The History of Durable Left Ventricular Assist Devices and Comparison of Outcomes: HeartWare, HeartMate II, HeartMate 3, and the Future of Mechanical Circulatory Support
Abstract
:1. History and Survival Outcomes
1.1. Transition to Continuous-Flow Devices
1.2. Third-Generation Devices
1.3. Real-Life Outcomes from Observational Studies
2. Patient Management and Optimization
2.1. Patient Selection
2.1.1. Medical Evaluation
2.1.2. Psychosocial Considerations in Patient Selection and Quality of Life
2.2. Surgical Management
2.2.1. General Considerations for LVAD Configuration
2.2.2. Considerations for Destination Therapy versus Bridge to Transplant LVAD Implantation
2.3. Medical Management to Minimize Adverse Events
2.3.1. Stroke
2.3.2. Right Ventricular Failure
2.3.3. Gastrointestinal Bleeding
2.3.4. Driveline Infections
3. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J.; Oz, M.C.; Rose, E.A. Implantable left ventricular assist devices. N. Engl. J. Med. 1998, 339, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.A.; Gelijns, A.C.; Moskowitz, A.; Heitjan, D.F.; Stevenson, L.W.; Dembitsky, W.P.; Long, J.W.; Ascheim, D.D.; Tierney, A.R.; Levitan, R.G.; et al. Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure. N. Engl. J. Med. 2001, 345, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Long, J.W.; Kfoury, A.G.; Slaughter, M.S.; Silver, M.; Milano, C.; Rogers, J.; Delgado, R.; Frazier, O. Long-Term Destination Therapy With the HeartMate XVE Left Ventricular Assist Device: Improved Outcomes Since the REMATCH Study. Congest. Hearth Fail. 2005, 11, 133–138. [Google Scholar] [CrossRef]
- Park, S.J.; Tector, A.; Piccioni, W.; Raines, E.; Gelijns, A.; Moskowitz, A.; Rose, E.; Holman, W.; Furukawa, S.; Frazier, O.H.; et al. Left ventricular assist devices as destination therapy: A new look at survival. J. Thorac. Cardiovasc. Surg. 2005, 129, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.W.; Pagani, F.; Russell, S.D.; John, R.; Boyle, A.J.; Aaronson, K.D.; Conte, J.V.; Naka, Y.; Mancini, D.; Delgado, R.M.; et al. Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation. N. Engl. J. Med. 2007, 357, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Slaughter, M.S.; Rogers, J.G.; Milano, C.A.; Russell, S.D.; Conte, J.V.; Feldman, D.; Sun, B.; Tatooles, A.J.; Delgado, R.M.; Long, J.W.; et al. Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device. N. Engl. J. Med. 2009, 361, 2241–2251. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Milano, C.A.; Tatooles, A.J.; Rogers, J.G.; Adamson, R.M.; Steidley, D.E.; Ewald, G.A.; Sundareswaran, K.S.; Farrar, D.J.; Slaughter, M.S.; et al. Outcomes in Advanced Heart Failure Patients With Left Ventricular Assist Devices for Destination Therapy. Circ. Hear. Fail. 2012, 5, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Aaronson, K.D.; Slaughter, M.S.; Miller, L.W.; McGee, E.C.; Cotts, W.G.; Acker, M.A.; Jessup, M.L.; Gregoric, I.D.; Loyalka, P.; Frazier, O.H.; et al. Use of an Intrapericardial, Continuous-Flow, Centrifugal Pump in Patients Awaiting Heart Transplantation. Circulation 2012, 125, 3191–3200. [Google Scholar] [CrossRef] [Green Version]
- Slaughter, M.S.; Pagani, F.D.; McGee, E.C.; Birks, E.J.; Cotts, W.G.; Gregoric, I.; Frazier, O.H.; Icenogle, T.; Najjar, S.S.; Boyce, S.W.; et al. HeartWare ventricular assist system for bridge to transplant: Combined results of the bridge to transplant and continued access protocol trial. J. Heart Lung Transplant. 2013, 32, 675–683. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef]
