In Silico Finite Element Modeling of Stress Distribution in Osteosynthesis after Pertrochanteric Fractures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Finite Element Modeling (FEM)
3. Results
3.1. Distribution of Stresses in Bone Tissue
3.2. Distribution of Stresses in Fixation Material
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uliana, C.S.; Abagge, M.; Malafaja, O.; Filho, F.A.K.; da Cunha, L.A.M. Transtrochanteric fractures: Evaluation of data between hospital admission and discharge. Rev. Bras. Ortop. 2014, 49, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudiani, M.A.; Samuel, L.T.; Mahmood, B.; Sultan, A.A.; Kamath, A.F. Subchondral insufficiency fractures of the femoral head: Systematic review of diagnosis, treatment and outcomes. J. Hip Preserv. Surg. 2019, 7, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.T.; Murphy, D.; Kagda, F.H.; Thambiah, J. Proximal femoral locking compression plate for proximal femoral fractures. J. Orthop. Surg. 2014, 22, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawrońska, K.; Lorkowski, J. Falls as one of the atypical presentations of COVID-19 in older population. Geriatr. Orthop. Surg. Rehabil. 2021, 12, 1–5. [Google Scholar] [CrossRef]
- Saul, D.; Riekenberg, J.; Ammon, J.C.; Hoffmann, D.B.; Sehmisch, S. Hip fractures: Therapy, timing, and complication spectrum. Orthop. Surg. 2019, 11, 994–1002. [Google Scholar] [CrossRef]
- Talmaç, M.A.; Görgel, M.A.; Armağan, R.; Sönmez, M.M.; Özdemir, H.M. Examining implant superiority in the treatment of simple pertrochanteric fractures of the proximal femur in elderly patients. Ulus. Travma. Acil. Cerrahi. Derg. 2019, 25, 410–416. [Google Scholar]
- Cheng, Y.X.; Sheng, X. Optimal surgical methods to treat intertrochanteric fracture: A Bayesian network meta-analysis based on 36 randomized controlled trials. J. Orthop. Surg. Res. 2020, 15, 402. [Google Scholar] [CrossRef]
- Xiang, Z. A meta-analysis of the Gamma nail and dynamic hip screw in treating pertrochanteric fractures. Int. Orthop. 2010, 34, 323–328. [Google Scholar]
- Li, P.; Lv, Y.; Zhou, F.; Tian, Y.; Ji, H.; Zhang, Z.; Guo, Y.; Yang, Z.; Hou, G. Medial wall fragment involving large posterior cortex in pertrochanteric femur fractures: A notable preoperative risk factor for implant failure. Injury 2020, 51, 683–687. [Google Scholar] [CrossRef]
- Lorkowski, J.; Wilk, R.; Pokorski, M. In silico analysis of bone tension during fixation of the medial malleolus fracture after ankle joint endoprosthesis. Adv. Exp. Med. Biol. 2021, 1335, 103–109. [Google Scholar]
- MacNeil, J.A.; Adachi, J.D.; Goltzman, D.; Josse, R.G.; Kovacs, C.S.; Prior, J.C.; Olszynski, W.; Davison, K.S.; Kaiser, S.M.; CaMos Research Group. Predicting fracture using 2D finite element modelling. Med. Eng. Phys. 2012, 34, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, J.A.M.B.; Machado, M.C.F.P.; Galvão, P.V.M.; de Lima, J.C.; Gomes, L.D.S.; Guimarães, P.F.B. Minimally invasive osteosynthesis of transtrochanteric fractures with dynamic hip screw (DHS). Rev. Bras. Ortop. 2021, 56, 109–113. [Google Scholar]
- De Abreu, E.L.; Sena, C.B.; Saldanha Rodrigues Filho, S.A. Effectiveness of treatment of transtrochanteric fractures with dynamic hip screws using minimally invasive access. Rev. Bras. Ortop. 2016, 51, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Meinberg, E.G.; Agel, J.; Roberts, C.S.; Karam, M.D.; Kellam, J.F. Fracture and dislocation classification compendium-2018. J. Orthop. Trauma 2018, 32 (Suppl. 1), S1–S170. [Google Scholar] [CrossRef]
