lee, A.; Johnson, A.; McKenzie, L.C. Cognitive Training Program to Improve Working Memory in Older Adults with MCI. Clin. Gerontol. 2016, 39, 410–427. [Google Scholar] [CrossRef]
- Vermeij, A.; Claassen, J.A.; Dautzenberg, P.L.; Kessels, R.P. Transfer and maintenance effects of online working-memory training in normal ageing and mild cognitive impairment. Neuropsychol. Rehabil. 2016, 26, 783–809. [Google Scholar] [CrossRef]
- Lam, L.C.; Chan, W.C.; Leung, T.; Fung, A.W.; Leung, E.M. Would older adults with mild cognitive impairment adhere to and benefit from a structured lifestyle activity intervention to enhance cognition?: A cluster randomized controlled trial. PLoS ONE 2015, 10, e0118173. [Google Scholar] [CrossRef] [Green Version]
- Tolea, M.I.; Morris, J.C.; Galvin, J.E. Trajectory of Mobility Decline by Type of Dementia. Alzheimer Dis. Assoc. Disord. 2016, 30, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigler, K.L.; Blomeke, K.; Shatil, E.; Weintraub, S.; Reber, P.J. Preliminary evidence for the feasibility of at-home online cognitive training with older adults. Gerontechnology 2013, 12, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, J.; Shubert, T.; Fogarty, K.; Chase, C. The Impact of a Home-Based Computerized Cognitive Training Intervention on Fall Risk Measure Performance in Community Dwelling Older Adults, a Pilot Study. J. Nutr. Health Aging 2016, 20, 138–145. [Google Scholar] [CrossRef]
- Heins, P.; Boots, L.M.M.; Koh, W.Q.; Neven, A.; Verhey, F.R.J.; de Vugt, M.E. The Effects of Technological Interventions on Social Participation of Community-Dwelling Older Adults with and without Dementia: A Systematic Review. J. Clin. Med. 2021, 10, 2308. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Bruno, Á.C.; García-Casal, J.A.; Csipke, E.; Jenaro-Río, C.; Franco-Martín, M. ICT-based applications to improve social health and social participation in older adults with dementia. A systematic literature review. Aging Ment. Health 2017, 21, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco Martín, M.A.; Criado, C.H.; Orihuela-Villameriel, T.; Bueno-Aguado, Y. Intervención Psicoterapéutica en Afectados de Enfermedad de Alzheimer con Deterioro Leve; IMSERSO: Madrid, Spain, 2002. [Google Scholar]
- Szatloczki, G.; Hoffmann, I.; Vincze, V.; Kalman, J.; Pakaski, M. Speaking in Alzheimer’s Disease, is That an Early Sign? Importance of Changes in Language Abilities in Alzheimer’s Disease. Front. Aging Neurosci. 2015, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Klimova, B.; Maresova, P. Computer-Based Training Programs for Older People with Mild Cognitive Impairment and/or Dementia. Front. Hum. Neurosci. 2017, 11, 262. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.J.; Bang, H.J.; Lee, K.M.; Kong, H.H.; Seo, H.S.; Oh, M.; Bang, M. A comparison of the effects between 2 computerized cognitive training programs, Bettercog and COMCOG, on elderly patients with MCI and mild dementia: A single-blind randomized controlled study. Medicine 2018, 97, e13007. [Google Scholar] [CrossRef]
- Bahar-Fuchs, A.; Webb, S.; Bartsch, L.; Clare, L.; Rebok, G.; Cherbuin, N.; Anstey, K.J. Tailored and Adaptive Computerized Cognitive Training in Older Adults at Risk for Dementia: A Randomized Controlled Trial. J. Alzheimers Dis. 2017, 60, 889–911. [Google Scholar] [CrossRef]