- Molina, E.J.; Shah, P.; Kiernan, M.S.; Cornwell, W.K.; Copeland, H.; Takeda, K.; Fernandez, F.G.; Badhwar, V.; Habib, R.H.; Jacobs, J.P.; et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann. Thorac. Surg. 2021, 111, 778–792. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Human Services (HRSA); Healthcare Systems Bureau; Division of Transplantation, Rockville, MD; United Network for Organ Sharing, Richmond, VA; University Renal Research and Education Association, Ann Arbor, MI. 2019 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1994–2019; Department of Health and Human Services (HRSA): North Bethesda, MD, USA, 2019. [Google Scholar]
- Kormos, R.L.; Cowger, J.; Pagani, F.D.; Teuteberg, J.J.; Goldstein, D.J.; Jacobs, J.P.; Higgins, R.S.; Stevenson, L.W.; Stehlik, J.; Atluri, P.; et al. The Society of Thoracic Surgeons Intermacs database annual report: Evolving indications, outcomes, and scientific partnerships. J. Hearth Lung Transplant. 2019, 38, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Pagani, F.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Myers, S.L.; Miller, M.A.; Baldwin, J.T.; Young, J.B.; Naftel, D.C. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J. Hearth Lung Transplant. 2017, 36, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kugler, C.; Malehsa, D.; Tegtbur, U.; Guetzlaff, E.; Meyer, A.L.; Bara, C.; Haverich, A.; Strueber, M. Health-related quality of life and exercise tolerance in recipients of heart transplants and left ventricular assist devices: A prospective, comparative study. J. Hearth Lung Transplant. 2011, 30, 204–210. [Google Scholar] [CrossRef]
- Okam, N.A.; Ahmad, W.; Rana, D.; Torrilus, C.; Jahan, N.; Sedrakyan, S. Psychological Spectrum Experienced by Heart Failure Patients After Left Ventricular Assist Device Implantation. Cureus 2020, 12, e9671. [Google Scholar] [CrossRef]
- McNamara, N.; Narroway, H.; Williams, M.; Brookes, J.; Farag, J.; Cistulli, D.; Bannon, P.; Marasco, S.; Potapov, E.; Loforte, A. Contemporary outcomes of continuous-flow left ventricular assist devices—A systematic review. Ann. Cardiothorac. Surg. 2021, 10, 186–208. [Google Scholar] [CrossRef]
- Abshire, M.; Russell, S.D.; Davidson, P.M.; Budhathoki, C.; Han, H.-R.; Grady, K.L.; Desai, S.; Himmelfarb, C.D. Social Support Moderates the Relationship Between Perceived Stress and Quality of Life in Patients With a Left Ventricular Assist Device. J. Cardiovasc. Nurs. 2018, 33, E1–E9. [Google Scholar] [CrossRef]
- Grady, K.L.; Fazeli, P.L.; Kirklin, J.K.; Pamboukian, S.V.; White-Williams, C. Factors Associated With Health-Related Quality of Life 2 Years After Left Ventricular Assist Device Implantation: Insights From INTERMACS. J. Am. Heart Assoc. 2021, 10, e021196. [Google Scholar] [CrossRef]
- Bhat, G.; Yost, G.; Mahoney, E. Cognitive function and left ventricular assist device implantation. J. Heart Lung Transplant. 2015, 34, 1398–1405. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, K.M.; Chien, C.V.; Denfeld, Q.E.; Gelow, J.M.; Lyons, K.S.; Grady, K.L.; Mudd, J.O.; Lee, C.S. Longitudinal Effects of Left Ventricular Assist Device Implantation on Global and Domain-Specific Cognitive Function. J. Cardiovasc. Nurs. 2020, 37, 31–40. [Google Scholar] [CrossRef]
