Long-Term Safety of Growth Hormone Deficiency Treatment in Cancer and Sellar Tumors Adult Survivors: Is There a Role of GH Therapy on the Neoplastic Risk?
Abstract
:1. Introduction
2. Cancer Incidence in Adult Patients
3. Cancer Risk in Adult Hypopituitary Patients
4. Background on GH/IGF-I Axis and Cancer
5. GH Treatment in Adult Cancer Survivors
5.1. GH Treatment and Second Neoplasm Risk
5.2. Growth Hormone Therapy and Sellar Tumors
5.2.1. Craniopharyngioma
5.2.2. Pituitary Adenomas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Iersel, L.; Li, Z.; Srivastava, D.K.; Brinkman, T.M.; Bjornard, K.L.; Wilson, C.L.; Green, D.M.; Merchant, T.E.; Pui, C.-H.; Howell, R.M.; et al. Hypothalamic-Pituitary Disorders in Childhood Cancer Survivors: Prevalence, Risk Factors and Long-Term Health Outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 6101–6115. [Google Scholar] [CrossRef] [PubMed]
- Tamhane, S.; Sfeir, J.G.; Kittah, N.E.N.; Jasim, S.; Chemaitilly, W.; Cohen, L.E.; Murad, M.H. GH Therapy in Childhood Cancer Survivors: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2018, 103, 2794–2801. [Google Scholar] [CrossRef] [PubMed]
- Abdel, R.O. The Epidemiologic Transition: A Theory of the Epidemiology of Population Change—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690264/ (accessed on 28 October 2022).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boguszewski, M.C.S.; Cardoso-Demartini, A.A.; Boguszewski, C.L.; Chemaitilly, W.; Higham, C.E.; Johannsson, G.; Yuen, K.C.J. Safety of Growth Hormone (GH) Treatment in GH Deficient Children and Adults Treated for Cancer and Non-Malignant Intracranial Tumors—A Review of Research and Clinical Practice. Pituitary 2021, 24, 810–827. [Google Scholar] [CrossRef]
- Bates, A.S.; Van’t Hoff, W.; Jones, P.J.; Clayton, R.N. The Effect of Hypopituitarism on Life Expectancy. J. Clin. Endocrinol. Metab. 1996, 81, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Popovic, V.; Damjanovic, S.; Micic, D.; Nesovic, M.; Djurovic, M.; Petakov, M.; Obradovic, S.; Zoric, S.; Simic, M.; Penezic, Z.; et al. Increased Incidence of Neoplasia in Patients with Pituitary Adenomas. The Pituitary Study Group. Clin. Endocrinol. 1998, 49, 441–445. [Google Scholar] [CrossRef]
- Stochholm, K.; Gravholt, C.H.; Laursen, T.; Laurberg, P.; Andersen, M.; Kristensen, L.Ø.; Feldt-Rasmussen, U.; Christiansen, J.S.; Frydenberg, M.; Green, A. Mortality and GH Deficiency: A Nationwide Study. Eur. J. Endocrinol. 2007, 157, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Pekic, S.; Stojanovic, M.; Popovic, V. Controversies in the Risk of Neoplasia in GH Deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 35–47. [Google Scholar] [CrossRef]
- Arslanian, S.A. Growth Hormone Therapy and Tumor Recurrence: Findings in Children with Brain Neoplasms and Hypopituitarism. Am. J. Dis. Child. 1985, 139, 347. [Google Scholar] [CrossRef]
- Clayton, P.E.; Gattamaneni, H.R.; Shalet, S.M.; Price, D.A. Does Growth Hormone Cause Relapse of Brain Tumours? Lancet 1987, 329, 711–713. [Google Scholar] [CrossRef]
- Corrias, A.; Picco, P.; Einaudi, S.; de Sanctis, L.; Besenzon, L.; Garre, M.L.; Brach del Prever, A.; de Sanctis, C. Growth Hormone Treatment in Irradiated Children with Brain Tumors. J. Pediatr. Endocrinol. Metab. 1997, 10, 41–49. [Google Scholar] [CrossRef]
- Nishi, Y.; Tanaka, T.; Takano, K.; Fujieda, K.; Igarashi, Y.; Hanew, K.; Hirano, T.; Yokoya, S.; Tachibana, K.; Saito, T.; et al. Recent Status in the Occurrence of Leukemia in Growth Hormone-Treated Patients in Japan. J. Clin. Endocrinol. Metab. 1999, 84, 1961–1965. [Google Scholar] [CrossRef]
- Leung, W.; Rose, S.R.; Zhou, Y.; Hancock, M.L.; Burstein, S.; Schriock, E.A.; Lustig, R.; Danish, R.K.; Evans, W.E.; Hudson, M.M.; et al. Outcomes of Growth Hormone Replacement Therapy in Survivors of Childhood Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2002, 20, 2959–2964. [Google Scholar] [CrossRef]
- Sklar, C.A.; Mertens, A.C.; Mitby, P.; Occhiogrosso, G.; Qin, J.; Heller, G.; Yasui, Y.; Robison, L.L. Risk of Disease Recurrence and Second Neoplasms in Survivors of Childhood Cancer Treated with Growth Hormone: A Report from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2002, 87, 3136–3141. [Google Scholar] [CrossRef]
- Ergun-Longmire, B.; Mertens, A.C.; Mitby, P.; Qin, J.; Heller, G.; Shi, W.; Yasui, Y.; Robison, L.L.; Sklar, C.A. Growth Hormone Treatment and Risk of Second Neoplasms in the Childhood Cancer Survivor. J. Clin. Endocrinol. Metab. 2006, 91, 3494–3498. [Google Scholar] [CrossRef] [Green Version]
