B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy?
Abstract
:1. Introduction
2. B-Cell Subsets in Primary APS
2.1. aPL Producing B-Cells Are Present in Healthy Subjects and Can Be Induced by Microbial Triggers
2.2. Total B-Cell Numbers Are Not Altered in PAPS
2.3. CD5+ B-Cells Are Increased in PAPS
2.4. Naïve B-Cells Are Increased and Memory B-Cells Are Decreased in PAPS
2.5. Plasmablasts Are Increased in Patients with PAPS and May Be a Source of aPL in Patients with PAPS
2.6. Alterations of Transitional, Double Negative, and Regulatory B-Cell Subsets in PAPS
3. BAFF in Primary APS
3.1. BAFF Is Elevated in PAPS and Correlates with Disease Severity
3.2. The Expression of BAFF and Its Receptors in Monocytes and B-Cells in PAPS
4. B-Cell Depletion in PAPS
4.1. Rituximab Does Not Reduce aPL Levels but May Ameliorate Thrombotic and Non-Thrombotic APS Manifestations
4.2. Rituximab Is Recommended to Use for Refractory Cases of Catastrophic APS
4.3. CD19 CAR-T Cells in PAPS
4.4. Plasma Cell Depletion by Daratumumab in PAPS
5. Anti-BAFF Therapies in PAPS
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Buyon, J.P.; Kim, M.Y.; Guerra, M.M.; Laskin, C.A.; Petri, M.; Lockshin, M.D.; Sammaritano, L.; Branch, D.W.; Porter, T.F.; Sawitzke, A.; et al. Predictors of Pregnancy Outcomes in Patients With Lupus: A Cohort Study. Ann. Intern. Med. 2015, 163, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, M.; Luciani, D.; Bertolini, G.; Barbui, T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: A systematic review of the literature. Blood 2003, 101, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Ruffatti, A.; Legnani, C.; Gresele, P.; Barcellona, D.; Erba, N.; Testa, S.; Marongiu, F.; Bison, E.; Denas, G.; et al. Clinical course of high-risk patients diagnosed with antiphospholipid syndrome. J. Thromb. Haemost. 2010, 8, 237–242. [Google Scholar] [CrossRef]
- Conley, C.; Hartman, R.C. A hemorrhagic disorder caused by circulating anticoagulant in patients with disseminated lupus erythematosus. J. Clin. Investig. 1952, 31, 621–622. [Google Scholar]
- Boey, M.L.; Colaco, C.B.; Gharavia, E.; Elkon, K.B.; Loizou, S.; Hughes, G.R. Thrombosis in systemic lupus erythematosus: Striking association with the presence of circulating lupus anticoagulant. Br. Med. J. 1983, 287, 1021–1023. [Google Scholar] [CrossRef] [Green Version]
- Asherson, R.; Khamashta, M.A.; Ordi-Ros, J.; Derksen, R.; Machin, S.; Barquinero, J.; Outt, H.; Nigel Harris, E.; Vilardell-Torres, M.; Hughes, G. The ‘primary’ antiphospholipid syndrome: Major clinical and serological features. Medicine 1989, 68, 366–374. [Google Scholar] [CrossRef]
- Cervera, R.; Piette, J.C.; Font, J.; Khamashta, M.A.; Shoenfeld, Y.; Camps, M.T.; Jacobsen, S.; Lakos, G.; Tincani, A.; Kontopoulou-Griva, I.; et al. Antiphospholipid syndrome: Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum. 2002, 46, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Serrano, R.; Pons-Estel, G.J.; Espinosa, G.; Quintana, R.M.; Reverter, J.C.; Tassies, D.; Monteagudo, J.; Cervera, R. Long-term follow-up of antiphospholipid syndrome: Real-life experience from a single center. Lupus 2020, 29, 1050–1059. [Google Scholar] [CrossRef]
- Cervera, R.; Rodríguez-Pintó, I.; Legault, K.; Erkan, D. 16th International Congress on Antiphospholipid Antibodies Task Force Report on Catastrophic Antiphospholipid Syndrome. Lupus 2020, 29, 1594–1600. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Ordi-Ros, J.; Sáez-Comet, L.; Pérez-Conesa, M.; Vidal, X.; Riera-Mestre, A.; Castro-Salomó, A.; Cuquet-Pedragosa, J.; Ortiz-Santamaria, V.; Mauri-Plana, M.; Solé, C.; et al. Rivaroxaban versus Vitamin K antagonist in antiphospholipid syndrome a randomized noninferiority trial. Ann. Intern. Med. 2019, 171, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Denas, G.; Zoppellaro, G.; Jose, S.P.; Hoxha, A.; Ruffatti, A.; Andreoli, L.; Tincani, A.; Cenci, C.; Prisco, D.; et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood 2018, 132, 1365–1371. [Google Scholar] [CrossRef]