- Gates, N.J.; Rutjes, A.W.S.; Di Nisio, M.; Karim, S.; Chong, L.Y.; March, E.; Martínez, G.; Vernooij, R.W.M. Computerised cognitive training for 12 or more weeks for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst. Rev. 2020, 2020, CD012277. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Twamley, E.W. Cognitive rehabilitation therapies for Alzheimer’s disease: A review of methods to improve treatment engagement and self-efficacy. Neuropsychol. Rev. 2013, 23, 48–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Golino, M.T.; Flores-Mendoza, C.E. Development of a cognitive training program for the elderly. Rev. Bras. Geriatr. Gerontol. Rio De JaneiRo 2016, 19, 769–785. [Google Scholar] [CrossRef] [Green Version]
- Gaitán, A.; Garolera, M.; Cerulla, N.; Chico, G.; Rodriguez-Querol, M.; Canela-Soler, J. Efficacy of an adjunctive computer-based cognitive training program in amnestic mild cognitive impairment and Alzheimer’s disease: A single-blind, randomized clinical trial. Int J. Geriatr. Psychiatry 2013, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- González-Palau, F.; Franco, M.; Bamidis, P.; Losada, R.; Parra, E.; Papageorgiou, S.G.; Vivas, A.B. The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample. Aging Ment. Health 2014, 18, 838–846. [Google Scholar] [CrossRef]
- Hwang, J.H.; Cha, H.G.; Cho, Y.S.; Kim, T.S.; Cho, H.S. The effects of computer-assisted cognitive rehabilitation on Alzheimer’s dementia patients memories. J. Phys. Ther. Sci. 2015, 27, 2921–2923. [Google Scholar] [CrossRef] [Green Version]
- Mendoza Laiz, N.; Del Valle Díaz, S.; Rioja Collado, N.; Gomez-Pilar, J.; Hornero, R. Potential benefits of a cognitive training program in mild cognitive impairment (MCI). Restor. Neurol. Neurosci. 2018, 36, 207–213. [Google Scholar] [CrossRef]
- Vermeire, E.; Hearnshaw, H.; Van Royen, P.; Denekens, J. Patient adherence to treatment: Three decades of research. A comprehensive review. J. Clin. Pharm. Ther. 2001, 26, 331–342. [Google Scholar] [CrossRef]
- Diaz Baquero, A.A.; Dröes, R.-M.; Perea Bartolomé, M.V.; Irazoki, E.; Toribio-Guzmán, J.M.; Franco-Martín, M.A.; van der Roest, H. Methodological Designs Applied in the Development of Computer-Based Training Programs for the Cognitive Rehabilitation in People with Mild Cognitive Impairment (MCI) and Mild Dementia. Systematic Review. J. Clin. Med. 2021, 10, 1222. [Google Scholar] [CrossRef]
Cognitive Function | Mild Dementia | Both | Mild Cognitive Impairment (MCI) |
---|---|---|---|
Orientation | Orientation | ||
Attention | Selective sequential visual | ||
Selective visual-simultaneous | |||
Vigilance color | |||
Memory | Span numbers direct | Hearing short term | Word-Word Associative |
Immediate graphic | Associative image-word | ||
Span numbers inverse | Span direct lyrics | ||
Location | |||
Verbal compound short term | |||
Associative face-name | |||
Span direct objects | |||
Executive Function | Puzzles | Numbers and letters | |
Keys | Change rules | ||
Visual inhibition | Ordination stories | ||
Interference | |||
Perception | Visual sizes | Graphic colors | Visual figures |
Visual faces | Text colors | ||
Calculation | Number identification | ||
Arithmetic problems | |||
Reasoning | Sort charts |
Variable | Sub-Categories | T.Student/Mann–Whitney/Χ2 | p | d-cohen/rb | Adherent | No-Adherent | ||||
---|---|---|---|---|---|---|---|---|---|---|
± SD | Number | % | ± SD | Number | % | |||||
Age | −1.185 | 0.243 | −0.374 | 73.6 ± 6.0 | 76.1 ± 7.5 | |||||
Sex | ||||||||||
Female | 0.044 | 0.834 | 0.032 | 16 | 61,50% | 10 | 38,50% | |||
Male | 11 | 64,70% | 6 | 35,30% | ||||||
