High Levels of Thromboxane (TX) Are Associated with the Sex-Dependent Non-Dipping Phenomenon in Ischemic Stroke Patients
Abstract
:1. Introduction
1.1. Stroke Terminology and Mechanism of the Cellular Reaction
1.2. The Phenomenon of Non-Dipping and Implications for Cardiovascular Diseases
2. Materials and Methods
2.1. Study Design and Population
2.2. Detection of Fatty Acids Metabolites
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fanning, J.P.; Wong, A.A.; Fraser, J.F. The epidemiology of silent brainin farction: A systematic review of population-based cohorts. BMC Med. 2014, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Easton, J.D.; Saver, J.L.; Albers, G.W.; Alberts, M.J.; Chaturvedi, S.; Feldmann, E.; Hatsukami, T.S.; Higashida, R.T.; Johnston, S.C.; Kidwell, C.S.; et al. Definition and evaluation of transient ischemicattack: A scientific statement for health care professionals from the American heart association/American stroke association stroke council; council on cardiovascular surgery and anesthesia; council on cardiovascular radiology and intervention; council on cardiovascular nursing; and the interdisciplinary council on peripheral vascular disease. Stroke 2009, 40, 2276–2293. [Google Scholar]
- Cruz-Flores, S.; Rabinstein, A.; Biller, J.; Elkind, M.S.V.; Griffith, P.; Gorelick, P.B.; Howard, G.; Leira, E.C.; Morgenstern, L.B.; Ovbiagele, B.; et al. Racial-ethnicdis parities in stroke care: The American experience: A statement for health care professionals from the American Heart Association/American Stroke Association. Stroke 2011, 42, 2091–2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agyemang, C.; Bhopal, R.; Bruijnzeels, M.; Redekop, W.K.J. Does nocturnal blood pressure fall in people of African and South Asian descent differ from that in European white populations? A systematic review and meta-analysis. Hypertension 2005, 23, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Baradaran, H.; Al-Dasuqi, K.; Knight-Greenfield, A.; Giambrone, A.E.; Delgado, D.; Wright, D.; Teng, Z.; Min, J.K.; Navi, B.B.; et al. Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e003816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci. 2016, 17, 1697. [Google Scholar] [CrossRef]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.B.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An updated definition of stroke for the 21st century: A statement for health care professionals from the American heartassociation/American strokeassociation. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, I.; Viretto, M.; Barale, C.; Mattiello, L.; Doronzo, G.; Pagliarino, A.; Cavalot, F.; Trovati, M.; Anfossi, G. High glucose inhibits the aspirin-induced activation of the nitricoxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in humanplatelets. Diabetes 2012, 61, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Currentconcepts in the diagnosis and management of cytokinereleasesyndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandvik, P.O.; Lincoff, A.M.; Gore, J.M.; Gutterman, D.D.; Sonnenberg, F.A.; Alonso-Coello, P.; Akl, E.A.; Lansberg, M.G.; Guyatt, G.H.; Spence, F.A. Primary and secondary prevention of