- Hamulyák, E.N.; Scheres, L.J.J.; Goddijn, M.; Middeldorp, S. Antithrombotic therapy to prevent recurrent pregnancy loss in antiphospholipid syndrome—What is the evidence? J. Thromb. Haemost. 2021, 19, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.M.; Danowski, A.; Wahl, D.G.; Amigo, M.C.; Tektonidou, M.; Pacheco, M.S.; Fleming, N.; Domingues, V.; Sciascia, S.; Lyra, J.O.; et al. The relevance of “non-criteria” clinical manifestations of antiphospholipid syndrome: 14th International Congress on Antiphospholipid Antibodies Technical Task Force Report on Antiphospholipid Syndrome Clinical Features. Autoimmun. Rev. 2015, 14, 401–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mormile, I.; Granata, F.; Punziano, A.; de Paulis, A.; Rossi, F.W. Immunosuppressive Treatment in Antiphospholipid Syndrome: Is It Worth It? Biomedicines 2021, 9, 132. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; van Laar, J.M. Targeted therapies in systemic sclerosis, myositis, antiphospholipid syndrome, and Sjögren’s syndrome. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101485. [Google Scholar] [CrossRef]
- Meroni, P.L.; Borghi, M.O.; Raschi, E.; Tedesco, F. Pathogenesis of antiphospholipid syndrome: Understanding the antibodies. Nat. Rev. Rheumatol. 2011, 7, 330–339. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; van Roon, J.A.G.; Radstake, T.R.D.J.; Fritsch-Stork, R.D.E.; Derksen, R.H.W.M. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun. Rev. 2016, 15, 50–60. [Google Scholar] [CrossRef]
- Tambralli, A.; Gockman, K.; Knight, J.S. NETs in APS: Current Knowledge and Future Perspectives. Curr. Rheumatol. Rep. 2020, 22, 67. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Brodsky, R.A.; McCrae, K.R. Complement in the pathophysiology of the antiphospholipid syndrome. Front. Immunol. 2019, 10, 449. [Google Scholar] [CrossRef] [PubMed]
- Xourgia, E.; Tektonidou, M.G. Type I interferon gene expression in antiphospholipid syndrome: Pathogenetic, clinical and therapeutic implications. J. Autoimmun. 2019, 104, 102311. [Google Scholar] [CrossRef] [PubMed]
- Dieudonné, Y.; Guffroy, A.; Poindron, V.; Sprauel, P.S.; Martin, T.; Korganow, A.S.; Gies, V. B cells in primary antiphospholipid syndrome: Review and remaining challenges. Autoimmun. Rev. 2021, 20, 102798. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.W.; Rojas, O.L.; Gommerman, J.L. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat. Rev. Drug Discov. 2021, 20, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.J.S.; Bloom, M.S.; Robinson, W.H. B cell checkpoints in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 2019, 15, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Lieby, P.; Soley, A.; Knapp, A.-M.; Cerutti, M.; Freyssinet, J.M.; Pasquali, J.-L.; Martin, T. Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals. Blood 2003, 102, 2459–2465. [Google Scholar] [CrossRef] [Green Version]
- Blank, M.; Krause, I.; Fridkin, M.; Keller, N.; Kopolovic, J.; Goldberg, I.; Tobar, A.; Shoenfeld, Y. Bacterial induction of autoantibodies to B2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J. Clin. Investig. 2002, 109, 797–804. [Google Scholar] [CrossRef]