Years of education | 264.000 | 0.120 | 0.222 | 9.6 ± 2.8 | 8.4 ± 1.1 | |||||
Clinical Group | ||||||||||
MCI | 16 | 59,30% | 11 | 40,70% | ||||||
Mild dementia | 11 | 68,80% | 5 | 31,30% | ||||||
Adherence Rate | 83.3 ± 8.6 | 59.2 ± 16.1 | ||||||||
MMSE | 24.4 ± 2.4 | 22.6 ± 3.9 | ||||||||
ADAS-Cog: Memory of words | 6.1 ± 1.3 | 6.4 ± 1.5 | ||||||||
ADAS-Cog: word recognition | 3.4 ± 1.9 | 4.6 ± 3.6 | ||||||||
ADAS-Cog: Total | 13.7 ± 5.0 | 17.2 ± 6.7 | ||||||||
TMTA_Mistakes | 0.4 ± 0.8 | 0.4 ± 0.7 | ||||||||
TMTA_Time | 12.8 ± 12.0 | 6.3 ± 2.4 | ||||||||
WAIS-III: Total Digit | 10.8 ± 2.6 | 9.3 ± 2.5 | ||||||||
CAMCOG: Visual Reasoning | 2.4 ± 1.4 | 1.9 ± 1.5 | ||||||||
RBMT: Drawing recognition | 7.7 ± 2.2 | 8.0 ± 2.7 | ||||||||
WAIS-III: Digit Symbol | 312.000 | 0.016 * | 0.444 | 10.2 ± 2.7 | 8.3 ± 2.8 | |||||
WAIS-III: Arithmetic | 306.500 | 0.022 * | 0.419 | 10.3 ± 2.9 | 7.7 ± 3.0 | |||||
SVF | 7.2 ± 3.0 | 5.6 ± 2.5 | ||||||||
LVF-P | 7.7 ± 3.1 | 6.3 ± 3.2 | ||||||||
LVF-M | 8.1 ± 3.8 | 6.3 ± 3.5 | ||||||||
LVF-R | 2.575 | 0.014 * | 0.812 | 8.8 ± 2.5 | 6.6 ± 3.0 | |||||
GDS | 4.1 ± 4.0 | 4.4 ± 2.9 | ||||||||
Health condition | 67.0 ± 21.4 | 76.3 ± 19.6 | ||||||||
Motivation:Attend | Nothing | 20 | 62,50% | 12 | 37,50% | |||||
Somethings | 4 | 66,70% | 2 | 33,30% | ||||||
I’m not sure | 1 | 100,00% | 0 | 0,00% | ||||||
Quite a lot | 2 | 50,00% | 2 | 50,00% | ||||||
Expectations: Memory | Nothing | 3 | 60,00% | 2 | 40,00% | |||||
I’m not sure | 3 | 75,00% | 1 | 25,00% | ||||||
Quite a lot | 13 | 56,50% | 10 | 43,50% | ||||||
A lot | 8 | 72,70% | 3 | 27,30% | ||||||
Expectations: Quality of life | Nothing | 1 | 33,30% | 2 | 66,70% | |||||
I’m not sure | 4 | 100,00% | 0 | 0,00% | ||||||
Quite a lot | 14 | 56,00% | 11 | 44,00% | ||||||
A lot | 8 | 72,70% | 3 | 27,30% | ||||||
Expectations: Free time | I’m not sure | 1 | 100,00% | 0 | 0,00% | |||||
Quite a lot | 10 | 66,70% | 5 | 33,30% | ||||||
A lot | 16 | 59,30% | 11 | 40,70% | ||||||
Expectations: Relating | Nothing | 2 | 100,00% | 0 | 0,00% | |||||
Somethings | 2 | 50,00% | 2 | 50,00% | ||||||
I’m not sure | 3 | 100,00% | 0 | 0,00% | ||||||
Quite a lot | 10 | 47,60% | 11 | 52,40% | ||||||
A lot | 10 | 76,90% | 3 | 23,10% | ||||||
EQ-5D-5L: Mobility | I have no problem | 21 | 70,00% | 9 | 30,00% | |||||
Minor problems | 3 | 60,00% | 2 | 40,00% | ||||||
Moderate problems | 2 | 40,00% | 3 | 60,00% | ||||||
serious problems | 1 | 33,30% | 2 | 66,70% | ||||||
EQ-5D-5L: Self-care | I have no problem | 23 | 63,90% | 13 | 36,10% | |||||
Minor problems | 1 | 33,30% | 2 | 66,70% | ||||||
Moderate problems | 3 | 100,00% | 0 | 0,00% | ||||||
serious problems | 0 | 0,00% | 1 | 100,00% | ||||||
EQ-5D-5L: Everyday activities | I have no problem | 20 | 60,60% | 13 | 39,40% | |||||
Minor problems | 1 | 33,30% | 2 | 66,70% | ||||||
Moderate problems | 5 | 83,30% | 1 | 16,70% | ||||||
serious problems | 1 | 100,00% | 0 | 0,00% | ||||||
EQ-5D-5L: Pain/discomfort | I have no problem | 15 | 75,00% | 5 | 25,00% | |||||
Minor problems | 5 | 41,70% | 7 | 58,30% | ||||||
Moderate problems | 3 | 60,00% | 2 | 40,00% | ||||||
serious problems | 4 | 80,00% | 1 | 20,00% | ||||||
I can’t | 0 | 0,00% | 1 | 100,00% | ||||||
EQ-5D-5L: Anxiety/depression | I have no problem | 18 | 72,00% | 7 | 28,00% | |||||
Minor problems | 2 | 33,30% | 4 | 66,70% | ||||||
Moderate problems | 4 | 57,10% | 3 | 42,90% | ||||||
serious problems | 2 | 50,00% | 2 | 50,00% | ||||||
