Mediators of Amylin Action in Metabolic Control
Abstract
:1. A Brief History of Amylin and Scope of Review
2. Introduction to Amylin
2.1. Amylin as a Pancreatic Beta-Cell Hormone
2.2. Amylin Receptors and Pharmacology
2.2.1. Receptor Agonism of CT Family Peptide Receptors
2.2.2. Role of Specific Amylin Receptors for Endogenous Amylin Action
2.2.3. Differences in Internalization and Regulation of Receptor Subtypes
3. Physiological Role of Amylin in Appetite Control
4. Physiological Role of Amylin in Glucose Control
4.1. Amylin Slows Gastric Emptying
4.2. Amylin Suppresses Meal-Induced Glucagon Secretion
5. Role of Amylin in Disease States with Compromised Glucose Control
5.1. Type 1 and Type 2 Diabetes
5.2. Gestational Diabetes Mellitus
5.3. Obesity
5.4. Bariatric Surgery and Post-Bariatric Surgery Hypoglycemia
5.5. Amylin and Alzheimer’s Disease (AD)
6. Amylin-Based Therapies for the Treatment of Diabetes and Obesity
6.1. Pramlintide
6.2. Dual Amylin and Insulin-Based Therapies for the Treatment of 1DM and 2DM
6.3. Long-Acting Amylin Agonists and Dual Amylin and CT Receptor Agonists (DACRAs)
6.4. DACRA Mechanism
6.5. Specific Role of the CTR in Metabolism
6.6. New Developments of Amylin Analogs
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Westermark, P.; Wernstedt, C.; Wilander, E.; Hayden, D.W.; O’Brien, T.D.; Johnson, K.H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA 1987, 84, 3881–3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, G.J.; Willis, A.C.; Clark, A.; Turner, R.C.; Sim, R.B.; Reid, K.B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA 1987, 84, 8628–8632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opie, E.L. On the Relation of Chronic Interstitial Pancreatitis to the Islands of Langerhans and to Diabetes Melutus. J. Exp. Med. 1901, 5, 397–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahronheim, J.H. The Nature of the Hyaline Material in the Pancreatic Islands in Diabetes Mellitus. Am. J. Pathol. 1943, 19, 873–882. [Google Scholar]
- Lukinius, A.; Wilander, E.; Westermark, G.T.; Engstrom, U.; Westermark, P. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 1989, 32, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, M.; Asai, J.; Kangawa, K.; Matsukura, S.; Matsuo, H. Establishment of radioimmunoassay for human islet amyloid polypeptide and its tissue content and plasma concentration. Biochem. Biophys. Res. Commun. 1989, 164, 394–399. [Google Scholar] [CrossRef]
- Ogawa, A.; Harris, V.; McCorkle, S.K.; Unger, R.H.; Luskey, K.L. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J. Clin. Investig. 1990, 85, 973–976. [Google Scholar] [CrossRef]
- Dehestani, B.; Stratford, N.R.; le Roux, C.W. Amylin as a Future Obesity Treatment. J. Obes. Metab. Syndr. 2021, 30, 320–325. [Google Scholar] [CrossRef]
- Mathiesen, D.S.; Bagger, J.I.; Knop, F.K. Long-acting amylin analogues for the management of obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 183–190. [Google Scholar] [CrossRef]
- Mathiesen, D.S.; Lund, A.; Vilsbøll, T.; Knop, F.K.; Bagger, J.I. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front. Endocrinol. 2020, 11, 617400. [Google Scholar] [CrossRef]
- Larsen, A.T.; Gydesen, S.; Sonne, N.; Karsdal, M.A.; Henriksen, K. The dual amylin and calcitonin receptor agonist KBP-089 and the GLP-1 receptor agonist liraglutide act complimentarily on body weight reduction and metabolic profile. BMC Endocr. Disord. 2021, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.T.; Sonne, N.; Andreassen, K.V.; Gehring, K.; Karsdal, M.A.; Henriksen, K. The Dual Amylin and Calcitonin Receptor Agonist KBP-088 Induces Weight Loss and Improves Insulin Sensitivity Superior to Chronic Amylin Therapy. J. Pharm. Exp. Ther. 2019, 370, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Sonne, N.; Larsen, A.T.; Andreassen, K.V.; Karsdal, M.A.; Henriksen, K. The Dual Amylin and Calcitonin Receptor Agonist, KBP-066, Induces an Equally Potent Weight Loss Across a Broad Dose Range While Higher Doses May Further Improve Insulin Action. J. Pharmacol. Exp. Ther. 2020, 373, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.L.; Chen, S.; Lutz, T.A.; Parkes, D.G.; Roth, J.D. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol. Rev. 2015, 67, 564–600. [Google Scholar] [CrossRef] [Green Version]
- Betsholtz, C.; Johnson, K.H.; Westermark, P. ‘Amylin’ hormone. Nature 1989, 338, 211. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: A peptide superfamily. Crit. Rev. Neurobiol. 1997, 11, 167–239. [Google Scholar] [CrossRef]
- Betsholtz, C.; Christmansson, L.; Engstrom, U.; Rorsman, F.; Svensson, V.; Johnson, K.H.; Westermark, P. Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett. 1989, 251, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, F.D.; Raleigh, D.P. Effects of sequential proline substitutions on amyloid formation by human Amylin20–29±. Biochemistry 1999, 38, 1811–1818. [Google Scholar] [CrossRef]
- Ridgway, Z.; Lee, K.H.; Zhyvoloup, A.; Wong, A.; Eldrid, C.; Hannaberry, E.; Thalassinos, K.; Abedini, A.; Raleigh, D.P. Analysis of Baboon IAPP Provides Insight into Amyloidogenicity and Cytotoxicity of Human IAPP. Biophys. J. 2020, 118, 1142–1151. [Google Scholar] [CrossRef]
- Cooper, G.J. Amylin compared with calcitonin gene-related peptide: Structure, biology, and relevance to metabolic disease. Endocr. Rev. 1994, 15, 163–201. [Google Scholar] [CrossRef]
- Westermark, P.; Andersson, A.; Westermark, G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011, 91, 795–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.E.; Jang, J.; Gurlo, T.; Carty, M.D.; Soeller, W.C.; Butler, P.C. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): A new model for type 2 diabetes. Diabetes 2004, 53, 1509–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, R.L.; Andrikopoulos, S.; Verchere, C.B.; Vidal, J.; Wang, F.; Cnop, M.; Prigeon, R.L.; Kahn, S.E. Increased dietary fat promotes islet amyloid formation and beta-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 2003, 52, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Roesti, E.S.; Boyle, C.N.; Zeman, D.T.; Sande-Melon, M.; Storni, F.; Cabral-Miranda, G.; Knuth, A.; Lutz, T.A.; Vogel, M.; Bachmann, M.F. Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus. Vaccines 2020, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Gedulin, B.; Cooper, G.J.; Young, A.A. Amylin secretion from the perfused pancreas: Dissociation from insulin and abnormal elevation in insulin-resistant diabetic rats. Biochem. Biophys. Res. Commun. 1991, 180, 782–789. [Google Scholar] [CrossRef]