- Casida, J.M.; Wu, H.S.; Abshire, M.; Ghosh, B.; Yang, J.J. Cognition and adherence are self-management factors predicting the quality of life of adults living with a left ventricular assist device. J. Heart Lung Transplant. 2017, 36, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Pagani, F.D.; Goldstein, D.J.; John, R.; Rogers, J.G.; Atluri, P.; Arabia, F.A.; Cheung, A.; Holman, W.; Hoopes, C.; et al. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J. Hearth Lung Transplant. 2020, 39, 187–219. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, D.E.; Levy, W.C.; Stehlik, J.; Estep, J.D.; Rogers, J.G.; Shah, K.B.; Boyle, A.J.; Chuang, J.; Farrar, D.J.; Starling, R.C. Accuracy of Seattle Heart Failure Model and HeartMate II Risk Score in Non–Inotrope-Dependent Advanced Heart Failure Patients. Circ. Hearth Fail. 2017, 10, e003745. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, A.K.; Cowger, J. Left ventricular assist device patient selection: Do risk scores help? J. Thorac. Dis. 2015, 7, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Potapov, E.V.; Antonides, C.; Crespo-Leiro, M.G.; Combes, A.; Färber, G.; Hannan, M.M.; Kukucka, M.; De Jonge, N.; Loforte, A.; Lund, L.H.; et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur. J. Cardio-Thoracic Surg. 2019, 56, 230–270. [Google Scholar] [CrossRef]
- Dew, M.A.; DiMartini, A.F.; Dobbels, F.; Grady, K.L.; Jowsey-Gregoire, S.G.; Kaan, A.; Kendall, K.; Young, Q.R.; Abbey, S.E.; Butt, Z.; et al. The 2018 ISHLT/APM/AST/ICCAC/STSW Recommendations for the Psychosocial Evaluation of Adult Cardiothoracic Transplant Candidates and Candidates for Long-term Mechanical Circulatory Support. Psychosomatics 2018, 59, 415–440. [Google Scholar] [CrossRef]
- Sperry, B.W.; Ikram, A.; Alvarez, P.A.; Perez, A.L.; Kendall, K.; Gorodeski, E.Z.; Starling, R.C. Standardized Psychosocial Assessment Before Left Ventricular Assist Device Implantation. Circ. Hearth Fail. 2019, 12, e005377. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Breathett, K.; Donald, E.M.; Nakagawa, S.; Takeda, K.; Takayama, H.; Truby, L.K.; Sayer, G.; Colombo, P.C.; Yuzefpolskaya, M.; et al. Psychosocial Risk and Its Association With Outcomes in Continuous-Flow Left Ventricular Assist Device Patients. Circ. Hearth Fail. 2020, 13, e006910. [Google Scholar] [CrossRef]
- Cagliostro, M.; Bromley, A.; Ting, P.; Donehey, J.; Ferket, B.; Parks, K.; Palumbo, E.; Mancini, D.; Anyanwu, A.; Pawale, A.; et al. Standardized Use of the Stanford Integrated Psychosocial Assessment for Transplantation in LVAD Patients. J. Card. Fail. 2019, 25, 735–743. [Google Scholar] [CrossRef]
- Olt, C.K.; Thuita, L.W.; Soltesz, E.G.; Tong, M.Z.; Weiss, A.J.; Kendall, K.; Estep, J.D.; Blackstone, E.H.; Hsich, E.M.; Unai, S.; et al. Value of psychosocial evaluation for left ventricular assist device candidates. J. Thorac. Cardiovasc. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.M.; Braun, O.O.; Brambatti, M.; Gernhofer, Y.K.; Hernandez, H.; Pretorius, V.; Adler, E. The value of Stanford integrated psychosocial assessment for transplantation (SIPAT) in prediction of clinical outcomes following left ventricular assist device (LVAD) implantation. Hearth Lung 2019, 48, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.A. Readmissions after left ventricular assist device implantation: Considerations for nurse practitioners. J. Am. Assoc. Nurs. Pract. 2019, 31, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Levelink, M.; Brutt, A.L. Factors influencing health-related quality of life of patients with a left ventricular assist device: A systematic review and thematic synthesis. Eur. J. Cardiovasc. Nurs. 2021, 20, 803–815. [Google Scholar] [CrossRef]
- Lundgren, S.; Lowes, B.; Zolty, R.; Burdorf, A.; Raichlin, E.; Um, J.Y.; Poon, C. Do Psychosocial Factors Have Any Impact on Outcomes After Left Ventricular Assist Device Implantation? ASAIO J. 2018, 64, e43–e47. [Google Scholar] [CrossRef] [PubMed]