I can’t | 1 | 100,00% | 0 | 0,00% | ||||||
Prior use of technology | No | 4 | 66,70% | 2 | 33,30% | |||||
Yes | 23 | 62,20% | 14 | 37,80% |
Predictor Variable | McFadden R2 | p-Value | Estimate | Standard Error | OR | z | 95% CI |
---|---|---|---|---|---|---|---|
WAIS-III: Digit Symbol | 0.174 | 0.019 | 0.064 | 0.164 | 1.066 | 0.387 | 0.773–1.470 |
WAIS III: Arithmetic | 0.203 | 0.153 | 1.225 | 1.329 | 0.908–1.653 | ||
LVF-R | 0.200 | 0.146 | 1.222 | 1.368 | 0.917–1.627 |
Variable | Group | Adherent | No-Adherent | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mann–Whitney | p-Value | rb | N | ± SD | Mann–Whitney | p-Value | rb | N | ± SD | ||
WAIS-III: Digit Symbol | Mild Dementia | 36.000 | 0.010 ** | −0.591 | 11 | 8.7 ± 0.7 | 11.000 | 0.065 | −0.600 | 5 | 6.3 ± 1.5 |
MCI | 16 | 11.3 ± 0.6 | 11 | 9.2 ± 0.6 | |||||||
WAIS III: Arithmetic | Mild Dementia | 31.500 | 0.005 ** | −0.642 | 11 | 8.2 ± 0.7 | 16.000 | 0.205 | −0.418 | 5 | 6.4 ± 1.4 |
MCI | 16 | 11.7 ± 0.6 | 11 | 8.3 ± 0.9 | |||||||
LVF-R | Mild Dementia | 44.000 | 0.030 * | −0.500 | 11 | 7.5 ± 0.8 | 10.000 | 0.052 * | −0.636 | 5 | 4.2 ± 1.6 |
MCI | 16 | 9.7 ± 0.5 | 11 | 7.7 ± 0.6 |
Variable | Group | Dementia | MCI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mann–Whitney | p | rb | N | ± SD | Mann–Whitney | p | rb | N | ± SD | ||
WAIS-III: Digit Symbol | No-Adherent | 17.500 | 0.464 | −0.271 | 4 | 6.6 ± 1.9 | 52.000 | 0.137 | −0.358 | 9 | 9.9 ± 0.5 |
Adherent | 12 | 8.4 ± 0.7 | 18 | 10.7 ± 0.7 | |||||||
WAIS III: Arithmetic | No-Adherent | 14.000 | 0.232 | −0.417 | 4 | 6.0 ± 1.8 | 52.000 | 0.139 | −0.358 | 9 | 9.0 ± 0.9 |
Adherent | 12 | 8.2 ± 0.6 | 18 | 10.9 ± 0.7 | |||||||
LVF-R | No-Adherent | 14.000 | 0.244 | −0.417 | 4 | 4.8 ± 1.9 | 61.500 | 0.324 | −0.241 | 9 | 8.2 ± 0.7 |
Adherent | 12 | 7.1 ± 0.9 | 18 | 9.2 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz Baquero, A.A.; Perea Bartolomé, M.V.; Toribio-Guzmán, J.M.; Martínez-Abad, F.; Parra Vidales, E.; Bueno Aguado, Y.; van der Roest, H.G.; Franco-Martín, M.A. Determinants of Adherence to a “GRADIOR” Computer-Based Cognitive Training Program in People with Mild Cognitive Impairment (MCI) and Mild Dementia. J. Clin. Med. 2022, 11, 1714. https://doi.org/10.3390/jcm11061714
Diaz Baquero AA, Perea Bartolomé MV, Toribio-Guzmán JM, Martínez-Abad F, Parra Vidales E, Bueno Aguado Y, van der Roest HG, Franco-Martín MA. Determinants of Adherence to a “GRADIOR” Computer-Based Cognitive Training Program in People with Mild Cognitive Impairment (MCI) and Mild Dementia. Journal of Clinical Medicine. 2022; 11(6):1714. https://doi.org/10.3390/jcm11061714
Chicago/Turabian StyleDiaz Baquero, Angie A., María V. Perea Bartolomé, José Miguel Toribio-Guzmán, Fernando Martínez-Abad, Esther Parra Vidales, Yolanda Bueno Aguado, Henriëtte G. van der Roest, and Manuel A. Franco-Martín. 2022. "Determinants of Adherence to a “GRADIOR” Computer-Based Cognitive Training Program in People with Mild Cognitive Impairment (MCI) and Mild Dementia" Journal of Clinical Medicine 11, no. 6: 1714. https://doi.org/10.3390/jcm11061714
APA StyleDiaz Baquero, A. A., Perea Bartolomé, M. V., Toribio-Guzmán, J. M., Martínez-Abad, F., Parra Vidales, E., Bueno Aguado, Y., van der Roest, H. G., & Franco-Martín, M. A. (2022). Determinants of Adherence to a “GRADIOR” Computer-Based Cognitive Training Program in People with Mild Cognitive Impairment (MCI) and Mild Dementia. Journal of Clinical Medicine, 11(6), 1714. https://doi.org/10.3390/jcm11061714