- Gharavi, A.E.; Pierangeli, S.S.; Espinola, R.G.; Liu, X.; Colden-Stanfield, M.; Harris, E.N. Antiphospholipid antibodies induced in mice by immunization with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo. Arthritis Rheum. 2002, 46, 545–552. [Google Scholar] [CrossRef]
- Van Os, G.M.A.; Meijers, J.C.M.; Agar, Ç.; Seron, M.V.; Marquart, J.A.; Åkesson, P.; Urbanus, R.T.; Derksen, R.H.W.M.; Herwald, H.; Mörgelin, M.; et al. Induction of anti-β 2-glycoprotein I autoantibodies in mice by protein H of Streptococcus pyogenes. J. Thromb. Haemost. 2011, 9, 2447–2456. [Google Scholar] [CrossRef]
- Ruff, W.E.; Dehner, C.; Kim, W.J.; Pagovich, O.; Aguiar, C.L.; Yu, A.T.; Roth, A.S.; Vieira, S.M.; Kriegel, C.; Adeniyi, O.; et al. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity. Cell Host Microbe 2019, 26, 100–113.e8. [Google Scholar] [CrossRef]
- Dal Ben, E.R.R.; do Prado, C.H.; Baptista, T.S.A.; Bauer, M.E.; Staub, H.L. Decreased levels of circulating CD4+CD25+Foxp3+ regulatory T cells in patients with primary antiphospholipid syndrome. J. Clin. Immunol. 2013, 33, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Carbone, J.; Gallego, A.; Lanio, N.; Navarro, J.; Orera, M.; Aguaron, A.; Fernandez-Cruz, E.; Sarmiento, E. Quantitative abnormalities of peripheral blood distinct T, B, and natural killer cell subsets and clinical findings in obstetric antiphospholipid syndrome. J. Rheumatol. 2009, 36, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Simonin, L.; Pasquier, E.; Leroyer, C.; Cornec, D.; Lemerle, J.; Bendaoud, B.; Hillion, S.; Pers, J.O.; Couturaud, F.; Renaudineau, Y. Lymphocyte Disturbances in Primary Antiphospholipid Syndrome and Application to Venous Thromboembolism Follow-Up. Clin. Rev. Allergy Immunol. 2017, 53, 14–27. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, L.; Riancho-Zarrabeitia, L.; Calvo-Alén, J.; López-Hoyos, M.; Martínez-Taboada, V. Peripheral B-cell subset distribution in primary antiphospholipid syndrome. Int. J. Mol. Sci. 2018, 19, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Kroef, M.; van den Hoogen, L.L.; Mertens, J.S.; Blokland, S.L.M.; Haskett, S.; Devaprasad, A.; Carvalheiro, T.; Chouri, E.; Vazirpanah, N.; Cossu, M.; et al. Cytometry by time of flight identifies distinct signatures in patients with systemic sclerosis, systemic lupus erythematosus and Sjögrens syndrome. Eur. J. Immunol. 2020, 50, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H. Basic Science for the Clinician 54: CD5. JCR J. Clin. Rheumatol. 2012, 18, 83–88. [Google Scholar] [CrossRef]
- Andreoli, L.; Fredi, M.; Nalli, C.; Franceschini, F.; Meroni, P.L.; Tincani, A. Antiphospholipid antibodies mediate autoimmunity against dying cells. Autoimmunity 2013, 46, 302–306. [Google Scholar] [CrossRef]
- Karakantza, M.; Theodorou, G.L.; Meimaris, N.; Mouzaki, A.; John, E.; Andonopoulos, A.P.; Maniatis, A. Type 1 and type 2 cytokine-producing CD4+ and CD8+ T cells in primary antiphospholipid syndrome. Ann. Hematol. 2004, 83, 704–711. [Google Scholar] [CrossRef]
- Mahmoud, F.; Diejomaoh, M.; Omu, A.E.; Abul, H.; Haines, D. Lymphocyte subpopulation frequency and presence of anti-cardiolipin and anti-nuclear antibodies in peripheral blood of Kuwaiti women experiencing recurrent pregnancy loss. J. Obs. Gynaecol. 2001, 21, 587–590. [Google Scholar] [CrossRef]
- Velasquillo, M.C.; Alcocer-Varela, J.; Alarcon-Segovia, D.; Cabiedes, J.; Sanchez-Guerrero, J. Some patients with primary antiphospholipid syndrome have increased circulating CD5+ B cells that correlate with levels of IgM antiphospholipid antibodies. Clin. Exp. Rheumatol. 1991, 9, 501–505. [Google Scholar]