- Petty, M.; Bauman, L. Psychosocial issues in ventricular assist device implantation and management. J. Thorac. Dis. 2015, 7, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Balasubramanian, S.; Berman, M.; Abu-Omar, Y.; Tsui, S. Anticoagulant-Free Off-Pump Left Ventricular Assist Device Implant. Ann. Thorac. Surg. 2018, 105, e37–e39. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.C.; Firstenberg, M.S.; Louis, L.; Panza, A.; Crestanello, J.A.; Sirak, J.; Sai-Sudhakar, C.B. Placement of Long-term Implantable Ventricular Assist Devices Without the Use of Cardiopulmonary Bypass. J. Hearth Lung Transplant. 2008, 27, 718–721. [Google Scholar] [CrossRef]
- Hanke, J.S.; Rojas, S.V.; Avsar, M.; Haverich, A.; Schmitto, J.D. Minimally-invasive LVAD Implantation: State of the Art. Curr. Cardiol. Rev. 2015, 11, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Al-Naamani, A.; Fahr, F.; Khan, A.; Bireta, C.; Nozdrzykowski, M.; Feder, S.; Deshmukh, N.; Jubeh, M.; Eifert, S.; Jawad, K.; et al. Minimally invasive ventricular assist device implantation. J. Thorac. Dis. 2021, 13, 2010–2017. [Google Scholar] [CrossRef]
- Foley, N.; Zalawadiya, S.; Kuzemchak, M.; Balsara, K.; Menachem, J.; Schlendorf, K.; Maltais, S.; Shah, A.; Danter, M. Left Thoracotomy Upper Hemisternotomy Left Ventricular Assist Device (LVAD) Implantation Offers Safe, Durable Option for Patients with Prior Sternotomy Undergoing LVAD Implantation. J. Hearth Lung Transplant. 2019, 38, S367–S368. [Google Scholar] [CrossRef]
- Cho, S.M.; Tahsili-Fahadan, P.; Kilic, A.; Choi, C.W.; Starling, R.C.; Uchino, K. A Comprehensive Review of Risk Factor, Mechanism, and Management of Left Ventricular Assist Device-Associated Stroke. Semin. Neurol. 2021, 41, 411–421. [Google Scholar] [CrossRef]
- Acharya, D.; Loyaga-Rendon, R.; Morgan, C.J.; Sands, K.A.; Pamboukian, S.V.; Rajapreyar, I.; Holman, W.L.; Kirklin, J.K.; Tallaj, J.A. INTERMACS Analysis of Stroke During Support With Continuous-Flow Left Ventricular Assist Devices. JACC Hearth Fail. 2017, 5, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Willey, J.Z.; Gavalas, M.V.; Trinh, P.; Yuzefpolskaya, M.; Garan, A.R.; Levin, A.P.; Takeda, K.; Takayama, H.; Fried, J.; Naka, Y.; et al. Outcomes after stroke complicating left ventricular assist device. J. Hearth Lung Transplant. 2016, 35, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.M.; Hassett, C.; Rice, C.J.; Starling, R.; Katzan, I.; Uchino, K. What Causes LVAD-Associated Ischemic Stroke? Surgery, Pump Thrombosis, Antithrombotics, and Infection. ASAIO J. 2019, 65, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Bravo, C.A.; Fried, J.A.; Willey, J.Z.; Javaid, A.; Mondellini, G.M.; Braghieri, L.; Lumish, H.; Topkara, V.K.; Kaku, Y.; Witer, L.; et al. Presence of Intracardiac Thrombus at the Time of Left Ventricular Assist Device Implantation Is Associated With an Increased Risk of Stroke and Death. J. Card. Fail. 2021, 27, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device—Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Colombo, P.C.; Mehra, M.R.; Goldstein, D.J.; Estep, J.D.; Salerno, C.; Jorde, U.P.; Cowger, J.; Cleveland, J.C., Jr.; Uriel, N.; Sayer, G.; et al. Comprehensive Analysis of Stroke in the Long-Term Cohort of the MOMENTUM 3 Study. Circulation 2019, 139, 155–168. [Google Scholar] [CrossRef]
- Milano, C.A.; Rogers, J.G.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Mokadam, N.A.; Mahr, C.; Miller, J.S.; Markham, D.W.; et al. HVAD: The ENDURANCE Supplemental Trial. JACC Hearth Fail. 2018, 6, 792–802. [Google Scholar] [CrossRef]