- Inoue, K.; Hisatomi, A.; Umeda, F.; Nawata, H. Release of amylin from perfused rat pancreas in response to glucose, arginine, beta-hydroxybutyrate, and gliclazide. Diabetes 1991, 40, 1005–1009. [Google Scholar] [CrossRef]
- Kanatsuka, A.; Makino, H.; Ohsawa, H.; Tokuyama, Y.; Yamaguchi, T.; Yoshida, S.; Adachi, M. Secretion of islet amyloid polypeptide in response to glucose. FEBS Lett. 1989, 259, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Qi, D.; Cai, K.; Wang, O.; Li, Z.; Chen, J.; Deng, B.; Qian, L.; Le, Y. Fatty acids induce amylin expression and secretion by pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E99–E107. [Google Scholar] [CrossRef]
- Inoue, K.; Hisatomi, A.; Umeda, F.; Nawata, H. Release of amylin from perfused rat pancreas in response to glucose and glucagon. Diabetes Res. Clin. Pract. 1992, 15, 85–88. [Google Scholar] [CrossRef]
- Alam, T.; Chen, L.; Ogawa, A.; Leffert, J.D.; Unger, R.H.; Luskey, K.L. Coordinate regulation of amylin and insulin expression in response to hypoglycemia and fasting. Diabetes 1992, 41, 508–514. [Google Scholar] [CrossRef]
- Koda, J.E.; Fineman, M.; Rink, T.J.; Dailey, G.E.; Muchmore, D.B.; Linarelli, L.G. Amylin concentrations and glucose control. Lancet 1992, 339, 1179–1180. [Google Scholar] [CrossRef]
- Leffert, J.D.; Newgard, C.B.; Okamoto, H.; Milburn, J.L.; Luskey, K.L. Rat amylin: Cloning and tissue-specific expression in pancreatic islets. Proc. Natl. Acad. Sci. USA 1989, 86, 3127–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Este, L.; Wimalawansa, S.J.; Renda, T.G. Amylin-immunoreactivity is co-stored in a serotonin cell subpopulation of the vertebrate stomach and duodenum. Arch. Histol. Cytol. 1995, 58, 537–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrier, G.J.; Pierson, A.M.; Jones, P.M.; Bloom, S.R.; Girgis, S.I.; Legon, S. Expression of the rat amylin (IAPP/DAP) gene. J. Mol. Endocrinol. 1989, 3, R1–R4. [Google Scholar] [CrossRef] [PubMed]
- Miyazato, M.; Nakazato, M.; Shiomi, K.; Aburaya, J.; Toshimori, H.; Kangawa, K.; Matsuo, H.; Matsukura, S. Identification and characterization of islet amyloid polypeptide in mammalian gastrointestinal tract. Biochem. Biophys. Res. Commun. 1991, 181, 293–300. [Google Scholar] [CrossRef]
- Mulder, H.; Lindh, A.C.; Ekblad, E.; Westermark, P.; Sundler, F. Islet amyloid polypeptide is expressed in endocrine cells of the gastric mucosa in the rat and mouse. Gastroenterology 1994, 107, 712–719. [Google Scholar] [CrossRef]
- Nicholl, C.G.; Bhatavdekar, J.M.; Mak, J.; Girgis, S.I.; Legon, S. Extra-pancreatic expression of the rat islet amyloid polypeptide (amylin) gene. J. Mol. Endocrinol. 1992, 9, 157–163. [Google Scholar] [CrossRef]
- Dobolyi, A. Central amylin expression and its induction in rat dams. J. Neurochem. 2009, 111, 1490–1500. [Google Scholar] [CrossRef]
- Li, Z.; Kelly, L.; Heiman, M.; Greengard, P.; Friedman, J.M. Hypothalamic Amylin Acts in Concert with Leptin to Regulate Food Intake. Cell Metab. 2015, 22, 1059–1067. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, C.; Tokita, K.; Maruyama, T.; Kaneko, M.; Tsuneoka, Y.; Fukumitsu, K.; Miyazawa, E.; Shinozuka, K.; Huang, A.J.; Nishimori, K.; et al. Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Rep. 2021, 35, 109204. [Google Scholar] [CrossRef]
- Poyner, D.R.; Sexton, P.M.; Marshall, I.; Smith, D.M.; Quirion, R.; Born, W.; Muff, R.; Fischer, J.A.; Foord, S.M. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 2002, 54, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLatchie, L.M.; Fraser, N.J.; Main, M.J.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.; Lee, M.G.; Foord, S.M. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998, 393, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.L.; Christopoulos, G.; Christopoulos, A.; Poyner, D.R.; Sexton, P.M. Pharmacological discrimination of calcitonin receptor: Receptor activity-modifying protein complexes. Mol. Pharmacol. 2005, 67, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Boccia, L.; Gamakharia, S.; Coester, B.; Whiting, L.; Lutz, T.A.; Le Foll, C. Amylin brain circuitry. Peptides 2020, 132, 170366. [Google Scholar] [CrossRef] [PubMed]
- Coester, B.; Koester-Hegmann, C.; Lutz, T.A.; Le Foll, C. Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice. Diabetes 2020, 69, 1110–1125. [Google Scholar] [CrossRef] [PubMed]
- Liberini, C.G.; Boyle, C.N.; Cifani, C.; Venniro, M.; Hope, B.T.; Lutz, T.A. Amylin receptor components and the leptin receptor are co-expressed in single rat area postrema neurons. Eur. J. Neurosci. 2016, 43, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Young, A. Inhibition of insulin secretion. Adv. Pharmacol. 2005, 52, 173–192. [Google Scholar]
- Young, A. Effects in skeletal muscle. Adv. Pharmacol. 2005, 52, 209–228. [Google Scholar]
- Young, A. Effects in fat. Adv. Pharmacol. 2005, 52, 235–238. [Google Scholar]
- Bailey, R.J.; Walker, C.S.; Ferner, A.H.; Loomes, K.M.; Prijic, G.; Halim, A.; Whiting, L.; Phillips, A.R.; Hay, D.L. Pharmacological characterization of rat amylin receptors: Implications for the identification of amylin receptor subtypes. Br. J. Pharmacol. 2012, 166, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Muff, R.; Born, W.; Fischer, J.A. Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: Homologous peptides, separate receptors and overlapping biological actions. Eur. J. Endocrinol. 1995, 133, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Kuwasako, K.; Hay, D.L.; Nagata, S.; Murakami, M.; Kitamura, K.; Kato, J. Functions of third extracellular loop and helix 8 of Family B GPCRs complexed with RAMPs and characteristics of their receptor trafficking. Curr. Protein Pept. Sci. 2013, 14, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.L.; Garelja, M.L.; Poyner, D.R.; Walker, C.S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. 2018, 175, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jeong, Y.; Simms, J.; Warner, M.L.; Poyner, D.R.; Chung, K.Y.; Pioszak, A.A. Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. J. Mol. Biol. 2020, 432, 1996–2014. [Google Scholar] [CrossRef] [PubMed]
- Coester, B.; Pence, S.W.; Arrigoni, S.; Boyle, C.N.; Le Foll, C.; Lutz, T.A. RAMP1 and RAMP3 Differentially Control Amylin’s Effects on Food Intake, Glucose and Energy Balance in Male and Female Mice. Neuroscience 2020, 447, 74–93. [Google Scholar] [CrossRef]