- Harris, W.H. Traumatic arthritis of the hip after dislocation and acetabular fractures: Treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J. Bone Jt. Surg. Am. 1969, 51, 737–755. [Google Scholar] [CrossRef]
- Głowacki, D.; Moćko, W.; Marczak, M.; Głowacka, A.; Kraśkiewicz, C. Energy absorbing properties analysis of layers structure of titanium alloy Ti6Al4V during dynamic impact loading tests. Materials 2021, 14, 7209. [Google Scholar] [CrossRef]
- Olesiak, Z.Z. Huber’s yield criterion and strength hypothesis centennial. Arch. Mech. 2004, 56, 171–172. [Google Scholar]
- O’Malley, N.; Deeb, A.; Bingham, K.; Kates, S. Outcome of the dynamic helical hip screw system for intertrochanteric hip fractures in the elderly patients. Geriatr. Orthop. Surg. Rehabil. 2012, 3, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Saudan, M.; Lubbeke, A.; Sadowski, C.; Riand, N.; Stem, R.; Hoffmeyer, P. Pertrochanteric fractures: Is there an advantage to an intramedullary nail?: A randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J. Orthop. Trauma 2002, 16, 386–393. [Google Scholar] [CrossRef]
- Liu, P.; Wu, X.; Shi, H.; Liu, R.; Shu, H.; Gong, J.; Yang, Y.; Sun, Q.; Wu, J.; Nie, X.; et al. Intramedullary versus extramedullary fixation in the management of subtrochanteric femur fractures: A meta-analysis. Clin. Interv. Aging 2015, 10, 803–811. [Google Scholar]
- Reindl, R.; Harvey, E.; Berry, G.; Rahme, E. Intramedullary versus extramedullary fixation for unstable intertrochanteric fractures: A prospective randomized controlled trial. J. Bone Jt. Surg. Am. 2015, 97, 1905–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Hu, Q.; Zhao, J.; Lao, Y.; Pang, Z.; Dong, H.; Huang, P.; Zheng, X.; Huang, F. Biomechanical evaluation of improved PFNA fixation devices for intertrochanteric hip fracture with finite element analysis. Int. J. Clin. Exp. Med. 2017, 10, 14888–14894. [Google Scholar]
- Henschel, J.; Eberle, S.; Augat, P. Load distribution between cephalic screws in a dual lag screw trochanteric nail. J. Orthop. Surg. Res. 2016, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Chen, X.; Zheng, Y.; He, X.; Wu, J.; Lin, Z. Cement augmentation of the proximal femoral nail antirotation for the treatment of two intertrochanteric fractures—A comparative finite element study. BMC Musculoskelet. Disord. 2021, 22, 1010. [Google Scholar] [CrossRef]
- Freitas, A.; Bontempo, R.L.; Azevedo, F.A.R.; Battaglion, L.R.; Giordano, M.N.; Barin, F.R.; Giordano, V. New fixation method for Pauwels type III femoral neck fracture: A finite element analysis of sliding hip screw, L-shaped, and L-shaped with medial plate. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1069–1075. [Google Scholar] [CrossRef]
- Pottecher, P.; Engelke, K.; Duchemin, L.; Museyko, O.; Moser, T.; Mitton, D.; Vicaut, E.; Adams, J.; Skalli, W.; Laredo, J.D.; et al. Prediction of hip failure load: In vitro study of 80 femurs using three imaging methods and finite element models—The European Fracture Study (EFFECT). Radiology 2016, 280, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Adeel, K.; Nadeem, R.D.; Akhtar, M.; Sah, R.K.; Mohy-Ud-Din, I. Comparison of proximal femoral nail (PFN) and dynamic hip screw (DHS) for the treatment of AO type A2 and A3 pertrochanteric fractures of femur. J. Pak. Med. Assoc. 2020, 70, 815–819. [Google Scholar]