- Youinou, P.; Renaudineau, Y. The antiphospholipid syndrome as a model for B cell-induced autoimmune diseases. Thromb. Res. 2004, 114, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Hisada, R.Y.O.; Kato, M.; Sugawara, E.R.I.; Kanda, M.; Fujieda, Y.; Oku, K.; Bohgaki, T.; Amengual, O.; Horita, T.; Yasuda, S.; et al. Circulating plasmablasts contribute to antiphospholipid antibody production, associated with type I interferon upregulation. J. Thromb. Haemost. 2019, 17, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Li, W.; Feng, J.; Ma, Y.; Sun, Y.; Xu, L.; Song, Y.; Liu, C. Follicular helper and follicular regulatory T cell subset imbalance is associated with higher activated B cells and abnormal autoantibody production in primary anti-phospholipid syndrome patients. Clin. Exp. Immunol. 2021, 206, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, A.M.; Odendahl, M.; Reiter, K.; Bruns, A.; Burmester, G.R.; Radbruch, A.; Valet, G.; Lipsky, P.E.; Dörner, T. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2003, 48, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- Dörner, T.; Szelinski, F.; Lino, A.C.; Lipsky, P.E. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open 2020, 6, e001258. [Google Scholar] [CrossRef]
- Menon, M.; Blair, P.A.; Isenberg, D.A.; Mauri, C. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus. Immunity 2016, 44, 683–697. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Sun, L.; Fan, X.; Wang, Z.; Cheng, Y.; Zhu, J.; Jin, T. Role of regulatory b cells in neuroimmunologic disorders. J. Neurosci. Res. 2016, 94, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Mackay, F.; Steiner, V.; Hofmann, K.; Bodmer, J.L.; Holler, N.; Ambrose, C.; Lawton, P.; Bixler, S.; Acha-Orbea, H.; et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 1999, 189, 1747–1756. [Google Scholar] [CrossRef]
- Moore, P.A.; Belvedere, O.; Orr, A.; Pieri, K.; LaFleur, D.W.; Feng, P.; Soppet, D.; Charters, M.; Gentz, R.; Parmelee, D.; et al. BLyS: Member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1979 1999, 285, 260–263. [Google Scholar] [CrossRef]
- Roschke, V.; Sosnovtseva, S.; Ward, C.D.; Hong, J.S.; Smith, R.; Albert, V.; Stohl, W.; Baker, K.P.; Ullrich, S.; Nardelli, B.; et al. BLyS and APRIL Form Biologically Active Heterotrimers That Are Expressed in Patients with Systemic Immune-Based Rheumatic Diseases. J. Immunol. 2002, 169, 4314–4321. [Google Scholar] [CrossRef] [Green Version]
- Hahne, M.; Kataoka, T.; Schröter, M.; Hofmann, K.; Irmler, M.; Bodmer, J.L.; Schneider, P.; Bornand, T.; Holler, N.; French, L.E.; et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J. Exp. Med. 1998, 188, 1185–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, F.B.; Morand, E.F.; Schneider, P.; MacKay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 2014, 10, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, F.; Woodcock, S.; Lawton, P.; Ambrose, C.; Baetscher, M.; Schneider, P.; Tschopp, J.; Browning, J.L. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 1999, 190, 1697–1710. [Google Scholar] [CrossRef] [PubMed]
- Navarra, S.V.; Guzmán, R.M.; Gallacher, A.E.; Hall, S.; Levy, R.A.; Jimenez, R.E.; Li, E.K.M.; Thomas, M.; Kim, H.Y.; León, M.G.; et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Petri, M.; Zamani, O.; Cervera, R.; Wallace, D.J.; Tegzová, D.; Sanchez-Guerrero, J.; Schwarting, A.; Merrill, J.T.; Chatham, W.W.; et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 3918–3930. [Google Scholar] [CrossRef] [Green Version]