- Fernandes-Santos, C.; Zhang, Z.; Morgan, D.A.; Guo, D.F.; Russo, A.F.; Rahmouni, K. Amylin Acts in the Central Nervous System to Increase Sympathetic Nerve Activity. Endocrinology 2013, 154, 2481–2488. [Google Scholar] [CrossRef] [Green Version]
- Mollet, A.; Gilg, S.; Riediger, T.; Lutz, T.A. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav. 2004, 81, 149–155. [Google Scholar] [CrossRef]
- Grabler, V.; Lutz, T.A. Chronic infusion of the amylin antagonist AC 187 increases feeding in Zucker fa/fa rats but not in lean controls. Physiol. Behav. 2004, 81, 481–488. [Google Scholar] [CrossRef]
- Olsson, M.; Herrington, M.K.; Reidelberger, R.D.; Permert, J.; Gebre-Medhin, S.; Arnelo, U. Food intake and meal pattern in IAPP knockout mice with and without infusion of exogenous IAPP. Scand. J. Gastroenterol. 2012, 47, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Gingell, J.J.; Rees, T.A.; Hendrikse, E.R.; Siow, A.; Rennison, D.; Scotter, J.; Harris, P.W.R.; Brimble, M.A.; Walker, C.S.; Hay, D.L. Distinct Patterns of Internalization of Different Calcitonin Gene-Related Peptide Receptors. ACS Pharmacol. Transl. Sci. 2020, 3, 296–304. [Google Scholar] [CrossRef]
- Boyle, C.N.; Rossier, M.M.; Lutz, T.A. Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol. Behav. 2011, 104, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riediger, T.; Schmid, H.A.; Young, A.A.; Simon, E. Pharmacological characterisation of amylin-related peptides activating subfornical organ neurones. Brain Res. 1999, 837, 161–168. [Google Scholar] [CrossRef]
- Fletcher, M.M.; Keov, P.; Truong, T.T.; Mennen, G.; Hick, C.A.; Zhao, P.; Furness, S.G.B.; Kruse, T.; Clausen, T.R.; Wootten, D.; et al. AM833 Is a Novel Agonist of Calcitonin Family G Protein-Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. J. Pharmacol. Exp. Ther. 2021, 377, 417–440. [Google Scholar] [CrossRef] [PubMed]
- Boyle, C.N.; Lutz, T.A.; le Foll, C. Amylin—Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol. Metab. 2018, 8, 203–210. [Google Scholar] [CrossRef]
- Foll, L.C.; Lutz, T.A. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr. Physiol. 2020, 10, 811–837. [Google Scholar]
- Zakariassen, H.L.; John, L.M.; Lutz, T.A. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin. Pharmacol. Toxicol. 2020, 127, 163–177. [Google Scholar] [CrossRef]
- Lutz, T.A. The role of amylin in the control of energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, 1475–1484. [Google Scholar] [CrossRef] [Green Version]
- Lutz, T.A.; Geary, N.; Szabady, M.M.; Del Prete, E.; Scharrer, E. Amylin decreases meal size in rats. Physiol. Behav. 1995, 58, 1197–1202. [Google Scholar] [CrossRef]
- Coester, B.; Foll, C.L.; Lutz, T.A. Viral depletion of calcitonin receptors in the area postrema: A proof-of-concept study. Physiol. Behav. 2020, 223, 112992. [Google Scholar] [CrossRef]
- Reidelberger, R.D.; Haver, A.C.; Arnelo, U.; Smith, D.D.; Schaffert, C.S.; Permert, J. Amylin receptor blockade stimulates food intake in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Young, A. Amylin and the integrated control of nutrient influx. Adv. Pharmacol. 2005, 52, 67–77. [Google Scholar] [PubMed]
- Lutz, T.A.; del Prete, E.; Scharrer, E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol. Behav. 1994, 55, 891–895. [Google Scholar] [CrossRef]
- Morley, E.J.; Flood, J.F. Amylin decreases food intake in mice. Peptides 1991, 12, 865–869. [Google Scholar] [CrossRef]
- Rushing, P.A.; Hagan, M.M.; Seeley, R.J.; Lutz, T.A.; Woods, S.C. Amylin: A novel action in the brain to reduce body weight. Endocrinology 2000, 141, 850–853. [Google Scholar] [CrossRef]
- Rushing, P.A.; Hagan, M.M.; Seeley, R.J.; Lutz, T.A.; D’Alessio, D.A.; Air, E.L.; Woods, S.C. Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 2001, 142, 5035. [Google Scholar] [CrossRef]
- Lutz, T.A.; Senn, M.; Althaus, J.; Del Prete, E.; Ehrensperger, F.; Scharrer, E. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 1998, 19, 309–317. [Google Scholar] [CrossRef]
- Riediger, T.; Schmid, H.A.; Lutz, T.A.; Simon, E. Amylin and glucose co-activate area postrema neurons of the rat. Neurosci. Lett. 2002, 328, 121–124. [Google Scholar] [CrossRef]
- Gedulin, R.B.; Young, A.A. Hypoglycemia overrides amylin-mediated regulation of gastric emptying in rats. Diabetes 1998, 47, 93–97. [Google Scholar] [CrossRef]
- Honegger, M.; Lutz, T.A.; Boyle, C.N. Hypoglycemia attenuates acute amylin-induced reduction of food intake in male rats. Physiol. Behav. 2021, 237, 113435. [Google Scholar] [CrossRef]
- Riediger, T.; Zuend, D.; Becskei, C.; Lutz, T.A. The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Lutz, T.A.; Coester, B.; Whiting, L.; Dunn-Meynell, A.A.; Boyle, C.N.; Bouret, S.G.; Levin, B.E.; Le Foll, C. Amylin Selectively Signals Onto POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Diabetes 2018, 67, 805–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braegger, F.E.; Asarian, L.; Dahl, K.; Lutz, T.A.; Boyle, C.N. The role of the area postrema in the anorectic effects of amylin and salmon calcitonin: Behavioral and neuronal phenotyping. Eur. J. Neurosci. 2014, 40, 3055–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccia, L.; le Foll, C.; Lutz, T.A. Noradrenaline signaling in the LPBN mediates amylin’s and salmon calcitonin’s hypophagic effect in male rats. FASEB J. 2020, 34, 15448–15461. [Google Scholar] [CrossRef]
- Boccia, L.B.; Borner, T.; Ghidewon, M.Y.; Kulka, P.; Piffaretti, C.; Doebley, S.A.; De Jonghe, B.C.; Grill, H.J.; Lutz, T.A.; Le Foll, C. Hypophagia induced by salmon calcitonin, but not by amylin, is partially driven by malaise and is mediated by CGRP neurons. Mol. Metab. 2022, 58, 101444. [Google Scholar] [CrossRef] [PubMed]
- Potes, C.S.; Turek, V.F.; Cole, R.L.; Vu, C.; Roland, B.L.; Roth, J.D.; Riediger, T.; Lutz, T.A. Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, 623–631.e5. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Gonzalez, I.; Pan, W.; Tsang, A.H.; Adams, J.; Ndoka, E.; Gordian, D.; Khoury, B.; Roelofs, K.; Evers, S.S.; et al. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab. 2020, 31, 301–312.e5. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.E.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Genetic identification of a neural circuit that suppresses appetite. Nature 2013, 503, 111–114. [Google Scholar] [CrossRef]
- Mietlicki-Baase, G.E.; Hayes, M.R. Amylin activates distributed CNS nuclei to control energy balance. Physiol. Behav. 2014, 136, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Mietlicki-Baase, E.G.; McGrath, L.E.; Koch-Laskowski, K.; Krawczyk, J.; Reiner, D.J.; Pham, T.; Nguyen, C.T.N.; Turner, C.A.; Olivos, D.R.; Wimmer, M.E.; et al. Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior. Neuropharmacology 2017, 123, 67–79. [Google Scholar] [CrossRef]