cardiovascular disease: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of chest physiciansevidence-based clinical practice guidelines. Chest 2012, 141, e637S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.M.; Soubhi, H.; Fortin, M.; Hudon, C.; O’Dowd, T. Managing patients with multimorbidity: Systematic review of interventions in primary care and community settings. BMJ 2012, 345, e5205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczuko, M.; Kozioł, I.; Kotlega, D.; Brodowski, J.; Drozd, A. The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review. Int. J. Mol. Sci. 2021, 22, 11644. [Google Scholar] [CrossRef] [PubMed]
- Iannucci, G.; Petramala, L.; La Torre, G.; Barbaro, B.; Balsano, C.; Curatulo, P.G.; Amadei, F.; Paroli, M.; Concistrè, A.; Letizia, C. Evaluation of tolerance to ambulatory blood pressure monitoring: Analysis of dipping profile in a large cohort of hypertensivepatients. Medicine 2017, 96, e9162. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Kanegae, H.; Tomitani, N.; Okawara, Y.; Fujiwara, T.; Yano, Y.; Hoshide, S. Nighttime Blood Pressure Measured by Home Blood Pressure Monitoring as an Independent Predictor of Cardiovascular Events in General Practice. Hypertension 2019, 73, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Altman, D.G.; Raftery, E.B.; Bannister, R. Circadian variation of blood pressure in autonomic failure. Circulation 1983, 68, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biaggioni, I. Circadian Clocks, Autonomic Rhythms And Blood Pressure Dipping. Hypertension 2008, 52, 797–798. [Google Scholar] [CrossRef]
- Dubielski, Z.; Zamojski, M.; Wiechecki, B.; Możeńska, O.; Petelczyc, M.; Kosior, D.A. The current state of knowledge about the dipping and non-dipping hypertension. Art. Hypertens. 2016, 20, 33–43. [Google Scholar] [CrossRef]
- Hoshide, S.; Kario, K.; Hoshide, Y.; Umeda, Y.; Hashimoto, T.; Kunii, O.; Ojima, T.; Shimada, K. Associations between nondipping of nocturnal blood pressure decrease and cardiovascular target organ damage in strictly selected community-dwelling normotensives. Am. J. Hypertens. 2003, 16, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Cuspidi, C.; Sala, C.; Tadic, M.; Gherbesi, E.; Grassi, G.; Mancia, G. Nondipping pattern and carotid atherosclerosis: A systematic review and meta-analysis. J. Hypertens. 2016, 34, 385–391. [Google Scholar] [CrossRef]
- Cuspidi, C.; Tadic, M.; Sala, C.; Carugo, S.; Mancia, G.; Grassi, G. Reverse dipping and subclinical cardiac organ damage: A meta-analysis of echocardiographic studies. J. Hypertens. 2021, 39, 1505–1512. [Google Scholar] [CrossRef]
- Cuspidi, C.; Tadic, M.; Sala, C.; Gherbesi, E.; Grassi, G.; Mancia, G. Blood Pressure Non-Dipping and Obstructive Sleep Apnea Syndrome: A Meta-Analysis. J. Clin. Med. 2019, 8, e1367. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.P.; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C.; et al. The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation 2007, 115, e478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turak, O.; Ozcan, F.; Tok, D.; Işleyen, A.; Sökmen, E.; Taşoğlu, I.; Aydoğdu, S.; Sen, N.; McFann, K.; Johnson, R.J.; et al. Serum uric acid, inflammation, and nondipping circadian pattern in Essentials hypertension. J. Clin. Hypertens. 2013, 15, 7–13. [Google Scholar] [CrossRef]
