Resistance to Somatostatin Analogs in Italian Acromegaly Patients: The MISS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and fg-SRL Resistance Assessment
2.2. Histological Analysis
2.3. Radiological Re-Evaluation
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics at Diagnosis
3.2. Histological and Molecular Features
3.3. Post-Operative Characteristics in NSI Patients without Neo-Adjuvant Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ezzat, S.; Caspar-Bell, G.M.; Chik, C.L.; Denis, M.-C.; Domingue, M.; Imran, S.A.; Johnson, M.D.; Lochnan, H.A.; Nyomba, B.L.G.; Prebtani, A.; et al. Predictive Markers for Postsurgical Medical Management of Acromegaly: A Systematic Review and Consensus Treatment Guideline. Endocr. Pract. 2019, 25, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Bronstein, M.D.; Chanson, P.; Klibanski, A.; Casanueva, F.F.; Wass, J.A.H.; Strasburger, C.J.; Luger, A.; Clemmons, D.R.; Giustina, A. A Consensus Statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 2018, 14, 552–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katznelson, L.; Laws, E.R.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.H. Acromegaly: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef]
- Giustina, A.; Barkhoudarian, G.; Beckers, A.; Ben-Shlomo, A.; Biermasz, N.; Biller, B.; Boguszewski, C.; Bolanowski, M.; Bollerslev, J.; Bonert, V.; et al. Multidisciplinary management of acromegaly: A consensus. Rev. Endocr. Metab. Disord. 2020, 21, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Kasuki, L.; Wildemberg, L.E.; Gadelha, M.R. MANAGEMENT OF ENDOCRINE DISEASE: Personalized medicine in the treatment of acromegaly. Eur. J. Endocrinol. 2018, 178, R89–R100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giustina, A.; Chanson, P.; Kleinberg, D.L.; Bronstein, M.D.; Clemmons, D.R.; Klibanski, A.; Van Der Lely, A.J.; Strasburger, C.J.; Lamberts, S.W.; Ho, K.K.Y.; et al. Expert consensus document: A consensus on the medical treatment of acromegaly. Nat. Rev. Endocrinol. 2014, 10, 243–248. [Google Scholar] [CrossRef]
- Zahr, R.; Fleseriu, M. Updates in Diagnosis and Treatment of Acromegaly. Eur. Endocrinol. 2018, 14, 57–61. [Google Scholar] [CrossRef]
- Paragliola, R.M.; Corsello, S.M.; Salvatori, R. Somatostatin receptor ligands in acromegaly: Clinical response and factors predicting resistance. Pituitary 2017, 20, 109–115. [Google Scholar] [CrossRef]
- Cocchiara, F.; Campana, C.; Nista, F.; Corica, G.; Ceraudo, M.; Milioto, A.; Rossi, D.C.; Zona, G.; Ferone, D.; Gatto, F. Evaluation of acromegaly treatment direct costs with respect to biochemical control and follow-up length. Pituitary 2022, 25, 246–257. [Google Scholar] [CrossRef]
- Colao, A.; Auriemma, R.S.; Lombardi, G.; Pivonello, R. Resistance to Somatostatin Analogs in Acromegaly. Endocr. Rev. 2011, 32, 247–271. [Google Scholar] [CrossRef]
- Gola, M.; Bonadonna, S.; Mazziotti, G.; Amato, G.; Giustina, A. Resistance to somatostatin analogs in acromegaly: An evolving concept? J. Endocrinol. Investig. 2006, 29, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Puig-Domingo, M.; Marazuela, M. Precision medicine in the treatment of acromegaly. Minerva Endocrinol. 2019, 44, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Fleseriu, M.; Biller, B.M.K.; Freda, P.U.; Gadelha, M.R.; Giustina, A.; Katznelson, L.; Molitch, M.E.; Samson, S.L.; Strasburger, C.J.; van der Lely, A.J.; et al. A Pituitary Society update to acromegaly management guidelines. Pituitary 2021, 24, 1–13. [Google Scholar] [CrossRef]