- Arirachakaran, A.; Amphansap, T.; Thanindratarn, P.; Piyapittayanun, P.; Srisawat, P.; Kongtharvonskul, J. Comparative outcome of PFNA, Gamma nails, PCCP, Medoff plate, LISS and dynamic hip screws for fixation in elderly trochanteric fractures: A systematic review and network meta-analysis of randomized controlled trials. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 937–952. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, X.; Zhang, X. Comparing surgical interventions for intertrochanteric hip fracture by blood loss and operation time: A network meta-analysis. J. Orthop. Surg. Res. 2018, 13, 157. [Google Scholar] [CrossRef]
- Ronga, M.; Bonzini, D.; Valoroso, M.; La Barbera, G.; Tamini, J.; Cherubino, M.; Cherubino, P. Blood loss in trochanteric fractures: Multivariate analysis comparing dynamic hip screw and Gamma nail. Injury 2017, 48 (Suppl. 3), S44–S47. [Google Scholar] [CrossRef]
- Strike, S.A.; Sieber, F.E.; Gottschalk, A.; Mears, S.C. Role of fracture and repair type on pain and opioid use after hip fracture in the elderly. Geriatr. Orthop. Surg. Rehabil. 2013, 4, 103–108. [Google Scholar] [CrossRef]
- Hadeed, A.; Werntz, R.L.; Varacallo, M. External Fixation Principles and Overview; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kalmet, P.H.S.; Sanduleanu, S.; Primakov, S.; Wu, G.; Jochems, A.; Refaee, T.; Ibrahim, A.; Hulst, L.V.; Lambin, P.; Poeze, M. Deep learning in fracture detection: A narrative review. Acta Orthop. 2020, 91, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Lorkowski, J.; Kolaszyńska, O.; Pokorski, M. Artificial intelligence and precision medicine: A perspective. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Oosterhoff, J.H.F.; Doornberg, J.N. Machine Learning Consortium. Artificial intelligence in orthopaedics: False hope or not? A narrative review along the line of Gartner’s hype cycle. EFFORT Open. Rev. 2020, 5, 593–603. [Google Scholar] [CrossRef]
- Tucker, S.M.; Wee, H.; Fox, E.; Reid, J.S.; Lewis, G.S. Parametric finite element analysis of intramedullary nail fixation of proximal femur fractures. J. Orthop. Res. 2019, 37, 2358–2366. [Google Scholar] [CrossRef]
- Loftus, T.J.; Tighe, P.J.; Filiberto, A.C.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Rashidi, P.; Upchurch, G.R.; Bihorac, A. Artificial intelligence and surgical decision-making. JAMA Surg. 2020, 155, 148–158. [Google Scholar] [CrossRef]
- Olczak, J.; Fahlberg, N.; Maki, A.; Razavian, A.S.; Jilert, A.; Stark, A.; Skoldenberg, O.; Gordon, M. Artificial intelligence for analyzing orthopedic trauma radiographs. Deep learning algorithms—Are they on par with humans for diagnosing fractures? Acta Orthop. 2017, 88, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in the diagnosis of COVID-19: Challenges and perspectives. Int. J. Biol. Sci. 2021, 17, 1581–1587. [Google Scholar] [CrossRef]