- Mietlicki-Baase, E.G.; Reiner, D.J.; Cone, J.J.; Olivos, D.R.; McGrath, L.E.; Zimmer, D.J.; Roitman, M.F.; Hayes, M.R. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology 2015, 40, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Whiting, L.; McCutcheon, J.E.; Boyle, C.N.; Roitman, M.F.; Lutz, T.A. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiol. Behav. 2017, 176, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Zakariassen, H.L.; John, L.M.; Lykkesfeldt, J.; Raun, K.; Glendorf, T.; Schaffer, L.; Lundh, S.; Secher, A.; Lutz, T.A.; Le Foll, C. Salmon calcitonin distributes into the arcuate nucleus to a subset of NPY neurons in mice. Neuropharmacology 2020, 167, 107987. [Google Scholar] [CrossRef] [PubMed]
- Eiden, S.; Daniel, C.; Steinbrueck, A.; Schmidt, I.; Simon, E. Salmon calcitonin—A potent inhibitor of food intake in states of impaired leptin signalling in laboratory rodents. J. Physiol. 2002, 541, 1041–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osto, M.; Wielinga, P.Y.; Alder, B.; Walser, N.; Lutz, T.A. Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol. Behav. 2007, 91, 566–572. [Google Scholar] [CrossRef]
- Duffy, S.; Lutz, T.A.; Boyle, C.N. Rodent models of leptin receptor deficiency are less sensitive to amylin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, r856–r865. [Google Scholar] [CrossRef]
- Chan, J.L.; Roth, J.D.; Weyer, C. It takes two to tango: Combined amylin/leptin agonism as a potential approach to obesity drug development. J. Investig. Med. 2009, 57, 777–783. [Google Scholar] [CrossRef]
- Roth, J.D.; Roland, B.L.; Cole, R.L.; Trevaskis, J.L.; Weyer, C.; Koda, J.E.; Anderson, C.M.; Parkes, D.G.; Baron, A.D. Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies. Proc. Natl. Acad. Sci. USA 2008, 105, 7257–7262. [Google Scholar] [CrossRef] [Green Version]
- Roth, J.D.; Trevaskis, J.L.; Turek, V.F.; Parkes, D.G. “Weighing in” on synergy: Preclinical research on neurohormonal anti-obesity combinations. Brain Res. 2010, 1350, 86–94. [Google Scholar] [CrossRef]
- Trevaskis, J.L.; Coffey, T.; Cole, R.; Lei, C.; Wittmer, C.; Walsh, B.; Weyer, C.; Koda, J.; Baron, A.D.; Parkes, D.G.; et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: Magnitude and mechanisms. Endocrinology 2008, 149, 5679–5687. [Google Scholar] [CrossRef] [Green Version]
- Trevaskis, J.L.; Lei, C.; Koda, J.E.; Weyer, C.; Parkes, D.G.; Roth, J.D. Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity 2010, 18, 21–26. [Google Scholar] [CrossRef]
- Trevaskis, J.L.; Parkes, D.G.; Roth, J.D. Insights into amylin-leptin synergy. Trends Endocrinol. Metab. 2010, 21, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Trevaskis, J.L.; Wittmer, C.; Athanacio, J.R.; Griffin, P.S.; Parkes, D.G.; Roth, J.D. Amylin/leptin synergy is absent in extreme obesity and not restored by calorie restriction-induced weight loss in rats. Obes. Sci. Pract. 2016, 2, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Turek, V.F.; Trevaskis, J.L.; Levin, B.E.; Dunn-Meynell, A.A.; Irani, B.; Gu, G.; Wittmer, C.; Griffin, P.S.; Vu, C.; Parkes, D.G.; et al. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 2010, 151, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Irani, B.G.; Dunn-Meynell, A.A.; Levin, B.E. Altered hypothalamic leptin, insulin and melanocortin binding associated with moderate fat diet and predisposition to obesity. Endocrinology 2007, 148, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Dunn-Meynell, A.A.; Le Foll, C.; Johnson, M.D.; Lutz, T.A.; Hayes, M.R.; Levin, B.E. Endogenous VMH amylin signaling is required for full leptin signaling and protection from diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, 355–365. [Google Scholar] [CrossRef]
- Sexton, P.M.; Paxinos, G.; Kenney, M.A.; Wookey, P.J.; Beaumont, K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 1994, 62, 553–567. [Google Scholar] [CrossRef]
- Christopoulos, G.; Paxinos, G.; Huang, X.F.; Beaumont, K.; Toga, A.W.; Sexton, P.M. Comparative distribution of receptors for amylin and the related peptides calcitonin gene related peptide and calcitonin in rat and monkey brain. Can. J. Physiol. Pharmacol. 1995, 73, 1037–1041. [Google Scholar] [CrossRef]
- Mietlicki-Baase, E.G.; Rupprecht, L.E.; Olivos, D.R.; Zimmer, D.J.; Alter, M.D.; Pierce, R.C.; Schmidt, H.D.; Hayes, M.R. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 2013, 38, 1685–1697. [Google Scholar] [CrossRef] [Green Version]
- Le Foll, C.; Johnson, M.D.; Dunn-Meynell, A.A.; Boyle, C.N.; Lutz, T.A.; Levin, B.E. Amylin-induced central IL-6 production enhances ventromedial hypothalamic leptin signaling. Diabetes 2015, 64, 1621–1631. [Google Scholar] [CrossRef] [Green Version]
- Larsen, L.; Le Foll, C.; Dunn-Meynell, A.A.; Levin, B.E. IL-6 Ameliorates Defective Leptin Sensitivity in DIO Ventromedial Hypothalamic Nucleus Neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R764–R770. [Google Scholar] [CrossRef] [Green Version]
- Irani, B.G.; Le Foll, C.; Dunn-Meynell, A.A.; Levin, B.E. Ventromedial nucleus neurons are less sensitive to leptin excitation in rats bred to develop diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Rahmouni, K.; Fath, M.A.; Seo, S.; Thedens, D.R.; Berry, C.J.; Weiss, R.; Nishimura, D.Y.; Sheffield, V.C. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J. Clin. Investig. 2008, 118, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Guo, D.F.; Bugge, K.; Morgan, D.A.; Rahmouni, K.; Sheffield, V.C. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 2009, 18, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coester, B.; Lutz, T.A.; le Foll, C. Mouse Microglial Calcitonin Receptor Knockout Impairs Hypothalamic Amylin Neuronal pSTAT3 Signaling but Lacks Major Metabolic Consequences. Metabolites 2022, 12, 51. [Google Scholar] [CrossRef]
- Moore, C.X.; Cooper, G.J. Co-secretion of amylin and insulin from cultured islet beta-cells: Modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem. Biophys. Res. Commun. 1991, 179, 1–9. [Google Scholar] [CrossRef]
- Scherbaum, W.A. The role of amylin in the physiology of glycemic control. Exp. Clin. Endocrinol. Diabetes 1998, 106, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Young, A.A.; Gedulin, B.R.; Rink, T.J. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7-36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 1996, 45, 1–3. [Google Scholar] [CrossRef]