- Grant, A.D.; Smedira, N.G.; Starling, R.C.; Marwick, T.H. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J. Am. Coll. Cardiol. 2012, 60, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Lampert, B.C.; Teuteberg, J.J. Right ventricular failure after left ventricular assist devices. J. Heart Lung Transplant. 2015, 34, 1123–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, N.C.; Topkara, V.K.; Mercando, M.; Kay, J.; Kruger, K.H.; Aboodi, M.S.; Oz, M.C.; Naka, Y. Right Heart Failure After Left Ventricular Assist Device Implantation in Patients With Chronic Congestive Heart Failure. J. Hearth Lung Transplant. 2006, 25, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Konstam, M.A.; Kiernan, M.S.; Bernstein, D.; Bozkurt, B.; Jacob, M.; Kapur, N.K.; Kociol, R.D.; Lewis, E.F.; Mehra, M.R.; Pagani, F.D.; et al. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2018, 137, e578–e622. [Google Scholar] [CrossRef] [PubMed]
- Houston, B.A.; Shah, K.B.; Mehra, M.R.; Tedford, R.J. A new “twist” on right heart failure with left ventricular assist systems. J. Heart Lung Transplant. 2017, 36, 701–707. [Google Scholar] [CrossRef]
- Farrar, D.J.; Compton, P.G.; Hershon, J.J.; Fonger, J.D.; Hill, J.D. Right heart interaction with the mechanically assisted left heart. World J. Surg. 1985, 9, 89–102. [Google Scholar] [CrossRef]
- Uriel, N.; Levin, A.P.; Sayer, G.T.; Mody, K.P.; Thomas, S.S.; Adatya, S.; Yuzefpolskaya, M.; Garan, A.R.; Breskin, A.; Takayama, H.; et al. Left Ventricular Decompression During Speed Optimization Ramps in Patients Supported by Continuous-Flow Left Ventricular Assist Devices: Device-Specific Performance Characteristics and Impact on Diagnostic Algorithms. J. Card. Fail. 2015, 21, 785–791. [Google Scholar] [CrossRef]
- McGee, E., Jr.; Danter, M.; Strueber, M.; Mahr, C.; Mokadam, N.A.; Wieselthaler, G.; Klein, L.; Lee, S.; Boeve, T.; Maltais, S.; et al. Evaluation of a lateral thoracotomy implant approach for a centrifugal-flow left ventricular assist device: The LATERAL clinical trial. J. Hearth Lung Transplant. 2019, 38, 344–351. [Google Scholar] [CrossRef]
- Vedachalam, S.; Balasubramanian, G.; Haas, G.J.; Krishna, S.G. Treatment of gastrointestinal bleeding in left ventricular assist devices: A comprehensive review. World J. Gastroenterol. 2020, 26, 2550–2558. [Google Scholar] [CrossRef]
- Meyer, A.L.; Malehsa, D.; Budde, U.; Bara, C.; Haverich, A.; Strueber, M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail. 2014, 2, 141–145. [Google Scholar] [CrossRef]
- Tabit, C.E.; Chen, P.; Kim, G.; Fedson, S.E.; Sayer, G.; Coplan, M.J.; Jeevanandam, V.; Uriel, N.; Liao, J.K. Elevated Angiopoietin-2 Level in Patients With Continuous-Flow Left Ventricular Assist Devices Leads to Altered Angiogenesis and Is Associated With Higher Nonsurgical Bleeding. Circualtion 2016, 134, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Liebo, M.; Newman, J.; Yu, M.; Hussain, Z.; Malik, S.; Lowes, B.; Joyce, C.; Zolty, R.; Basha, H.I.; Heroux, A.; et al. Preoperative Right Heart Dysfunction and Gastrointestinal Bleeding in Patients with Left Ventricular Assist Devices. ASAIO J. 2021, 67, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, C.T.; Nassif, M.E.; Raymer, D.S.; Novak, E.; LaRue, S.J.; Schilling, J.D. Pre-Operative Right Ventricular Dysfunction Is Associated With Gastrointestinal Bleeding in Patients Supported With Continuous-Flow Left Ventricular Assist Devices. JACC Heart Fail. 2015, 3, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Juricek, C.; Imamura, T.; Nguyen, A.; Chung, B.; Rodgers, D.; Sarswat, N.; Kim, G.; Raikhelkar, J.; Ota, T.; Song, T.; et al. Long-Acting Octreotide Reduces the Recurrence of Gastrointestinal Bleeding in Patients With a Continuous-Flow Left Ventricular Assist Device. J. Card. Fail. 2018, 24, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namdaran, P.; Zikos, T.A.; Pan, J.Y.; Banerjee, D. Thalidomide Use Reduces Risk of Refractory Gastrointestinal Bleeding in Patients with Continuous Flow Left Ventricular Assist Devices. ASAIO J. 2020, 66, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Nguyen, A.; Rodgers, D.