- Jamaludin, A.; Lootus, M.; Kadir, T.; Zisserman, A.; Urban, J.; Battie, M.C.; Fairbank, J.; McCall, I. Genodisc Consortium. ISSLS prize in bioengineering science 2017: Automation of reading of radiological features from magnetic resonance images (MRI’s) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur. Spine J. 2017, 26, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Aprato, A.; Lo Baido, R.; Crosio, A.; Matteotti, R.; Grosso, E.; Massè, A. Does lesser trochanter implication affect hip flexion strength in proximal femur fracture? Eur. J. Trauma Emerg. Surg. 2015, 41, 523–529. [Google Scholar] [CrossRef]
- Říha, D.; Bartoníček, J. Internal fixation of pertrochanteric fractures using DHS with a two-hole side-plate. Int. Orthop. 2010, 34, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Bonnaire, F. Focus on proximal femur fractures: Surgical options and outcome. Eur. J. Trauma Emerg. Surg. 2020, 46, 937–993. [Google Scholar] [CrossRef]
- Selim, A.; Ponugoti, N.; Naqvi, A.Z.; Magill, H. Cephalo-medullary nailing versus dynamic hip screw with trochanteric stabilisation plate for the treatment of unstable per-trochanteric hip fractures: A meta-analysis. J. Orthop. Surg. Res. 2021, 16, 47. [Google Scholar] [CrossRef]
Stabilization | Pertrochanteric Fracture Types—AO/OTA Classification | ||||
---|---|---|---|---|---|
Age (Years) | HHS (Score) | Surgery Time (min) | Hospitalization (Days) | ||
Total | Pain | ||||
GNF (n = 9) | 88 (69–98) | 78.8 (61.8–95.9) | 30 (20–40) | 30 (20–50) | 7 (4–12) |
DHS (n = 6) | 80.5 (65–91) | 76.7 (60.8–95.9) | 30 (20–40) | 45 (30–50) | 7 (4–18) |
Z-score | 1.24 | 0.00 | 0.06 | −1.94 * | 0.12 |
U (critical value ≤10) | 16 | 27 | 27 | 10 * | 26 |
Stabilization Method | Pertrochanteric Fracture Types—AO/OTA Classification | p1 | η2 | Significant Difference of Mean Ranks of Pairs * | ||
---|---|---|---|---|---|---|
A1 | A2 | A3 | ||||
GNF (MPa) | 54.0 (48.4–56.5) | 55.6 (52.4–58.5) | 58.6 (56.4–59.5) | 0.024 | 0.46 | A1–A3 |
DHS (MPa) | 52.9 (49.3–55.5) | 54.9 (51.4–57.2) | 60.0 (56.7–64.6) | 0.008 | 0.64 | A1–A3, A2–A3 |
p2 | 0.401 | 0.674 | 0.834 | |||
Z-score | 0.84 | 0.42 | −0.21 | |||
U (critical value ≤ 2) | 8 | 10 | 11 |
Stabilization | Pertrochanteric Fracture Types—AO/OTA Classification | p 1 | η 2 | Significant Differences of Mean Ranks of Pairs * | ||
---|---|---|---|---|---|---|
A1 | A2 | A3 | ||||
GNF (MPa) | 181.7 (157.3–195.5) | 185.2 (173.5–196.4) | 203.6 (195.4–213.7) | 0.025 | 0.45 | A1–A3 |
DHS (MPa) | 91.5 (86.5–100.1) | 111.2 (107.3–117.6) | 124.9 (118.6–133.5) | 0.002 | 0.88 | A1–A2, A1–A3, A2–A3 |
U (critical value ≤ 2) | 0 | 0 | 0 | |||
Z-score | 2.51 | 2.51 | 2.57 | |||
p 2 | 0.012 | 0.012 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorkowski, J.; Pokorski, M. In Silico Finite Element Modeling of Stress Distribution in Osteosynthesis after Pertrochanteric Fractures. J. Clin. Med. 2022, 11, 1885. https://doi.org/10.3390/jcm11071885
Lorkowski J, Pokorski M. In Silico Finite Element Modeling of Stress Distribution in Osteosynthesis after Pertrochanteric Fractures. Journal of Clinical Medicine. 2022; 11(7):1885. https://doi.org/10.3390/jcm11071885
Chicago/Turabian StyleLorkowski, Jacek, and Mieczyslaw Pokorski. 2022. "In Silico Finite Element Modeling of Stress Distribution in Osteosynthesis after Pertrochanteric Fractures" Journal of Clinical Medicine 11, no. 7: 1885. https://doi.org/10.3390/jcm11071885
APA StyleLorkowski, J., & Pokorski, M. (2022). In Silico Finite Element Modeling of Stress Distribution in Osteosynthesis after Pertrochanteric Fractures. Journal of Clinical Medicine, 11(7), 1885. https://doi.org/10.3390/jcm11071885