Does Wim Hof Method Improve Breathing Economy during Exercise?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Breathing Exercise
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagerman, F.C.; Hagerman, M.T. A comparison of energy output and input among elite rowers. FISA Coach 1990, 2, 5–8. [Google Scholar]
- Bilo, G.; Revera, M.; Bussotti, M.; Bonacina, D.; Styczkiewicz, K.; Caldara, G.; Giglio, A.; Faini, A.; Giuliano, A.; Lombardi, C.; et al. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS ONE 2012, 7, e49074. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Di Paco, A.; Dubé, B.P.; Laveneziana, P. Changes in ventilatory response to exercise in trained athletes: Respiratory physiological benefits beyond cardiovascular performance. Arch. Bronconeumol. 2017, 53, 237–244. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Essentials of Exercise Physiology; Wolters Kluwer: Philadelphia, PA, USA, 2016. [Google Scholar]
- Szczygieł, E.; Blaut, J.; Zielonka-Pycka, K.; Tomaszewski, K.; Golec, J.; Czechowska, D.; Masłoń, A.; Golec, E.B. The impact of deep muscle training on the quality of posture and breathing. J. Mot. Behav. 2018, 50, 219–227. [Google Scholar] [CrossRef]
- Bahenský, P.; Malátová, R.; Bunc, V. Changed dynamic ventilation parameters as a result of a breathing exercise intervention program. J. Sports Med. Phys. Fit. 2019, 59, 1369–1375. [Google Scholar] [CrossRef]
- Bahenský, P.; Bunc, V.; Marko, D.; Malátová, R. Dynamics of ventilation parameters at different load intensities and the options to influence it by a breathing exercise. J. Sports Med. Phys. Fit. 2020, 60, 1101–1109. [Google Scholar] [CrossRef]
- Bahenský, P.; Bunc, V.; Malátová, R.; Marko, D.; Grosicki, G.J.; Schuster, J. Impact of a Breathing Intervention on Engagement of Abdominal, Thoracic, and Subclavian Musculature during Exercise, a Randomized Trial. J. Clin. Med. 2021, 10, 3514. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition and Human Performance; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1996. [Google Scholar]
- Hof, I. The Wim Hof Method Explained; Innerfire: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Carney, S. What Doesn’t Kill Us: How Freezing Water, Extreme Altitude, and Environmental Conditioning Will Renew Our Lost Evolutionary Strength; Rodale: Emmaus, PA, USA, 2017. [Google Scholar]
- Chaitow, L.; Bradley, D.; Gilbert, C. Recognizing and Treating Breathing Disorders; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Urbaniak, G.C.; Plous, S. Research Randomizer (Version 4.0). Available online: http://www.randomizer.org/ (accessed on 1 March 2021).
- Bahenský, P.; Hermann, T.; Malátová, R. Breathing pattern during load and its change due to interventional program of breathing exercise. In Proceedings of the 12th International Conference on Kinantrhopology, Brno, Czech Republic, 7–9 September 2019. [Google Scholar]
- Hof, W.; Jong, K.D.; Brown, A. The Way of the Iceman: How the Wim Hof Method Creates Radiant, Longterm Health-Using the Science and Secrets of Breath Control, Cold-Training and Commitment; Dragon Door Publications: Saint Paul, MN, USA, 2017. [Google Scholar]