- Szczuko, M.; Kotlęga, D.; Palma, J.; Zembroń-Łacny, A.; Tylutka, A.; Gołąb-Janowska, M.; Drozd, A. Lipoxins, RevD1 and 9, 13 HODE as the most import ant derivatives after an Elary incident of ischemic stroke. Sci. Rep. 2020, 10, 12849. [Google Scholar] [CrossRef] [PubMed]
- Bala, M.M.; Celinska-Lowenhoff, M.; Szot, W.; Padjas, A.; Kaczmarczyk, M.; Swierz, M.J.; Undas, A. Antiplatelet and anticoagulant agents for secondary prevention of stroke and other thromboembolic events in people with antiphospholipid syndrome. Cochrane Database. Syst. Rev. 2020, 10, CD012169. [Google Scholar] [CrossRef]
- Bots, M.L.; Ford, I.; Lloyd, S.M.; Laurent, S.; Touboul, J.P.; Hennerici, M.G. Thromboxane prostaglandin receptor antagonist and carotid atherosclerosis progression in patients with cerebrovascular disease of ischemic origin: A randomized controlled trial. Stroke 2014, 45, 2348–2353. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, E.L.; Forlenza, O.V.; Gattaz, W.F. Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology 2009, 202, 37–51. [Google Scholar] [CrossRef]
- Davì, G.; Santilli, F.; Vazzana, N. Thromboxane receptors antagonists and/or synthase inhibitors. Handb. Exp. Pharmacol. 2012, 210, 261–286. [Google Scholar] [CrossRef] [PubMed]
- Appelros, P.; Stegmayr, B.; Terént, A. Sex differences in stroke epidemiology: A systematic review. Stroke 2009, 40, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Li, B.; Rong, J.; Li, Q.; Sun, C. Sex differences in global disability-adjusted life years due to ischemic stroke: Findings from global burden of diseases study 2019. Sci. Rep. 2022, 14, 6235. [Google Scholar] [CrossRef]
- Reeves, M.J.; Bushnell, C.D.; Howard, G.; Gargano, J.W.; Duncan, P.W.; Lynch, G.; Khatiwoda, A.; Lisabeth, L. Sex differences in stroke: Epidemiology, clinical presentation, medical care, and outcomes. Lancet. Neurol. 2008, 7, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.T.; Gall, S.L.; Blizzard, C.L.; Lannin, N.A.; Thrift, A.G.; Anderson, C.S.; Kim, J.; Grimley, R.S.; Castley, H.C.; Kilkenny, M.F.; et al. AuSCR Consortium, Stroke123 Investigators. Sex differences in quality of life after stroke were explained by patient factors, not clinical care: Evidence from the Australian Stroke Clinical Registry. Eur. J. Neurol. 2021, 28, 469–478. [Google Scholar] [CrossRef]
- Stein, C.J.; Colditz, G.A. The epidemic of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2522–2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, M.E.; Green, J.; Beral, V.; Sudlow, C.L.; Brown, A.; Kirichek, O.; Price, A.; Yang, T.O.; Reeves, G.K. Million Women Study Collaborators. Adiposity and ischemic and hemorrhagic stroke: Prospective study in women and meta-analysis. Neurology 2016, 87, 1473–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavriilaki, M.; Anyfanti, P.; Nikolaidou, B.; Lazaridis, A.; Gavriilaki, E.; Douma, S.; Gkaliagkousi, E. Nighttime dipping status and risk of cardiovascular events in patients with untreated hypertension: A systematic review and meta-analysis. J. Clin. Hypertens. 2020, 22, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Moczulska, B.; Zechowicz, M.; Leśniewska, S.; Osowiecka, K.; Gromadziński, L. The Impact of Obesity on Nighttime Blood Pressure Dipping. Medicina 2020, 56, 700. [Google Scholar] [CrossRef]