- Kong, M.F.; King, P.; Macdonald, I.A.; Stubbs, T.A.; Perkins, A.C.; Blackshaw, P.E.; Moyses, C.; Tattersall, R.B. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 1997, 40, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Gedulin, B.R.; Rink, T.J.; Young, A.A. Dose-response for glucagonostatic effect of amylin in rats. Metabolism 1997, 46, 67–70. [Google Scholar] [CrossRef]
- Chance, W.T.; Balasubramaniam, A.; Zhang, F.S.; Wimalawansa, S.J.; Fischer, J.E. Anorexia following the intrahypothalamic administration of amylin. Brain Res. 1991, 539, 352–354. [Google Scholar] [CrossRef]
- Wielinga, P.Y.; Lowenstein, C.; Muff, S.; Munz, M.; Woods, S.C.; Lutz, T.A. Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol. Behav. 2010, 101, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, J.D.; Hughes, H.; Kendall, E.; Baron, A.D.; Anderson, C.M. Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: Effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 2006, 147, 5855–5864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.L.; Bennet, W.M.; Ghatei, M.A.; Byfield, P.G.; Smith, D.M.; Bloom, S.R. Influence of islet amyloid polypeptide and the 8-37 fragment of islet amyloid polypeptide on insulin release from perifused rat islets. Diabetes 1993, 42, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Young, A.A.; Wang, M.W.; Gedulin, B.; Rink, T.J.; Pittner, R.; Beaumont, K. Diabetogenic effects of salmon calcitonin are attributable to amylin-like activity. Metabolism 1995, 44, 1581–1589. [Google Scholar] [CrossRef]
- Young, A.A.; Mott, D.M.; Stone, K.; Cooper, G.J. Amylin activates glycogen phosphorylase in the isolated soleus muscle of the rat. FEBS Lett. 1991, 281, 149–151. [Google Scholar] [CrossRef]
- Kolterman, O.G.; Gottlieb, A.; Moyses, C.; Colburn, W. Reduction of postprandial hyperglycemia in subjects with IDDM by intravenous infusion of AC137, a human amylin analogue. Diabetes Care 1995, 18, 1179–1182. [Google Scholar] [CrossRef]
- Young, A.A.; Gedulin, B.; Vine, W.; Percy, A.; Rink, T.J. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 1995, 38, 642–648. [Google Scholar] [CrossRef]
- Edwards, G.L.; Gedulin, B.R.; Jodka, C.; Dilts, R.P.; Miller, C.C.; Young, A. Area postrem (AP)-lesions block the regulation of gastric emptying by amylin. Neurogastroenterol. Motil. 1998, 10, 26. [Google Scholar]
- Jodka, C.M.; Green, D.; Young, A.; Gedulin, B. Amylin modulation of gastric emptying in rats depends upon an intact vagus. Diabetes 1996, 45, A235. [Google Scholar]
- Young, A. Inhibition of gastric emptying. Adv. Pharmacol. 2005, 52, 99–121. [Google Scholar]
- Woods, S.C.; Lutz, T.A.; Geary, N.; Langhans, W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1219–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geary, N.; Langhans, W.; Scharrer, E. Metabolic concomitants of glucagon-induced suppression of feeding in the rat. Am. J. Physiol. 1981, 241, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Langhans, W.; Zeiger, U.; Scharrer, E.; Geary, N. Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Science 1982, 218, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Young, A. Inhibition of glucagon secretion. Adv. Pharmacol. 2005, 52, 151–171. [Google Scholar] [PubMed]
- Silvestre, R.A.; Rodriguez-Gallardo, J.; Jodka, C.; Parkes, D.G.; Pittner, R.A.; Young, A.A.; Marco, J. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab. 2001, 280, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Gedulin, B.R.; Jodka, C.M.; Herrmann, K.; Young, A.A. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul. Pept. 2006, 137, 121–127. [Google Scholar] [CrossRef]
- Hartter, E.; Svoboda, T.; Ludvik, B.; Schuller, M.; Lell, B.; Kuenburg, E.; Brunnbauer, M.; Woloszczuk, W.; Prager, R. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia 1991, 34, 52–54. [Google Scholar] [CrossRef]
- Enoki, S.; Mitsukawa, T.; Takemura, J.; Nakazato, M.; Aburaya, J.; Toshimori, H.; Matsukara, S. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 1992, 15, 97–102. [Google Scholar] [CrossRef]
- Ludvik, B.; Lell, B.; Hartter, E.; Schnack, C.; Prager, R. Decrease of stimulated amylin release precedes impairment of insulin secretion in type II diabetes. Diabetes 1991, 40, 1615–1619. [Google Scholar] [CrossRef]
- Butler, P.C.; Chou, J.; Carter, W.B.; Wang, Y.N.; Bu, B.H.; Chang, D.; Chang, J.K.; Rizza, R.A. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 1990, 39, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Westermark, P.; Wilander, E.; Westermark, G.T.; Johnson, K.H. Islet amyloid polypeptide-like immunoreactivity in the islet B cells of type 2 (non-insulin-dependent) diabetic and non-diabetic individuals. Diabetologia 1987, 30, 887–892. [Google Scholar] [CrossRef]
- Janson, J.; Soeller, W.C.; Roche, P.C.; Nelson, R.T.; Torchia, A.J.; Kreutter, D.K.; Butler, P.C. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA 1996, 93, 7283–7288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieber, T.R.; Roitelman, J.; Lee, Y.; Luskey, K.L.; Stein, D.T. Direct plasma radioimmunoassay for rat amylin-(1-37): Concentrations with acquired and genetic obesity. Am. J. Physiol. 1994, 267, E156–E164. [Google Scholar] [CrossRef] [PubMed]
- Pieber, T.R.; Stein, D.T.; Ogawa, A.; Alam, T.; Ohneda, M.; McCorkle, K.; Chen, L.; McGarry, J.D.; Unger, R.H. Amylin-insulin relationships in insulin resistance with and without diabetic hyperglycemia. Am. J. Physiol. 1993, 265, E446–E453. [Google Scholar] [CrossRef] [PubMed]
- Leckstrom, A.; Ostenson, C.G.; Efendic, S.; Arnelo, U.; Permert, J.; Lundquist, I.; Westermark, P. Increased storage and secretion of islet amyloid polypeptide relative to insulin in the spontaneously diabetic GK rat. Pancreas 1996, 13, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Mulder, H.; Ahren, B.; Sundler, F. Islet amyloid polypeptide (amylin) and insulin are differentially expressed in chronic diabetes induced by streptozotocin in rats. Diabetologia 1996, 39, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Berglund, E.D.; Wang, M.Y.; Fu, X.; Yu, X.; Charron, M.J.; Burgess, S.C.; Unger, R.H. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl. Acad. Sci. USA 2012, 109, 14972–14976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.Y.; Yan, H.; Shi, Z.; Evans, M.R.; Yu, X.; Lee, Y.; Chen, S.; Williams, A.; Philippe, J.; Roth, M.G.; et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc. Natl. Acad. Sci. USA 2015, 112, 2503–2508. [Google Scholar] [CrossRef] [Green Version]