- Petersenn, S.; the PRIMARYS Study Group; Houchard, A.; Sert, C.; Caron, P.J. Predictive factors for responses to primary medical treatment with lanreotide autogel 120 mg in acromegaly: Post hoc analyses from the PRIMARYS study. Pituitary 2020, 23, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildemberg, L.E.; da Silva Camacho, A.H.; Miranda, R.L.; Elias, P.C.L.; de Castro Musolino, N.R.; Nazato, D.; Jallad, R.; Huayllas, M.K.P.; Mota, J.I.S.; Almeida, T.; et al. Machine Learning-based Prediction Model for Treatment of Acromegaly with First-generation Somatostatin Receptor Ligands. J. Clin. Endocrinol. Metab. 2021, 106, 2047–2056. [Google Scholar] [CrossRef]
- Nista, F.; Corica, G.; Castelletti, L.; Khorrami, K.; Campana, C.; Cocchiara, F.; Zoppoli, G.; Prior, A.; Rossi, D.C.; Zona, G.; et al. Clinical and Radiological Predictors of Biochemical Response to First-Line Treatment with Somatostatin Receptor Ligands in Acromegaly: A Real-Life Perspective. Front. Endocrinol. 2021, 12, 677919. [Google Scholar] [CrossRef]
- Coopmans, E.C.; Korevaar, T.I.M.; van Meyel, S.W.F.; Daly, A.F.; Chanson, P.; Brue, T.; Delemer, B.; Hána, V.; Colao, A.; Carvalho, D.; et al. Multivariable Prediction Model for Biochemical Response to First-Generation Somatostatin Receptor Ligands in Acromegaly. J. Clin. Endocrinol. Metab. 2020, 105, 2964–2974. [Google Scholar] [CrossRef] [PubMed]
- Puig-Domingo, M.; Gil, J.; Sampedro-Nuñez, M.; Jordà, M.; Webb, S.M.; Serra, G.; Pons, L.; Salinas, I.; Blanco, A.; Marques-Pamies, M.; et al. Molecular profiling for acromegaly treatment: A validation study. Endocrine-Related Cancer 2020, 27, 375–389. [Google Scholar] [CrossRef]
- Fusco, A.; Zatelli, M.C.; Bianchi, A.; Cimino, V.; Tilaro, L.; Veltri, F.; Angelini, F.; Lauriola, L.; Vellone, V.G.; Doglietto, F.; et al. Prognostic Significance of the Ki-67 Labeling Index in Growth Hormone-Secreting Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2008, 93, 2746–2750. [Google Scholar] [CrossRef] [Green Version]
- Cannavo, S.; Ragonese, M.; Puglisi, S.; Romeo, P.D.; Torre, M.L.; Alibrandi, A.; Scaroni, C.; Occhi, G.; Ceccato, F.; Regazzo, D.; et al. Acromegaly Is More Severe in Patients with AHR or AIP Gene Variants Living in Highly Polluted Areas. J. Clin. Endocrinol. Metab. 2016, 101, 1872–1879. [Google Scholar] [CrossRef]
- Kasuki, L.; Neto, L.V.; A Wildemberg, L.E.; Colli, L.M.; de Castro, M.; Takiya, C.M.; Gadelha, M.R. AIP expression in sporadic somatotropinomas is a predictor of the response to octreotide LAR therapy independent of SSTR2 expression. Endocrine-Related Cancer 2012, 19, L25–L29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varlamov, E.V.; Niculescu, D.A.; Banskota, S.; Galoiu, S.A.; Poiana, C.; Fleseriu, M. Clinical features and complications of acromegaly at diagnosis are not all the same: Data from two large referral centers. Endocr. Connect. 2021, 10, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Potorac, I.; Beckers, A.; Bonneville, J.