- Hassan, M.O.; Jaju, D.; Albarwani, S.; Al-Yahyaee, S.; Al-Hadabi, S.; Lopez-Alvarenga, J.C.; Rizvi, S.G.; Comuzzie, A.G.; Bayoumi, R.A. Non-dipping blood pressure in the metabolic syndrome among Arabs of the Oman family study. Obesity 2007, 15, 2445–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.S. Obesity associated hypertension: New insights into mechanism. Electrolyte Blood Press. 2013, 11, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Aref, H.M.A.; Fahmy, N.A.; Khalil, S.H.; Ahmed, M.F.; ElSadek, A.; Abdulghani, M.O. Role of interleukin-6 in ischemic stroke outcome. Egypt J. Neurol. Psych. Neurosurg. 2020, 56, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hu, S.; Li, Y.; Sun, Y.; Xiong, X.; Hu, X.; Chen, J.; Qiu, S. Interleukins and Ischemic Stroke. Front. Immunol. 2022, 13, 828447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.L.; Zhao, C.R.; Pan, C.L.; Zhang, Z. Interleukin-6 as a Predictor of the Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Epidemiological Studies. Immunol. Investig. 2018, 47, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Obara, Y.; Kurose, H.; Nakahata, N. Thromboxane A2 promotes interleukin-6 biosynthesis mediated by an activation of cyclic AMP-response element-binding protein in 1321N1 human astrocytoma cells. Mol. Pharmacol. 2005, 68, 670–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Yan, A.; Zhang, T.; Shao, J.; Liu, T.; Yang, X.; Xia, W.; Fu, Y. Thromboxane A2 Receptor Stimulation Enhances Microglial Interleukin-1β and NO Biosynthesis Mediated by the Activation of ERK Pathway. Front. Aging Neurosci. 2016, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Yang, B.; Wang, J.; Zhao, L.; Luo, W.; Jiang, Q.; Yang, J. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav. Brain Funct. 2014, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Cannon, P.J. Physiology. COX-2 inhibitors and cardiovascular risk. Science 2012, 336, 1386–1387. [Google Scholar] [CrossRef]
- Hermanides, J.; Plummer, M.P.; Finnis, M.; Deane, A.M.; Coles, J.P.; Menon, D.K. Glycaemic control targets after traumatic brain injury: A systematic review and meta-analysis. Crit. Care. 2018, 22, 11. [Google Scholar] [CrossRef]
- Spychala, M.S.; Honarpisheh, P.; McCullough, L.D. Sex Differences in Neuroinflammation and Neuroprotection After Ischemic Stroke. J. Neurosci. Res. 2017, 95, 462–471. [Google Scholar] [CrossRef] [Green Version]
Parameter | Stroke Total Avg ± SD n = 62 | Women Avg ± SD n = 34 | Men Avg ± SD n = 28 | p-Value |
---|---|---|---|---|
Age (years) | 60.64 ± 12.10 | 62.29 ± 11.08 | 58.64 ± 13.17 | 0.240 |
BMI (kg/m2) | 28.48 ± 4.77 | 27.49 ± 4.46 | 29.67 ± 4.94 | 0.073 |
CRP (mg/L) | 2.60 ± 3.98 | 2.38 ± 2.18 | 1.92 ± 1.68 | 0.363 |
Total cholesterol (mg/dL) | 199.93 ± 53.29 | 213.71 ± 58.56 | 183.14 ± 41.16 | 0.220 |
LDL-C (mg/dL) | 116.76 ± 44.86 | 123.85 ± 58.56 | 108.14 ± 37.75 | 0.444 |
HDL (mg/dL) | 51.90 ± 15.22 | 55.50 ± 15.66 | 47.54 ± 13.70 | 0.270 |