- Levetan, C.; Want, L.L.; Weyer, C.; Strobel, S.A.; Crean, J.; Wang, Y.; Maggs, D.G.; Kolterman, O.G.; Chandran, M.; Mudaliar, S.R.; et al. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 2003, 26, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nyholm, B.; Orskov, L.; Hove, K.Y.; Gravholt, C.H.; Møller, N.; Alberti, K.G.; Moyses, C.; Kolterman, O.; Schmitz, O. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 1999, 48, 935–941. [Google Scholar] [CrossRef]
- Fineman, M.; Weyer, C.; Maggs, D.G.; Strobel, S.; Kolterman, O.G. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm. Metab. Res. 2002, 34, 504–508. [Google Scholar] [CrossRef]
- Fineman, M.S.; Koda, J.E.; Shen, L.Z.; Strobel, S.A.; Maggs, D.G.; Weyer, C.; Kolterman, O.G. The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism 2002, 51, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, B.; Møller, N.; Gravholt, C.H.; Orskov, L.; Mengel, A.; Bryan, G.; Moyses, C.; Alberti, K.G.; Schmitz, O. Acute effects of the human amylin analog AC137 on basal and insulin-stimulated euglycemic and hypoglycemic fuel metabolism in patients with insulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1996, 81, 1083–1089. [Google Scholar] [PubMed]
- Kautzky-Willer, A.; Thomaseth, K.; Ludvik, B.; Nowotny, P.; Rabensteiner, D.; Waldhausl, W.; Pacini, G.; Prager, R. Elevated islet amyloid pancreatic polypeptide and proinsulin in lean gestational diabetes. Diabetes 1997, 46, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Boyle, C.N.; Le Foll, C. Amylin and Leptin interaction: Role During Pregnancy, Lactation and Neonatal Development. Neuroscience 2019, 447, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Leuthardt, A.S.; Bayer, J.; Monné Rodríguez, J.M.; Boyle, C.N. Influence of High Energy Diet and Polygenic Predisposition for Obesity on Postpartum Health in Rat Dams. Front. Physiol. 2022, 12, 772707. [Google Scholar] [CrossRef]
- Gurlo, T.; Kim, S.; Butler, A.E.; Liu, C.; Pei, L.; Rosenberger, M.; Butler, P.C. Pregnancy in human IAPP transgenic mice recapitulates beta cell stress in type 2 diabetes. Diabetologia 2019, 62, 1000–1010. [Google Scholar] [CrossRef] [Green Version]
- Becerril, S.; Frühbeck, G. Cagrilintide plus semaglutide for obesity management. Lancet 2021, 397, 1687–1689. [Google Scholar] [CrossRef]
- Kruse, T.; Hansen, J.L.; Dahl, K.; Schäffer, L.; Sensfuss, U.; Poulsen, C.; Schlein, M.; Hansen, A.M.K.; Jeppesen, C.B.; Dornonville de la Cour, C.; et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J. Med. Chem. 2021, 64, 11183–11194. [Google Scholar] [CrossRef]
- Lutz, T.A. Roles of amylin in satiation, adiposity and brain development. Forum Nutr. 2010, 63, 64–74. [Google Scholar]
- Gloy, V.L.; Lutz, T.A.; Langhans, W.; Geary, N.; Hillebrand, J.J. Basal plasma levels of insulin, leptin, ghrelin, and amylin do not signal adiposity in rats recovering from forced overweight. Endocrinology 2010, 151, 4280–4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorski, J.N.; Dunn-Meynell, A.A.; Levin, B.E. Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 1782–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.D.; Bouret, S.G.; Dunn-Meynell, A.A.; Boyle, C.N.; Lutz, T.A.; Levin, B.E. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet-induced obese rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, r1032–r1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, B.E.; Dunn-Meynell, A.A.; Ricci, M.R.; Cummings, D.E. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am. J. Physiol. 2003, 285, E949–E957. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.E.; Dunn-Meynell, A.A.; Banks, W.A. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling prior to obesity onset. Am. J. Physiol. 2004, 286, R143–R150. [Google Scholar]
- Bouret, S.G.; Gorski, J.N.; Patterson, C.M.; Chen, S.; Levin, B.E.; Simerly, R.B. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 2008, 7, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, I.E.; Ramirez-Matias, J.; Lu, C.; Pan, W.; Zhu, A.; Myers, M.G.; Olson, D.P. Paraventricular Calcitonin Receptor-Expressing Neurons Modulate Energy Homeostasis in Male Mice. Endocrinology 2021, 162, bqab072. [Google Scholar] [CrossRef]
- Pan, W.; Adams, J.M.; Allison, M.B.; Patterson, C.; Flak, J.N.; Jones, J.; Strohbehn, G.; Trevaskis, J.; Rhodes, C.J.; Olson, D.P.; et al. Essential Role for Hypothalamic Calcitonin Receptor—Expressing Neurons in the Control of Food Intake by Leptin. Endocrinology 2018, 159, 1860–1872. [Google Scholar] [CrossRef] [Green Version]
- De Souza, C.T.; Araujo, E.P.; Bordin, S.; Ashimine, R.; Zollner, R.L.; Boschero, A.C.; Saad, M.J.; Velloso, L.A. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005, 146, 4192–4199. [Google Scholar] [CrossRef] [Green Version]
- Thaler, J.P.; Yi, C.X.; Schur, E.A.; Guyenet, S.J.; Hwang, B.H.; Dietrich, M.O.; Zhao, X.; Sarruf, D.A.; Izgur, V.; Maravilla, K.R.; et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Investig. 2012, 122, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Thaler, J.P.; Berkseth, K.E.; Melhorn, S.J.; Schwartz, M.W.; Schur, E.A. Longer T2 relaxation time is a marker of hypothalamic gliosis in mice with diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1245–E1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, G.; Zhang, H.; Karin, M.; Bai, H.; Cai, D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008, 135, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannipieri, M.; Baldi, S.; Mari, A.; Colligiani, D.; Guarino, D.; Camastra, S.; Barsotti, E.; Berta, R.; Moriconi, D.; Bellini, R.; et al. Roux-en-Y gastric bypass and sleeve gastrectomy: Mechanisms of diabetes remission and role of gut hormones. J. Clin. Endocrinol. Metab. 2013, 98, 4391–4399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, M.; Machineni, S.; Oliván, B.; Teixeira, J.; McGinty, J.J.; Bawa, B.; Koshy, N.; Colarusso, A.; Laferrère, B. Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity 2010, 18, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Tharakan, G.; Behary, P.; Wewer Albrechtsen, N.J.; Chahal, H.; Kenkre, J.; Miras, A.D.; Ahmed, A.R.; Holst, J.J.; Bloom, S.R.; Tan, T. Roles of increased glycaemic variability, GLP-1 and glucagon in hypoglycaemia after Roux-en-Y gastric bypass. Eur. J. Endocrinol. 2017, 177, 455–464. [Google Scholar] [CrossRef]
- Shin, A.C.; Zheng, H.; Townsend, R.L.; Sigalet, D.L.; Berthoud, H.R. Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 2010, 151, 1588–1597. [Google Scholar] [CrossRef] [Green Version]