-F. T2-weighted MRI signal intensity as a predictor of hormonal and tumoral responses to somatostatin receptor ligands in acromegaly: A perspective. Pituitary 2017, 20, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Gatto, F.; Feelders, R.A.; Van Der Pas, R.; Kros, J.M.; Waaijers, M.; Sprij-Mooij, D.; Neggers, S.J.C.M.M.; Van Der Lelij, A.-J.; Minuto, F.; Lamberts, S.W.J.; et al. Immunoreactivity Score Using an Anti-sst2A Receptor Monoclonal Antibody Strongly Predicts the Biochemical Response to Adjuvant Treatment with Somatostatin Analogs in Acromegaly. J. Clin. Endocrinol. Metab. 2013, 98, E66–E71. [Google Scholar] [CrossRef] [Green Version]
- Gatto, F.; Wildemberg, L.E.; Ferone, D.; Gadelha, M.R. Routine Evaluation of Somatostatin Receptor Type 2 in Patients with Acromegaly: Do We Still Need More Evidence? J. Clin. Endocrinol. Metab. 2022, 107, e4382–e4383. [Google Scholar] [CrossRef]
- Ilie, M.-D.; Tabarin, A.; Vasiljevic, A.; Bonneville, J.-F.; Moreau-Grangé, L.; Schillo, F.; Delemer, B.; Barlier, A.; Figarella-Branger, D.; Bisot-Locard, S.; et al. Predictive Factors of Somatostatin Receptor Ligand Response in Acromegaly—A Prospective Study. J. Clin. Endocrinol. Metab. 2022, 107, 2982–2991. [Google Scholar] [CrossRef]
- Mayr, B.; Buslei, R.; Theodoropoulou, M.; Stalla, G.K.; Buchfelder, M.; Schöfl, C. Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur. J. Endocrinol. 2013, 169, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Fougner, S.L.; Casar-Borota, O.; Heck, A.; Berg, J.P.; Bollerslev, J. Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin. Endocrinol. 2012, 76, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Larkin, S.; Reddy, R.; Karavitaki, N.; Cudlip, S.; Wass, J.; Ansorge, O. Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naïve patients with somatotroph adenomas. Eur. J. Endocrinol. 2013, 168, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Venegas-Moreno, E.; Flores-Martinez, A.; Dios, E.; Vazquez-Borrego, M.C.; Ibañez-Costa, A.; Madrazo-Atutxa, A.; Japón, M.A.; Castaño, J.P.; Luque, R.M.; Cano, D.A.; et al. E-cadherin expression is associated with somatostatin analogue response in acromegaly. J. Cell. Mol. Med. 2019, 23, 3088–3096. [Google Scholar] [CrossRef]
- Fougner, S.L.; Lekva, T.; Casar-Borota, O.; Hald, J.K.; Bollerslev, J.; Berg, J.P. The Expression of E-Cadherin in Somatotroph Pituitary Adenomas Is Related to Tumor Size, Invasiveness, and Somatostatin Analog Response. J. Clin. Endocrinol. Metab. 2010, 95, 2334–2342. [Google Scholar] [CrossRef] [Green Version]
- Potorac, I.; Petrossians, P.; Daly, A.F.; Alexopoulou, O.; Borot, S.; Sahnoun-Fathallah, M.; Castinetti, F.; Devuyst, F.; Jaffrain-Rea, M.-L.; Briet, C.; et al. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocrine-Related Cancer 2016, 23, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonneville, F.; Rivière, L.-D.; Petersenn, S.; Bevan, J.S.; Houchard, A.; Sert, C.; Caron, P.J.; Van, G.L.; Marek, J.; Nuutila, P.; et al. MRI T2 signal intensity and tumor response in patients with GH-secreting pituitary macroadenoma: PRIMARYS post hoc analysis. Eur. J. Endocrinol. 2018, 180, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, A.; Emblem, K.E.; Casar-Borota, O.; Bollerslev, J.; Ringstad, G. Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine 2016, 52, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Heck, A.; Ringstad, G.; Fougner, S.L.; Casar-Borota, O.; Nome, T.; Ramm-Pettersen, J.; Bollerslev, J. Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin. Endocrinol. 2011, 77, 72–78. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Q.; Liu, W.; Wang, M.; Zhu, J.; Ma, Z.; He, W.; Li, S.; Shou, X.; Li, Y.; et al. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology 2016, 58, 1057–1065. [Google Scholar] [CrossRef]
- Petrossians, P.; Borges-Martins, L.; Espinoza, C.; Daly, A.; Betea, D.; Valdes-Socin, H.; Stevenaert, A.; Chanson, P.; Beckers, A. Gross total resection or debulking of pituitary adenomas improves hormonal control of acromegaly by somatostatin analogs. Eur. J. Endocrinol. 2005, 152, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Colao, A.; Attanasio, R.; Pivonello, R.; Cappabianca, P.; Cavallo, L.M.; Lasio, G.; Lodrini, A.; Lombardi, G.; Cozzi, R. Partial Surgical Removal of Growth Hormone-Secreting Pituitary Tumors Enhances the Response to Somatostatin Analogs in Acromegaly. J. Clin. Endocrinol. Metab. 2006, 91, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Karavitaki, N.; Turner, H.E.; Adams, C.B.T.; Cudlip, S.; Byrne, J.V.; Fazal-Sanderson, V.; Rowlers, S.; Trainer, P.J.; Wass, J.A.H. Surgical debulking of pituitary macroadenomas causing acromegaly improves control by lanreotide. Clin. Endocrinol. 2008, 68, 970–975. [Google Scholar] [CrossRef]
- Gil, J.; Marques-Pamies, M.; Jordà, M.; Fajardo-Montañana, C.; García-Martínez, A.; Sampedro, M.; Serra, G.; Salinas, I.; Blanco, A.; Valassi, E.; et al. Molecular determinants of enhanced response to somatostatin receptor ligands after debulking in large GH-producing adenomas. Clin. Endocrinol. 2021, 94, 811–819. [Google Scholar] [CrossRef]
Data Available (n, %) | Variable | All patient | R-SRL | S-SRL | p-Value |
---|---|---|---|---|---|
96, 100 | Female (n, %) | 59, 61.5 | 37, 58.7 | 22, 66.7 | 0.59 |
92, 95.8 | Fg-SRL (n, %) | ||||
| 46, 50 | 30, 48.4 | 16, 53.3 | 0.82 | |
| 46, 50 | 32, 51.6 | 14, 46.7 | ||
92, 95.8 | IGF-I (ng/mL) | 394.5 [224–587.5] | 491 [390–705] | 202.5 [181–223] | <0.0001 |
92, 95.8 | IGF-I/ULN | 1.38 [0.83–1.91] | 1.74 [1.36–2.3] | 0.75 [0.61–0.8] | <0.0001 |
73, 76 | r-GH (ng/mL) | 2.4 [1.4–5.8] | 3.2 [2–6.97] | 1.4 [0.6–2.07] | 0.0002 |
64, 66.7 | TVR (%) | 0 [0–25] | 0 [0–21.25] | 20 [0–34.64] | 0.18 |
Data Available (n, %) | Variable | All Patient | R-SRL | S-SRL | p-Value |
---|---|---|---|---|---|
96, 100 | Age (years) | 43.5 ± 13.3 | 41.6 ± 12.03 | 47.1 ± 14.9 | 0.052 |
94, 97.9 | IGF-I (ng/mL) | 862.7 ± 303.2 | 905.7 ± 326 | 779.4 ± 236.05 | 0.055 |
94, 97.9 | IGF-I/ULN | 3 ± 1.1 | 3.12 ± 1.12 | 2.79 ± 1 | 0.162 |
74, 77.1 | r-GH (ng/mL) | 11.99 [5.9–32.2] | 13 [6.15–47.5] | 8.81 [5–26.2] | 0.257 |
89, 92.7 | PRL (ng/mL) | 13.5 [10–32.5] | 13.3 [10–31.06] | 18.1 [10–32.8] | 0.593 |
95, 98.9 | Maximal tumor diameter (mm) | 18 [13–24.5] | 20 [13–25.7] | 15 [13.5–2] | 0.049 |
95, 98.9 | Microadenomas (n, %) | 8, 8.4 | 6, 9.5 | 2, 6.2 | 0.879 |
91, 94.8 | Cavernous sinus invasion (n, %) | 57, 62.6 | 42, 68.8 | 15, 50 | 0.129 |
77, 80.2 | Suprasellar extension (n, %) | 49, 63.6 | 40, 67.8 | 9, 50 | 0.274 |