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Smith, B.; Chung, B.; Narang, N.; et al. Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circ. Hearth Fail. 2018, 11, e005082. [Google Scholar] [CrossRef]
- Feldman, D.; Pamboukian, S.V.; Teuteberg, J.J.; Birks, E.; Lietz, K.; Moore, S.A.; Morgan, J.A.; Arabia, F.; Bauman, M.E.; Buchholz, H.W.; et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. J. Hearth Lung Transplant. 2013, 32, 157–187. [Google Scholar] [CrossRef]
- Kusne, S.; Mooney, M.; Danziger-Isakov, L.; Kaan, A.; Lund, L.H.; Lyster, H.; Wieselthaler, G.; Aslam, S.; Cagliostro, B.; Chen, J.; et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J. Hearth Lung Transplant. 2017, 36, 1137–1153. [Google Scholar] [CrossRef]
- Krzelj, K.; Petricevic, M.; Gasparovic, H.; Biocina, B.; McGiffin, D. Ventricular Assist Device Driveline Infections: A Systematic Review. Thorac. Cardiovasc. Surg. 2021. [Google Scholar] [CrossRef]
- Schlöglhofer, T.; Michalovics, P.; Riebandt, J.; Angleitner, P.; Stoiber, M.; Laufer, G.; Schima, H.; Wiedemann, D.; Zimpfer, D.; Moscato, F. Left ventricular assist device driveline infections in three contemporary devices. Artif. Organs 2020, 45, 464–472. [Google Scholar] [CrossRef]
- Fontana, R.; Tortora, G.; Silvestri, M.; Vatteroni, M.; Dario, P.; Trivella, M.G. A portable system for autoregulation and wireless control of sensorized left ventricular assist devices. Biocybern. Biomed. Eng. 2016, 36, 366–374. [Google Scholar] [CrossRef]
- Grinstein, J.; Rodgers, D.; Kalantari, S.; Sayer, G.; Kim, G.; Sarswat, N.; Adatya, S.; Ota, T.; Jeevanandam, V.; Burkhoff, D.; et al. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018, 64, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, C.; Fresiello, L.; Schlöglhofer, T.; Dimitrov, K.; Marko, C.; Maw, M.; Meyns, B.; Wiedemann, D.; Zimpfer, D.; Schima, H.; et al. Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients’ response and cardiorespiratory simulations. PLoS ONE 2020, 15, e0229688. [Google Scholar] [CrossRef] [PubMed]
- Habigt, M.; Ketelhut, M.; Gesenhues, J.; Schrödel, F.; Hein, M.; Mechelinck, M.; Schmitz-Rode, T.; Abel, D.; Rossaint, R. Comparison of novel physiological load-adaptive control strategies for ventricular assist devices. Biomed. Eng./Biomed. Tech. 2017, 62, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Stephens, A.F.; Gregory, S.D.; Burrell, A.J.C.; Marasco, S.; Stub, D.; Salamonsen, R.F. Physiological principles of Starling-like control of rotary ventricular assist devices. Expert Rev. Med. Devices 2020, 17, 1169–1182. [Google Scholar] [CrossRef]
- Dowling, R.D.; Gray, A.L., Jr.; Etoch, S.W.; Laks, H.; Marelli, D.; Samuels, L.; Entwistle, J.; Couper, G.; Vlahakes, G.J.; Frazier, O. The AbioCor implantable replacement heart. Ann. Thorac. Surg. 2003, 75 (Suppl. S6), S93–S99. [Google Scholar] [CrossRef]
- Stocklmayer, C.; Dorffner, G.; Schmidt, C.; Schima, H. An artificial neural network-based noninvasive detector for suction and left atrium pressure in the control of rotary blood pumps: An in vitro study. Artif. Organs 1995, 19, 719–724. [Google Scholar] [CrossRef]