- van den Hoogen, L.; Palla, G.; Bekker, C.; Fritsch-Stork, R.; Radstake, T.; van Roon, J. Increased B-cell activating factor BAFF / B-lymphocyte stimulator BLyS in primary antiphospholipid syndrome is associated with higher adjusted global antiphospholipid syndrome scores. RMD Open 2018, 4, e000693. [Google Scholar] [CrossRef]
- Sciascia, S.; Sanna, G.; Murru, V.; Roccatello, D.; Khamashta, M.A.; Bertolaccini, M.L. The global anti-phospholipid syndrome score in primary APS. Rheumatology 2014, 54, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Wojdasiewicz, P.; Wajda, A.; Haładyj, E.; Romanowska-Próchnicka, K.; Felis-Giemza, A.; Nałęcz-Janik, J.; Walczyk, M.; Olesińska, M.; Tarnacka, B.; Paradowska-Gorycka, A. IL-35, TNF-α, BAFF, and VEGF serum levels in patients with different rheumatic diseases. Reumatologia 2019, 57, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Duan, H.J.; Liu, X.Y.; Deng, X.L. Change of serum B-cell activating factor level in patients with positive antiphospholipid antibodies and previous adverse pregnancy outcomes and its significance. Chin. Med. J. 2020, 133, 2287–2294. [Google Scholar] [CrossRef]
- Stohl, H.E.; Yu, N.; Stohl, W. First-trimester serum BAFF:sFlt-1 ratio as a candidate early biomarker of spontaneous abortion. Am. J. Reprod. Immunol. 2021, 86, e13428. [Google Scholar] [CrossRef]
- Dobrowolski, C.; Erkan, D. Treatment of antiphospholipid syndrome beyond anticoagulation. Clin. Immunol. 2019, 206, 53–62. [Google Scholar] [CrossRef]
- Erkan, D.; Vega, J.; Ramón, G.; Kozora, E.; Lockshin, M.D. A pilot open-label phase II trial of rituximab for non-criteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 2013, 65, 464–471. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Shi, C.; Zhou, Z.; Wang, F.; Sun, Y.; Teng, J.; Liu, H.; Cheng, X.; Su, Y.; Shi, H.; et al. Rituximab in thrombotic primary antiphospholipid syndrome: A pilot study from a single centre in China. Ann. Rheum. Dis. 2021, 80, 820–822. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Radin, M.; Cecchi, I.; Rubini, E.; Bazzan, M.; Roccatello, D. Long-term effect of B-cells depletion alone as rescue therapy for severe thrombocytopenia in primary antiphospholipid syndrome. Semin. Arthritis Rheum. 2019, 48, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Berman, M.; Harel, L.; Lidar, M.; Drori, T.; Hajyahia, S.; Paran, D. Rituximab for refractory manifestations of the antiphospholipid syndrome: A multicentre Israeli experience. Clin. Exp. Rheumatol. 2020, 39, 1049–1055. [Google Scholar] [CrossRef]
- Berman, H.; Rodríguez-Pintó, I.; Cervera, R.; Morel, N.; Costedoat-Chalumeau, N.; Erkan, D.; Shoenfeld, Y.; Espinosa, G. Rituximab use in the catastrophic antiphospholipid syndrome: Descriptive analysis of the CAPS registry patients receiving rituximab. Autoimmun. Rev. 2013, 12, 1085–1090. [Google Scholar] [CrossRef]
- Mougiakakos, D.; Krönke, G.; Völkl, S.; Kretschmann, S.; Aigner, M.; Kharboutli, S.; Böltz, S.; Manger, B.; Mackensen, A.; Schett, G. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. N. Engl. J. Med. 2021, 385, 567–569. [Google Scholar] [CrossRef]
- Mackensen, A.; Müller, F.; Mougiakakos, D.; Böltz, S.; Wilhelm, A.; Aigner, M.; Völkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 2022, 28, 2124–2132. [Google Scholar] [CrossRef]
- Schmelz, J.L.; Navsaria, L.; Goswamy, R.; Chuang, H.H.; Miranda, R.N.; Lee, H.J. Chimeric antigen receptor T-cell therapy’s role in antiphospholipid syndrome: A case report. Br. J. Haematol. 2020, 188, e5–e8. [Google Scholar] [CrossRef]
- Pleguezuelo, D.E.; Díaz-Simón, R.; Cabrera-Marante, O.; Lalueza, A.; Paz-Artal, E.; Lumbreras, C.; Serrano Hernández, A. Case Report: Resetting the Humoral Immune Response by Targeting Plasma Cells With Daratumumab in Anti-Phospholipid Syndrome. Front. Immunol. 2021, 12, 667515. [Google Scholar] [CrossRef]