77, 80.2 | Intrasellar extension (n, %) | 26, 33.8 | 19, 32.7 | 7, 36.8 | 0.962 |
73, 76 | T2-iso/hyper-intensity (n, %) | 49, 67.1 | 39, 75 | 10, 47.6 | 0.048 |
Model | Data Available (n, %) | AUC (95% CI) | Variable | Coefficient | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
1 | 94, 97.9 | 0.62 (0.51–0.71) | Age (years) | −0.04 | 0.96 (0.93–0.99) | 0.035 |
IGF-I (ng/mL) | >0.1 | |||||
2 | 73, 76 | 0.64 (0.52–0.75) | T2-iso/hyperintensity | 1.19 | 3.3 (1.14–9.54) | 0.027 |
Maximal diameter (mm) | >0.1 | |||||
3 | 89, 92.7 | 0.7 (0.59–0.79) | Low-grade SSTR2 expression | 1.52 | 4.58 (1.37–15.29) | 0.013 |
SG/intermediate pattern | 0.97 | 2.65 (1.01-6.92) | 0.047 | |||
4 | 73, 76 | 0.76 (0.64–0.85) | T2-iso/hyperintensity | 1.17 | 3.24 (1.03–10.2) | 0.045 |
SG/intermediate pattern | 1.71 | 5.56 (1.75–17.6) | 0.003 | |||
5 | 42, 82.3 | 0.82 (0.67–0.92) | No post-surgical appreciable remnant | −3.09 | 0.045 (0.01–0.24) | 0.0003 |
Random GH (ng/mL) | >0.1 |
Variable | Data Available | Coefficient | OR (95% CI) | p-Value | AUC (95% CI) |
Age (years) | 96, 100% (63 R-SRL, 33 S-SRL) | −0.03 | 0.97 (0.93–1.0008) | 0.056 | 0.6 (0.5–0.7) |
Low-grade SSTR2 expression | 89, 92.7% (61 R-SRL, 28 S-SRL) | 1.43 | 4.17 (1.29–13.49) | 0.017 | 0.63 (0.52–0.73) |
T2-iso/hyper-intensity | 73, 76% (52 R-SRL, 21 S-SRL) | 1.19 | 3.3 (1.14–9.54) | 0.027 | 0.64 (0.52–0.75) |
SG/intermediate CAM5.2 pattern | 96, 100% (63 R-SRL, 33 S-SRL) | 0.8 | 2.24 (0.95–5.28) | 0.066 | 0.6 (0.49–0.7) |
Variable | Data Available | All Patients | R-SRL | S-SRL | p-Value |
---|---|---|---|---|---|
Ki-67 ≥ 3% (n, %) | 94, 97.9% | 24, 25.5% | 17, 27.9% | 7, 21.2% | 0.646 |
p53 ≥ 1% (n, %) | 61, 63.5% | 14, 23% | 10, 22.7% | 4, 23.5% | 0.785 |
CAM5.2 pattern
| 96, 100% | 40, 41.7% 56, 58.3% | 22, 34.9% 41, 65.1% | 18, 54.5% 15, 45.4% | 0.102 |
SSTR2 expression
| 89, 92.7% | 29, 32.6% 60, 67.4% | 25, 40.9% 36, 59% | 4, 14.3% 24, 85.7% | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berton, A.M.; Prencipe, N.; Bertero, L.; Baldi, M.; Bima, C.; Corsico, M.; Bianchi, A.; Mantovani, G.; Ferraù, F.; Sartorato, P.; et al. Resistance to Somatostatin Analogs in Italian Acromegaly Patients: The MISS Study. J. Clin. Med. 2023, 12, 25. https://doi.org/10.3390/jcm12010025
Berton AM, Prencipe N, Bertero L, Baldi M, Bima C, Corsico M, Bianchi A, Mantovani G, Ferraù F, Sartorato P, et al. Resistance to Somatostatin Analogs in Italian Acromegaly Patients: The MISS Study. Journal of Clinical Medicine. 2023; 12(1):25. https://doi.org/10.3390/jcm12010025
Chicago/Turabian StyleBerton, Alessandro Maria, Nunzia Prencipe, Luca Bertero, Marco Baldi, Chiara Bima, Marina Corsico, Antonio Bianchi, Giovanna Mantovani, Francesco Ferraù, Paola Sartorato, and et al. 2023. "Resistance to Somatostatin Analogs in Italian Acromegaly Patients: The MISS Study" Journal of Clinical Medicine 12, no. 1: 25. https://doi.org/10.3390/jcm12010025
APA StyleBerton, A. M., Prencipe, N., Bertero, L., Baldi, M., Bima, C., Corsico, M., Bianchi, A., Mantovani, G., Ferraù, F., Sartorato, P., Gagliardi, I., Ghigo, E., & Grottoli, S. (2023). Resistance to Somatostatin Analogs in Italian Acromegaly Patients: The MISS Study. Journal of Clinical Medicine, 12(1), 25. https://doi.org/10.3390/jcm12010025