- Patti, M.E.; Goldfine, A.B. Hypoglycaemia following gastric bypass surgery—Diabetes remission in the extreme? Diabetologia 2010, 53, 2276–2279. [Google Scholar] [CrossRef] [Green Version]
- Kefurt, R.; Langer, F.B.; Schindler, K.; Shakeri-Leidenmuhler, S.; Ludvik, B.; Prager, G. Hypoglycemia after Roux-En-Y gastric bypass: Detection rates of continuous glucose monitoring (CGM) versus mixed meal test. Surg. Obes. Relat. Dis. 2015, 11, 564–569. [Google Scholar] [CrossRef]
- Goldfine, A.B.; Mun, E.C.; Devine, E.; Bernier, R.; Baz-Hecht, M.; Jones, D.B.; Schneider, B.E.; Holst, J.J.; Patti, M.E. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J. Clin. Endocrinol. Metab. 2007, 92, 4678–4685. [Google Scholar] [CrossRef] [Green Version]
- Goldfine, A.B.; Patti, M.E. How common is hypoglycemia after gastric bypass? Obesity 2016, 24, 1210–1211. [Google Scholar] [CrossRef] [Green Version]
- Patti, M.E.; Goldfine, A.B. Hypoglycemia after gastric bypass: The dark side of GLP-1. Gastroenterology 2014, 146, 605–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, M.; Vella, A.; McLaughlin, T.; Patti, M.E. Hypoglycemia After Gastric Bypass Surgery: Current Concepts and Controversies. J. Clin. Endocrinol. Metab. 2018, 103, 2815–2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, A.; Goldfine, A.; Bajwa, M.; Wolfs, D.; Kozuka, C.; Piper, J.; Fowler, K.; Patti, M.E. Pramlintide for Post-Bariatric Hypoglycemia. Diabetes Obes. Metab. 2022, preprint. [Google Scholar]
- Christoffersen, B.O.; Sanchez-Delgado, G.; John, L.M.; Ryan, D.H.; Raun, K.; Ravussin, E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity 2022, 30, 841–857. [Google Scholar] [CrossRef]
- Lutz, T.A.; Meyer, U. Amylin at the interface between metabolic and neurodegenerative disorders. Front. Neurosci. 2015, 9, 216. [Google Scholar] [CrossRef]
- Mietlicki-Baase, E.G. Amylin in Alzheimer’s disease: Pathological peptide or potential treatment? Neuropharmacology 2018, 136, 287–297. [Google Scholar] [CrossRef]
- Grizzanti, J.; Corrigan, R.; Servizi, S.; Casadesus, G. Amylin Signaling in Diabetes and Alzheimer’s Disease: Therapy or Pathology? J. Neurol. Neuromedicine 2019, 4, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Young, A.A.; Vine, W.; Gedulin, B.R.; Pittner, R.; Janes, S.; Gaeta, L.S.L.; Percy, A.J.; Moore, C.X.; Koda, J.E.; Rink, T.J.; et al. Preclinical pharmacology of pramlintide in the rat: Comparisons with human and rat amylin. Drug Dev. Res. 1996, 37, 231–248. [Google Scholar] [CrossRef]
- Ryan, G.J.; Jobe, L.J.; Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther. 2005, 27, 1500–1512. [Google Scholar] [CrossRef]
- Hollander, P.; Maggs, D.G.; Ruggles, J.A.; Fineman, M.; Shen, L.; Kolterman, O.G.; Weyer, C. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes. Res. 2004, 12, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.G.; Peterson, J.; Gottlieb, A.; Mullane, J. Effects of pramlintide, an analog of human amylin, on plasma glucose profiles in patients with IDDM: Results of a multicenter trial. Diabetes 1997, 46, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.; Maggs, D.G.; Young, A.A.; Kolterman, O.G. Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: A physiological approach toward improved metabolic control. Curr. Pharm. Des. 2001, 7, 1353–1373. [Google Scholar] [CrossRef] [PubMed]
- Riddle, M.; Frias, J.; Zhang, B.; Maier, H.; Brown, C.; Lutz, K.; Kolterman, O. Pramlintide improved glycemic control and reduced weight in patients with type 2 diabetes using basal insulin. Diabetes Care 2007, 30, 2794–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.G.; Pearson, L.; Kolterman, O.G. Effects of 4 weeks’ administration of pramlintide, a human amylin analogue, on glycaemia control in patients with IDDM: Effects on plasma glucose profiles and serum fructosamine concentrations. Diabetologia 1997, 40, 1278–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, I.; Parker, B.; Doran, S.; Feinle-Bisset, C.; Wishart, J.; Strobel, S.; Wang, Y.; Burns, C.; Lush, C.; Weyer, C.; et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 2005, 48, 838–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heise, T.; Heinemann, L.; Heller, S.; Weyer, C.; Wang, Y.; Strobel, S.; Kolterman, O.; Maggs, D. Effect of pramlintide on symptom, catecholamine, and glucagon responses to hypoglycemia in healthy subjects. Metabolism 2004, 53, 1227–1232. [Google Scholar] [CrossRef]
- Ryan, G.; Briscoe, T.A.; Jobe, L. Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des. Dev. Ther. 2009, 2, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, G.; Apovian, C. Future Pharmacotherapy for Obesity: New Anti-obesity Drugs on the Horizon. Curr. Obes. Rep. 2018, 7, 147–161. [Google Scholar] [CrossRef]
- Younk, L.M.; Mikeladze, M.; Davis, S.N. Pramlintide and the treatment of diabetes: A review of the data since its introduction. Expert Opin. Pharmacother. 2011, 12, 1439–1451. [Google Scholar] [CrossRef]
- Riddle, M.C.; Nahra, R.; Han, J.; Castle, J.; Hanavan, K.; Hompesch, M.; Huffman, D.; Strange, P.; Ohman, P. Control of Postprandial Hyperglycemia in Type 1 Diabetes by 24-Hour Fixed-Dose Coadministration of Pramlintide and Regular Human Insulin: A Randomized, Two-Way Crossover Study. Diabetes Care 2018, 41, 2346–2352. [Google Scholar] [CrossRef] [Green Version]
- Riddle, M.C.; Yuen, K.C.; de Bruin, T.W.; Herrmann, K.; Xu, J.; Ohman, P.; Kolterman, O.G. Fixed ratio dosing of pramlintide with regular insulin before a standard meal in patients with type 1 diabetes. Diabetes Obes. Metab. 2015, 17, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Maikawa, C.L.; Smith, A.A.A.; Zou, L.; Roth, G.A.; Gale, E.C.; Stapleton, L.M.; Baker, S.W.; Mann, J.L.; Yu, A.C.; Correa, S.; et al. A co-formulation of supramolecularly stabilized insulin and pramlintide enhances mealtime glucagon suppression in diabetic pigs. Nat. Biomed. Eng. 2020, 4, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Maianti, J.P.; McFedries, A.; Foda, Z.H.; Kleiner, R.E.; Du, X.Q.; Leissring, M.A.; Tang, W.J.; Charron, M.J.; Seeliger, M.A.; Saghatelian, A.; et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 2014, 511, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Aronne, L.; Fujioka, K.; Aroda, V.; Chen, K.; Halseth, A.; Kesty, N.C.; Burns, C.; Lush, C.W.; Weyer, C. Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: A phase 2, randomized, placebo-controlled, dose-escalation study. J. Clin. Endocrinol. Metab. 2007, 92, 2977–2983. [Google Scholar] [CrossRef] [PubMed]