- Kox, M.; Stoffels, M.; Smeekens, S.P.; Van Alfen, N.; Gomes, M.; Eijsvogels, T.M.; Hopman, M.T.E.; van der Hoeven, J.G.; Netea, M.G.; Pickkers, P. The influence of concentration/meditation on autonomic nervous system activity and the innate immune response: A case study. Psychosom. Med. 2012, 74, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Kox, M.; van Eijk, L.T.; Zwaag, J.; van den Wildenberg, J.; Sweep, F.C.; van der Hoeven, J.G.; Pickkers, P. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 7379–7384. [Google Scholar] [CrossRef] [Green Version]
- Van Middendorp, H.; Kox, M.; Pickkers, P.; Evers, A.W. The role of outcome expectancies for a training program consisting of meditation, breathing exercises, and cold exposure on the response to endotoxin administration: A proof-of-principle study. Clin. Rheumatol. 2016, 35, 1081–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahenský, P.; Marko, D.; Grosicki, G.; Malátová, R. Warm-up breathing exercises accelerate VO2 kinetics and reduce subjective strain during incremental cycling exercise in adolescents. J. Phys. Educ. Sport 2020, 20, 3361–3367. [Google Scholar]
- Citherlet, T.; Crettaz von Roten, F.; Kayser, B.; Guex, K. Acute Effects of the Wim Hof Breathing Method on Repeated Sprint Ability: A Pilot Study. Front. Sports Act Living 2021, 3, 700757. [Google Scholar] [CrossRef] [PubMed]
- Sheel, A.W. Respiratory muscle training in healthy individuals. Sports Med. 2002, 32, 567–581. [Google Scholar] [CrossRef] [PubMed]
- McConnell, A.K.; Romer, L.M. Respiratory muscle training in healthy humans: Resolving the controversy. Int. J. Sports Med. 2004, 25, 2284–2293. [Google Scholar]
- HajGhanbari, B.; Yamabayashi, C.; Buna, T.R.; Coelho, J.D.; Freedman, K.D.; Morton, T.A.; Palmer, S.A.; Toy, M.A.; Walsh, C.; Sheel, A.W.; et al. Effects of respiratory muscle training on performance in athletes: A systematic review with meta-analyses. J. Strength Cond. Res. 2013, 27, 1643–1663. [Google Scholar] [CrossRef]
- Harms, C.A.; Babcock, M.A.; McClaran, S.R.; Pegelow, D.F.; Nickele, G.A.; Nelson, W.B.; Dempsey, J.A. Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 1997, 82, 1573–1583. [Google Scholar] [CrossRef] [Green Version]
- Spengler, C.M.; Roos, M.; Laube, S.M.; Boutellier, U. Decreased exercise blood lactate concentrations after respiratory endurance training in humans. Eur. J. Appl. Physiol. 1999, 79, 299–305. [Google Scholar] [CrossRef]
- Markov, G.; Spengler, C.M.; KnoÈpfli-Lenzin, C.; Stuessi, C.; Boutellier, U. Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur. J. Appl. Physiol. 2001, 85, 233–239. [Google Scholar] [CrossRef]
- Sonetti, D.A.; Wetter, T.J.; Pegelow, D.F.; Dempsey, J.A. Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir. Physiol. 2001, 127, 185–199. [Google Scholar] [CrossRef]
- Bernardi, E.; Melloni, E.; Mandolesi, G.; Pomidori, L.; Cogo, A. Respiratory muscle endurance training (RMET) with normocapnic hyperpnea (NH) improves ventilatory function and exercise performance in triathletes. Eur. Respir. J. 2012, 40, 858. [Google Scholar]
- Condessa, R.L.; Brauner, J.S.; Saul, A.L.; Baptista, M.; Silva, A.C.; Vieira, S.R. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: A randomised trial. J. Physiother. 2013, 59, 101–107. [Google Scholar] [CrossRef] [Green Version]