TG (mg/dL) | 158.69 ± 78.5 | 174.35 ± 89.87 | 139.68 ± 58.02 | 0.282 |
Non-HDL (mg/dL) | 146.47 ± 51.90 | 154.25 ± 59.32 | 137.01 ± 40.04 | 0.534 |
Systolic pressure (mmHg) | 145.03 ± 20.33 | 144.56 ± 19.12 | 145.61 ± 22.05 | 0.842 |
Diastolic pressure (mmHg) | 87.98 ± 14.44 | 88.23 ± 11.21 | 87.68 ± 17.82 | 0.881 |
HB (g/dL) | 14.44 ± 1.13 | 13.92 ± 0.92 | 15.07 ± 1.02 | 0.039 |
HCT (%) | 41.55 ± 3.09 | 40.43 ± 2.95 | 42.92 ± 2.74 | 0.085 |
ERY (1012/L) | 4.74 ± 0.40 | 4.58 ± 0.37 | 4.94 ± 0.34 | 0.050 |
WBC (109/L) | 8.55 ± 2.10 | 8.95 ± 1.98 | 8.06 ± 2.18 | 0.444 |
PLT (109/L) | 238.73 ± 81.72 | 256.03 ± 97.65 | 217.71 ± 50.98 | 0.276 |
Glucose (mg/dl) | 125.81 ± 41.37 | 117.79 ± 30.25 | 135.54 ± 50.68 | 0.093 |
Diabetes (n) | 30 | 16 | 14 | - |
Ischaemic heart disease (n) | 6 | 5 | 1 | - |
Hypertension (n)/hypotensive drugs (n) | 50/34 | 28/22 | 22/12 | - |
Smoking | 23 | 14 | 9 | - |
Parameter | DIP Avg ± SD n = 31 | Non-DIP Avg ± SD n = 33 | p-Value |
---|---|---|---|
Gender n (Women and Men) | W = 14 M = 17 | W = 22 M = 11 | - |
Age (years) | 62.39 ± 11.95 | 58.45 ± 12.35 | 0.201 |
BMI (kg/m2) | 29.13 ± 4.17 | 27.88 ± 5.19 | 0.291 |
CRP (mg/L) | 2.14 ± 2.08 | 2.91 ± 5.11 | 2.083 |
Total cholesterol (mg/dL) | 195.94 ± 57.36 | 204.48 ± 48.03 | 0.441 |
LDL-C (mg/dL) | 112.45 ± 47.62 | 120.70 ± 41.23 | 0.519 |
HDL (mg/dL) | 50.97 ± 14.11 | 54.36 ± 17.45 | 0.461 |
TG (mg/dL) | 162.58 ± 83.58 | 151.82 ± 72.90 | 0.397 |
Non-HDL (mg/dL) | 139.25 ± 52.16 | 153.76 ± 49.77 | 0.584 |
Diastolic pressure (mm Hg) | 148.39 ± 17.91 | 143.09 ± 23.16 | 0.312 |
Systolic pressure (mmHg) | 87.90 ± 11.31 | 88.79 ± 16.91 | 0.808 |
HB (g/dL) | 14.49 ± 1.24 | 14.309 ± 1.043 | 0.521 |
HCT (%) | 41.90 ± 3.44 | 41.006 ± 2.757 | 0.254 |
ERY (1012/L) | 4.73 ± 0.42 | 4.721 ± 0.393 | 0.936 |
WBC (109/L) | 8.35 ± 1.86 | 8.696 ± 2.301 | 0.514 |
PLT (109/L) | 227.29 ± 101.26 | 253.64 ± 55.337 | 0.197 |
Glucose (mg/dL) | 137.03 ± 54.07 | 114.97 ± 17.438 | 0.030 |
Diabetes (n) | 15 | 15 | - |
Ischemic heart disease (n) | 3 | 3 | - |
Hypertension (n)/hypotensive drugs (n) | 27/18 | 23/16 | - |
Smoking | 9 | 14 | - |
Parameter | Women DIP Avg ± SD n = 14 | Women Non-DIP Avg ± SD n = 20 | Men DIP Avg ± SD n = 17 | Men Non-DIP Avg ± SD n = 11 | p-Value * | p-Value ** |
---|---|---|---|---|---|---|
Thromboxane (µg/mL) | 0.0109 ± 0.38 | 0.0094 ± 0.007 | 0.0053 ± 0.0029 | 0.0068 ± 0.0038 | 0.513 | 0.090 |
Age (years) | 62.29 ± 11.95 | 62.30 ± 10.74 | 62.47 ± 12.31 | 52.73 ± 12.75 | 0.997 | 0.054 |
BMI (kg/m2) | 26.77 ± 4.45 | 27.99 ± 4.51 | 31.06 ± 5.056 | 27.53 ± 4.08 | 0.439 | 0.063 |
CRP (mg/L) | 2.23 ± 2.52 | 2.49 ± 1.94 | 2.07 ± 1.722 | 1.69 ± 1.68 | 0.734 | 0.569 |
Total cholesterol (mg/L) | 204.14 ± 72.22 | 220.40 ± 47.66 | 189.17 ± 42.70 | 173.82 ± 38.74 | 0.434 | 0.344 |
LDL-C (mg/L) | 115.43 ± 58.95 | 129.75 ± 42.08 | 110.00 ± 37.61 | 105.27 ± 39.62 | 0.414 | 0.753 |
HDL (mg/L) | 52.500 ± 12.77 | 57.60 ± 17.41 | 49.71 ± 15.39 | 44.18 ± 10.36 | 0.358 | 0.306 |
TG (mg/L) | 180.07 ± 105.6 | 170.35 ± 79.74 | 148.18 ± 59.59 | 126.55 ± 55.63 | 0.761 | 0.345 |
Non-HDL | 142.69 ± 65.16 | 164.27 ± 53.99 | 136.27 ± 39.84 | 138.37 ± 44.17 | 0.347 | 0.908 |