- Mack, C.M.; Soares, C.J.; Wilson, J.K.; Athanacio, J.R.; Turek, V.F.; Trevaskis, J.L.; Roth, J.D.; Smith, P.A.; Gedulin, B.; Jodka, C.M.; et al. Davalintide (AC2307), a novel amylin-mimetic peptide: Enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int. J. Obes. 2010, 34, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mack, C.M.; Smith, P.A.; Athanacio, J.R.; Xu, K.; Wilson, J.K.; Reynolds, J.M.; Jodka, C.M.; Lu, M.G.; Parkes, D.G. Glucoregulatory effects and prolonged duration of action of davalintide: A novel amylinomimetic peptide. Diabetes Obes. Metab. 2011, 13, 1105–1113. [Google Scholar] [CrossRef]
- Guerreiro, L.H.; Guterres, M.F.; Melo-Ferreira, B.; Erthal, L.C.; Rosa Mda, S.; Lourenco, D.; Tinoco, P.; Lima, L.M. Preparation and characterization of PEGylated amylin. AAPS PharmSciTech 2013, 14, 1083–1097. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, R.; Brimble, M.A.; Tomabechi, Y.; Fairbanks, A.J.; Fletcher, M.; Hay, D.L. Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: Structure-activity relationships for amylin receptor agonism. Org. Biomol. Chem. 2014, 12, 8142–8151. [Google Scholar] [CrossRef]
- Andreassen, K.V.; Feigh, M.; Hjuler, S.T.; Gydesen, S.; Henriksen, J.E.; Beck-Nielsen, H.; Christiansen, C.; Karsdal, M.A.; Henriksen, K. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. Am. J. Physiol. Endocrinol. Metab. 2014, 307, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Gydesen, S.; Andreassen, K.V.; Hjuler, S.T.; Christensen, J.M.; Karsdal, M.A.; Henriksen, K. KBP-088, a novel DACRA with prolonged receptor activation, is superior to davalintide in terms of efficacy on body weight. Am. J. Physiol. Endocrinol. Metab. 2016, 310, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Larsen, A.T.; Sonne, N.; Andreassen, K.V.; Karsdal, M.A.; Henriksen, K. The Calcitonin Receptor Plays a Major Role in Glucose Regulation as a Function of Dual Amylin and Calcitonin Receptor Agonist Therapy. J. Pharmacol. Exp. Ther. 2020, 374, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjuler, S.T.; Andreassen, K.V.; Gydesen, S.; Karsdal, M.A.; Henriksen, K. KBP-042 improves bodyweight and glucose homeostasis with indices of increased insulin sensitivity irrespective of route of administration. Eur. J. Pharmacol. 2015, 762, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Hjuler, S.T.; Gydesen, S.; Andreassen, K.V.; Pedersen, S.L.; Hellgren, L.I.; Karsdal, M.A.; Henriksen, K. The dual amylin- and calcitonin-receptor agonist KBP-042 increases insulin sensitivity and induces weight loss in rats with obesity. Obesity 2016, 24, 1712–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, T.A.; Tschudy, S.; Rushing, P.A.; Scharrer, E. Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 2000, 21, 233–238. [Google Scholar] [CrossRef]
- Andreassen, K.V.; Larsen, A.T.; Sonne, N.; Mohamed, K.E.; Karsdal, M.A.; Henriksen, K. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol. Metab. 2021, 53, 101282. [Google Scholar] [CrossRef]
- Gydesen, S.; Hjuler, S.T.; Freving, Z.; Andreassen, K.V.; Sonne, N.; Hellgren, L.I.; Karsdal, M.A.; Henriksen, K. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br. J. Pharmacol. 2017, 174, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, K.; Broekhuizen, K.; de Boon, W.M.I.; Karsdal, M.A.; Bihlet, A.R.; Christiansen, C.; Dillingh, M.R.; de Kam, M.; Kumar, R.; Burggraaf, J.; et al. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br. J. Clin. Pharmacol. 2021, 87, 4786–4796. [Google Scholar] [CrossRef]
- Arrigoni, S.; le Foll, C.; Cabak, A.; Lundh, S.; Raun, K.; John, L.M.; Lutz, T.A. A selective role for receptor activity-modifying proteins in subchronic action of the amylin selective receptor agonist NN1213 compared with salmon calcitonin on body weight and food intake in male mice. Eur. J. Neurosci. 2021, 54, 4863–4876. [Google Scholar] [CrossRef]
- Bartelt, A.; Jeschke, A.; Muller, B.; Gaziano, I.; Morales, M.; Yorgan, T.; Heckt, T.; Heine, M.; Gagel, R.F.; Emeson, R.B.; et al. Differential effects of Calca-derived peptides in male mice with diet-induced obesity. PLoS ONE 2017, 12, e0180547. [Google Scholar] [CrossRef]
- Nakamura, M.; Nomura, S.; Yamakawa, T.; Kono, R.; Maeno, A.; Ozaki, T.; Ito, A.; Uzawa, T.; Utsunomiya, H.; Kakudo, K. Endogenous calcitonin regulates lipid and glucose metabolism in diet-induced obesity mice. Sci. Rep. 2018, 8, 17001. [Google Scholar] [CrossRef]
- David, J.M.; Lau, C.W.; McFarlane, J.; Erichsen, L.; Francisco, A.M.; Le Roux, C.; McGowan, B.; Pedersen, S.D.; Pietiläinen, K.; Rubino, D.M.; et al. Efficacy and Safety of AM833 for Weight Loss: A Dose-finding Trial in Adults With Overweight/Obesity. In Proceedings of the Obesity Week, Atlanta, GA, USA, 2–6 November 2020. [Google Scholar]
- Thomas Kruse, K.D.; Schäffer, L.; Hansen, J.L.; Poulsen, C.; Hansen, A.M.K.; de la Cour, C.D.D.; Clausen, T.R.; Raun, K. AM833—Development of a Long-acting Amylin Analogue. In Proceedings of the Obesity Week, Atlanta, GA, USA, 2–6 November 2020. [Google Scholar]
- Enebo, L.B.; Berthelsen, K.K.; Kankam, M.; Lund, M.T.; Rubino, D.M.; Satylganova, A.; Lau, D.C.W. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: A randomised, controlled, phase 1b trial. Lancet 2021, 397, 1736–1748. [Google Scholar] [CrossRef]
- Kirsten Dahl, J.L.H.; Skyggebjerg, R.B.; John, L.M.; Hansen, A.M.K.; de la Cour, C.D.D.; Plesner, A.; Clausen, T.R.; Jeppesen, C.B.; Hjøllund, K.R.; Li, F.; et al. Preclinical Weight Loss Efficacy of AM833 in Animal Models of Obesity. In Proceedings of the Obesity Week, Atlanta, GA, USA, 2–6 November 2020. [Google Scholar]
- Gamakharia, S.; Le Foll, C.; Rist, W.; Baader-Pagler, T.; Baljuls, A.; Lutz, T.A. The calcitonin receptor is the main mediator of LAAMA’s body weight lowering effects in male mice. Eur. J. Pharmacol. 2021, 908, 174352. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyle, C.N.; Zheng, Y.; Lutz, T.A. Mediators of Amylin Action in Metabolic Control. J. Clin. Med. 2022, 11, 2207. https://doi.org/10.3390/jcm11082207
Boyle CN, Zheng Y, Lutz TA. Mediators of Amylin Action in Metabolic Control. Journal of Clinical Medicine. 2022; 11(8):2207. https://doi.org/10.3390/jcm11082207
Chicago/Turabian StyleBoyle, Christina N., Yi Zheng, and Thomas A. Lutz. 2022. "Mediators of Amylin Action in Metabolic Control" Journal of Clinical Medicine 11, no. 8: 2207. https://doi.org/10.3390/jcm11082207
APA StyleBoyle, C. N., Zheng, Y., & Lutz, T. A. (2022). Mediators of Amylin Action in Metabolic Control. Journal of Clinical Medicine, 11(8), 2207. https://doi.org/10.3390/jcm11082207