- West, C.R.; Taylor, B.J.; Campbell, I.G.; Romer, L.M. Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury. Scand. J. Med. Sci. Sports 2014, 24, 764–772. [Google Scholar] [CrossRef] [PubMed]
Workload | Before Intervention | After Intervention | % Change | Cohen’s d | |
---|---|---|---|---|---|
VE [L·min−1] | 1 W·kg−1 | 38.08 ± 4.94 | 42.91 ± 7.27 | 12.57 ± 11.65 | 0.77 |
2 W·kg−1 | 52.26 ± 5.59 | 57.23 ± 6.49 | 10.47 ± 15.76 | 0.81 | |
3 W·kg−1 | 72.81 ± 6.83 | 80.66 ± 10.21 | 11.15 ± 13.22 | 0.90 | |
4 W·kg−1 | 96.87 ± 13.42 | 101.93 ± 14.74 | 5.91 ± 14.45 | 0.35 | |
MEANS | 65.01 ± 22.16 | 70.68 ± 22.52 | 10.02 ± 2.49 | ||
VT [L] | 1 W·kg−1 | 1.46 ± 0.50 | 1.43 ± 0.34 | 0.47 ± 11.76 | −0.08 |
2 W·kg−1 | 1.78 ± 0.51 | 1.76 ± 0.43 | 0.05 ± 8.42 | −0.04 | |
3 W·kg−1 | 2.05 ± 0.53 | 2.08 ± 0.45 | 2.67 ± 8.58 | 0.05 | |
4 W·kg−1 | 2.25 ± 0.57 | 2.32 ± 0.63 | 3.08 ± 7.05 | 0.12 | |
MEANS | 1.89 ± 0.30 | 1.90 ± 0.34 | 1.57 ± 1.72 | ||
BF [breath·min−1] | 1 W·kg−1 | 28.11 ± 7.44 | 31.30 ± 7.44 | 13.46 ± 16.48 | 0.42 |
2 W·kg−1 | 31.41 ± 8.66 | 34.01 ± 8.15 | 11.04 ± 17.08 | 0.30 | |
3 W·kg−1 | 37.55 ± 8.84 | 39.93 ± 7.21 | 9.07 ± 17.38 | 0.29 | |
4 W·kg−1 | 44.69 ± 8.75 | 45.99 ± 9.83 | 2.75 ± 11.11 | 0.13 | |
MEANS | 35.44 ± 6.32 | 37.81 ± 5.66 | 9.08 ± 3.97 |
Workload | Before Intervention | After Intervention | % Change | Cohen’s d | |
---|---|---|---|---|---|
VE [L·min−1] | 1 W·kg−1 | 39.22 ± 4.15 | 40.98 ± 6.57 | 4.06 ± 8.93 | 0.31 |
2 W·kg−1 | 52.90 ± 7.50 | 58.64 ± 11.40 | 10.36 ± 11.51 | 0.59 | |
3 W·kg−1 | 76.67 ± 10.03 | 81.52 ± 15.13 | 5.93 ± 9.63 | 0.37 | |
4 W·kg−1 | 94.86 ± 9.08 | 96.36 ± 11.13 | 1.51 ± 5.41 | 0.14 | |
MEANS | 65.91 ± 21.42 | 69.38 ± 21.20 | 5.46 ± 3.23 | ||
VT [L] | 1 W·kg−1 | 1.27 ± 0.13 | 1.28 ± 0.24 | −0.02 ± 9.22 | 0.04 |
2 W·kg−1 | 1.57 ± 0.26 | 1.61 ± 0.33 | 2.48 ± 9.86 | 0.14 | |
3 W·kg−1 | 1.85 ± 0.23 | 1.85 ± 0.30 | −0.58 ± 7.08 | −0.01 | |
4 W·kg−1 | 1.96 ± 0.20 | 1.92 ± 0.23 | −2.49 ± 5.91 | −0.21 | |
MEANS | 1.66 ± 0.27 | 1.67 ± 0.25 | −0.14 ± 1.76 | ||
BF [breath·min−1] | 1 W·kg−1 | 31.00 ± 4.57 | 32.51 ± 6.25 | 4.48 ± 8.69 | 0.27 |
2 W·kg−1 | 34.09 ± 4.44 | 36.82 ± 5.83 | 8.28 ± 12.42 | 0.52 | |
3 W·kg−1 | 41.57 ± 5.39 | 44.23 ± 5.84 | 7.02 ± 11.81 | 0.47 | |
4 W·kg−1 | 48.38 ± 3.97 | 50.29 ± 3.08 | 4.38 ± 8.01 | 0.53 | |
MEANS | 38.76 ± 6.75 | 40.96 ± 6.82 | 6.04 ± 1.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marko, D.; Bahenský, P.; Bunc, V.; Grosicki, G.J.; Vondrasek, J.D. Does Wim Hof Method Improve Breathing Economy during Exercise? J. Clin. Med. 2022, 11, 2218. https://doi.org/10.3390/jcm11082218
Marko D, Bahenský P, Bunc V, Grosicki GJ, Vondrasek JD. Does Wim Hof Method Improve Breathing Economy during Exercise? Journal of Clinical Medicine. 2022; 11(8):2218. https://doi.org/10.3390/jcm11082218
Chicago/Turabian StyleMarko, David, Petr Bahenský, Václav Bunc, Gregory J. Grosicki, and Joseph D. Vondrasek. 2022. "Does Wim Hof Method Improve Breathing Economy during Exercise?" Journal of Clinical Medicine 11, no. 8: 2218. https://doi.org/10.3390/jcm11082218
APA StyleMarko, D., Bahenský, P., Bunc, V., Grosicki, G. J., & Vondrasek, J. D. (2022). Does Wim Hof Method Improve Breathing Economy during Exercise? Journal of Clinical Medicine, 11(8), 2218. https://doi.org/10.3390/jcm11082218