- Moscato, F.; Granegger, M.; Edelmayer, M.; Zimpfer, D.; Schima, H. Continuous monitoring of cardiac rhythms in left ventricular assist device patients. Artif. Organs 2014, 38, 191–198. [Google Scholar] [CrossRef]
- Mason, O.N.; Bishop, C.J.; Kfoury, A.G.; Lux, R.L.; Crawford, C.; Horne, B.D.; Stoker, S.; Clayson, S.E.; Rasmusson, B.Y.; Reid, B.B. Noninvasive Predictor of HeartMate XVE Pump Failure by Neural Network and Waveform Analysis. ASAIO J. 2010, 56, 1–5. [Google Scholar] [CrossRef]
Laboratory Test | High Risk Features | Contraindications | |
---|---|---|---|
Cardiac Evaluation | |||
Right heart catheterization |
| ||
Trans-thoracic echocardiogram |
| ||
Left heart catheterization |
| ||
Electrocardiogram |
| ||
Cardiopulmonary exercise test |
| ||
Non-cardiac evaluation | |||
Renal | Basic metabolic panel |
| Hemodialysis |
Gastrointestinal | EGD/Colonoscopy |
| Malignancy with poor 5-year survival |
Hepatic | Liver panel, liver ultrasound If needed to rule out cirrhosis: liver biopsy, portal pressure measurement |
| Chronic liver disease with bilirubin > 3 g/dl, Evidence of cirrhosis MELD > 17 |
Hematology | CBC, coagulation panel, HIT panel in selected patients |
| |
Oncology | Age-appropriate screening tests |
| Active malignancy |
Vascular | Vascular ultrasound Ankle-brachial index |
| |
Pulmonary | Pulmonary function test Lung imaging |
| |
Infectious disease | Microbiology tests and imaging depending on the patient’s history and physical exam |
| Active infection |
Endocrine | TSH HbA1c |
| |
Nutrition | Albumin, pre-albumin |
| |
Neurologic | CT head or MRI head Neurocognitive evaluation |
| Substantial neurologic deficits or neurocognitive disabilities impairing functional status |
Dental | X-ray or CT if indicated |
| |
Psychosocial | |||
SIPAT score Comprehensive psychosocial and substance abuse history |
| Poor psychosocial profile with no viable plan for improvement in a relative short timeframe, lack of stable housing, at risk of incarceration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berardi, C.; Bravo, C.A.; Li, S.; Khorsandi, M.; Keenan, J.E.; Auld, J.; Rockom, S.; Beckman, J.A.; Mahr, C. The History of Durable Left Ventricular Assist Devices and Comparison of Outcomes: HeartWare, HeartMate II, HeartMate 3, and the Future of Mechanical Circulatory Support. J. Clin. Med. 2022, 11, 2022. https://doi.org/10.3390/jcm11072022
Berardi C, Bravo CA, Li S, Khorsandi M, Keenan JE, Auld J, Rockom S, Beckman JA, Mahr C. The History of Durable Left Ventricular Assist Devices and Comparison of Outcomes: HeartWare, HeartMate II, HeartMate 3, and the Future of Mechanical Circulatory Support. Journal of Clinical Medicine. 2022; 11(7):2022. https://doi.org/10.3390/jcm11072022
Chicago/Turabian StyleBerardi, Cecilia, Claudio A. Bravo, Song Li, Maziar Khorsandi, Jeffrey E. Keenan, Jonathan Auld, Sunny Rockom, Jennifer A. Beckman, and Claudius Mahr. 2022. "The History of Durable Left Ventricular Assist Devices and Comparison of Outcomes: HeartWare, HeartMate II, HeartMate 3, and the Future of Mechanical Circulatory Support" Journal of Clinical Medicine 11, no. 7: 2022. https://doi.org/10.3390/jcm11072022
APA StyleBerardi, C., Bravo, C. A., Li, S., Khorsandi, M., Keenan, J. E., Auld, J., Rockom, S., Beckman, J. A., & Mahr, C. (2022). The History of Durable Left Ventricular Assist Devices and Comparison of Outcomes: HeartWare, HeartMate II, HeartMate 3, and the Future of Mechanical Circulatory Support. Journal of Clinical Medicine, 11(7), 2022. https://doi.org/10.3390/jcm11072022