- Yazici, A.; Yazirli, B.; Erkan, D. Belimumab in primary antiphospholipid syndrome. Lupus 2017, 26, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Klemm, P.; Müller-Ladner, U.; Tarner, I.H.; Lange, U.; Hudowenz, O. Belimumab reduces antiphospholipid antibodies in primary triple-positive antiphospholipid syndrome. Autoimmun. Rev. 2020, 19, 102594. [Google Scholar] [CrossRef] [PubMed]
- Kravvariti, E.; Koutsogianni, A.; Samoli, E.; Sfikakis, P.P.; Tektonidou, M.G. The effect of hydroxychloroquine on thrombosis prevention and antiphospholipid antibody levels in primary antiphospholipid syndrome: A pilot open label randomized prospective study. Autoimmun. Rev. 2020, 19, 102491. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Radin, M.; Cecchi, I.; Barinotti, A.; Rubini, E.; Rossi, D.; Fenoglio, R.; Vaccarino, A.; Menegatti, E.; Roccatello, D. Open-label, prospective, phase II descriptive pilot trial of belimumab therapy for refractory and/or non-criteria manifestations of antiphospholipid syndrome: Study protocol. Clin. Exp. Rheumatol. 2022. [Google Scholar] [CrossRef]
- Kahn, P.; Ramanujam, M.; Bethunaickan, R.; Huang, W.; Tao, H.; Madaio, M.P.; Factor, S.M.; Davidson, A. Prevention of murine antiphospholipid syndrome by BAFF blockade. Arthritis Rheum. 2008, 58, 2824–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzidionysiou, K.; Samoli, E.; Sfikakis, P.P.; Tektonidou, M.G. Effect of belimumab treatment on antiphospholipid antibodies levels: Post-hoc analysis based on two randomised placebo-controlled trials in systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 79, 77–80. [Google Scholar] [CrossRef]
- Merrill, J.T.; Shanahan, W.R.; Scheinberg, M.; Kalunian, K.C.; Wofsy, D.; Martin, R.S. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): Results from a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2018, 77, 883–889. [Google Scholar] [CrossRef]
Subset | Alteration in PAPS | Reference(s) |
---|---|---|
CD5+ B-cells | Increased in PAPS | [28,33,34,35] |
Naïve B-cells | Increased in PAPS | [27,28] |
Unswitched Memory B-cells | Decreased in PAPS | [27,28,42] |
Switched Memory B-cells | Decreased in PAPS | [27,42] |
Plasmablasts | Increased in PAPS | [42,43] |
Transitional B-cells | Increased in PAPS | [28,43] |
Double negative B-cells | Increased in PAPS | [28,43] |
Regulatory B-cells | Decreased in PAPS | [42] |
Drug | Clinical Use in PAPS | Reference(s) |
---|---|---|
Rituximab | Various “non-criteria” manifestations including thrombocytopenia | [61,62,64,65] |
Thrombosis recurrence | [61,63,65] | |
Catastrophic APS | [61,65,66] | |
Daratumumab | Thrombosis recurrence (case report) | [70] |
Belimumab | Diffuse alveolar hemorrhage (case report) | [71] |
Skin ulcers (case report) | [71] | |
Catastrophic APS (case report) | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Hoogen, L.L.; Bisoendial, R.J. B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J. Clin. Med. 2023, 12, 18. https://doi.org/10.3390/jcm12010018
van den Hoogen LL, Bisoendial RJ. B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? Journal of Clinical Medicine. 2023; 12(1):18. https://doi.org/10.3390/jcm12010018
Chicago/Turabian Stylevan den Hoogen, Lucas L., and Radjesh J. Bisoendial. 2023. "B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy?" Journal of Clinical Medicine 12, no. 1: 18. https://doi.org/10.3390/jcm12010018
APA Stylevan den Hoogen, L. L., & Bisoendial, R. J. (2023). B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? Journal of Clinical Medicine, 12(1), 18. https://doi.org/10.3390/jcm12010018