Diastolic pressure (mm Hg) | 143.21 ± 18.77 | 145.50 ± 19.79 | 152.67 ± 16.50 | 134.73 ± 25.75 | 0.737 | 0.033 |
Systolic pressure (mmHg) | 88.57 ± 13.07 | 88.00 ± 10.05 | 87.35 ± 10.02 | 88.18 ± 26.39 | 0.886 | 0.907 |
HB (g/dl) | 13.88 ± 1.23 | 13.94 ± 0.74 | 15.00 ± 1.023 | 15.17 ± 1.05 | 0.846 | 0.670 |
HCT (%) | 40.78 ± 3.88 | 40.18 ± 2.16 | 42.82 ± 2.81 | 43.06 ± 2.74 | 0.568 | 0.825 |
ERY (1012/L) | 4.54 ± 0.43 | 4.60 ± 0.34 | 4.882 ± 0.35 | 5.026 ± 0.31 | 0.667 | 0.277 |
WBC (109/L) | 9.29 ± 1.69 | 8.71 ± 2.17 | 7.577 ± 1.67 | 8.814 ± 2.71 | 0.408 | 0.146 |
PLT (109/L) | 256.79 ± 139.7 | 255.5 ± 56.58 | 203.00 ± 44.39 | 240.45 ± 54.09 | 0.971 | 0.056 |
Glukoza (mg/dL) | 12,736 ± 43.16 | 111.10 ± 14.14 | 145.00 ± 61.80 | 120.91 ± 20.91 | 0.125 | 0.226 |
Diabetes (n) | 8 | 8 | 10 | 4 | - | - |
Ischemic heart disease (n) | 3 | 2 | 1 | 0 | - | - |
Hypertension (n)/hypotensive drugs (n) | 11/8 | 17/14 | 16/10 | 6/2 | - | - |
Smoking | 6 | 9 | 4 | 5 | - | - |
A. | Stroke Total Avg ± SD n = 62 | Women Avg ± SD n = 34 | Men Avg ± SD n = 28 | p-Value | ||
---|---|---|---|---|---|---|
Thromboxane (µg/mL) | 0.0082 ± 0.0059 | 0.0101± 0.007 | 0.0059 ± 0.003 | 0.0004 | ||
DIP Sys% | 6.992 ± 7.007 | 7.532 ± 8.166 | 6.336 ± 5.347 | 0.508 | ||
DIP Dia% | 9.419 ± 8.170 | 10.291 ± 9.279 | 8.361 ± 6.591 | 0.359 | ||
B. | Grupa DIP avg ± SD n = 31 | Grupa N- DIP avg ± SD n = 33 | p-value | |||
Thromboxane (µg/mL) | 0.0083 ± 0.058 | 0.0078 ± 0.059 | 0.746 | |||
DIP Sys% | 1.97 ± 3.93 | 12.06 ± 5.59 | 8.45 × 10−12 | |||
DIP Dia% | 2.87 ± 4.31 | 15.88 ± 5.25 | 5.6 × 10−16 | |||
C. | Women avg ± SD | Men avg ± SD | p-value * | p-value ** | ||
DIP n = 14 | N-DIP n = 20 | DIP n = 17 | N- DIP n = 11 | |||
Thromboxane (µg/mL) | 0.0109 ± 0.38 | 0.0094 ± 0.007 | 0.0053 ± 0.003 | 0.0068 ± 0.004 | 0.513 | 0.090 |
DIP Sys% | −0.19 ± 6.22 | 12.94 ± 3.82 | 3.753 ± 4.44 | 10.33 ± 4.09 | 1.07 × 10−8 | 0.0005 |
DIP Dia% | 1.42 ± 6.59 | 16.50 ± 4.61 | 4.071 ± 3.60 | 14.99 ± 4.11 | 5.7 × 10−9 | 7.1 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozd, A.; Szczuko, M.; Bohatyrewicz, A.; Jurewicz, A.; Kotlęga, D. High Levels of Thromboxane (TX) Are Associated with the Sex-Dependent Non-Dipping Phenomenon in Ischemic Stroke Patients. J. Clin. Med. 2022, 11, 2652. https://doi.org/10.3390/jcm11092652
Drozd A, Szczuko M, Bohatyrewicz A, Jurewicz A, Kotlęga D. High Levels of Thromboxane (TX) Are Associated with the Sex-Dependent Non-Dipping Phenomenon in Ischemic Stroke Patients. Journal of Clinical Medicine. 2022; 11(9):2652. https://doi.org/10.3390/jcm11092652
Chicago/Turabian StyleDrozd, Arleta, Małgorzata Szczuko, Andrzej Bohatyrewicz, Alina Jurewicz, and Dariusz Kotlęga. 2022. "High Levels of Thromboxane (TX) Are Associated with the Sex-Dependent Non-Dipping Phenomenon in Ischemic Stroke Patients" Journal of Clinical Medicine 11, no. 9: 2652. https://doi.org/10.3390/jcm11092652
APA StyleDrozd, A., Szczuko, M., Bohatyrewicz, A., Jurewicz, A., & Kotlęga, D. (2022). High Levels of Thromboxane (TX) Are Associated with the Sex-Dependent Non-Dipping Phenomenon in Ischemic Stroke Patients. Journal of Clinical Medicine, 11(9), 2652. https://doi.org/10.3390/jcm11092652