- Wilton, P.; Mattsson, A.F.; Darendeliler, F. Growth Hormone Treatment in Children Is Not Associated with an Increase in the Incidence of Cancer: Experience from KIGS (Pfizer International Growth Database). J. Pediatr. 2010, 157, 265–270. [Google Scholar] [CrossRef]
- Mackenzie, S.; Craven, T.; Gattamaneni, H.R.; Swindell, R.; Shalet, S.M.; Brabant, G. Long-Term Safety of Growth Hormone Replacement after CNS Irradiation. J. Clin. Endocrinol. Metab. 2011, 96, 2756–2761. [Google Scholar] [CrossRef] [Green Version]
- Patterson, B.C.; Chen, Y.; Sklar, C.A.; Neglia, J.; Yasui, Y.; Mertens, A.; Armstrong, G.T.; Meadows, A.; Stovall, M.; Robison, L.L.; et al. Growth Hormone Exposure as a Risk Factor for the Development of Subsequent Neoplasms of the Central Nervous System: A Report from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2014, 99, 2030–2037. [Google Scholar] [CrossRef]
- Brignardello, E.; Felicetti, F.; Castiglione, A.; Fortunati, N.; Matarazzo, P.; Biasin, E.; Sacerdote, C.; Ricardi, U.; Fagioli, F.; Corrias, A.; et al. GH Replacement Therapy and Second Neoplasms in Adult Survivors of Childhood Cancer: A Retrospective Study from a Single Institution. J. Endocrinol. Investig. 2015, 38, 171–176. [Google Scholar] [CrossRef]
- Child, C.J.; Conroy, D.; Zimmermann, A.G.; Woodmansee, W.W.; Erfurth, E.M.; Robison, L.L. Incidence of Primary Cancers and Intracranial Tumour Recurrences in GH-Treated and Untreated Adult Hypopituitary Patients: Analyses from the Hypopituitary Control and Complications Study. Eur. J. Endocrinol. 2015, 172, 779–790. [Google Scholar] [CrossRef]
- Libruder, C.; Blumenfeld, O.; Dichtiar, R.; Laron, Z.; Zadik, Z.; Shohat, T.; Afek, A. Mortality and Cancer Incidence among Patients Treated with Recombinant Growth Hormone during Childhood in Israel. Clin. Endocrinol. 2016, 85, 813–818. [Google Scholar] [CrossRef]
- Swerdlow, A.J.; Cooke, R.; Beckers, D.; Borgström, B.; Butler, G.; Carel, J.-C.; Cianfarani, S.; Clayton, P.; Coste, J.; Deodati, A.; et al. Cancer Risks in Patients Treated with Growth Hormone in Childhood: The SAGhE European Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 1661–1672. [Google Scholar] [CrossRef]
- Swerdlow, A.J.; Cooke, R.; Beckers, D.; Butler, G.; Carel, J.-C.; Cianfarani, S.; Clayton, P.; Coste, J.; Deodati, A.; Ecosse, E.; et al. Risk of Meningioma in European Patients Treated with Growth Hormone in Childhood: Results from the SAGhE Cohort. J. Clin. Endocrinol. Metab. 2019, 104, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Child, C.J.; Zimmermann, A.G.; Chrousos, G.P.; Cummings, E.; Deal, C.L.; Hasegawa, T.; Jia, N.; Lawrence, S.; Linglart, A.; Loche, S.; et al. Safety Outcomes During Pediatric GH Therapy: Final Results from the Prospective GeNeSIS Observational Program. J. Clin. Endocrinol. Metab. 2019, 104, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Johannsson, G.; Touraine, P.; Feldt-Rasmussen, U.; Pico, A.; Vila, G.; Mattsson, A.F.; Carlsson, M.; Korbonits, M.; van Beek, A.P.; Wajnrajch, M.P.; et al. Long-Term Safety of Growth Hormone in Adults with Growth Hormone Deficiency: Overview of 15 809 GH-Treated Patients. J. Clin. Endocrinol. Metab. 2022, 107, 1906–1919. [Google Scholar] [CrossRef]
- Lindholm, J. Growth Hormone: Historical Notes. Pituitary 2006, 9, 5–10. [Google Scholar] [CrossRef]
- Ranke, M.B.; Wit, J.M. Growth Hormone—Past, Present and Future. Nat. Rev. Endocrinol. 2018, 14, 285–300. [Google Scholar] [CrossRef]
- Boguszewski, C.L.; da Silva Boguszewski, M.C. Growth Hormone’s Links to Cancer. Endocr. Rev. 2019, 40, 558–574. [Google Scholar] [CrossRef]
- Samani, A.A.; Yakar, S.; LeRoith, D.; Brodt, P. The Role of the IGF System in Cancer Growth and Metastasis: Overview and Recent Insights. Endocr. Rev. 2007, 28, 20–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boguszewski, C.L.; da Silva Boguszewski, M.C.; Kopchick, J.J. Growth Hormone, Insulin-like Growth Factor System and Carcinogenesis. Endokrynol. Pol. 2016, 67, 414–426. [Google Scholar] [CrossRef]
- Resnicoff, M.; Abraham, D.; Yutanawiboonchai, W.; Rotman, H.L.; Kajstura, J.; Rubin, R.; Zoltick, P.; Baserga, R. The Insulin-like Growth Factor I Receptor Protects Tumor Cells from Apoptosis in Vivo. Cancer Res. 1995, 55, 2463–2469. [Google Scholar] [PubMed]
- Podlutsky, A.; Valcarcel-Ares, M.N.; Yancey, K.; Podlutskaya, V.; Nagykaldi, E.; Gautam, T.; Miller, R.A.; Sonntag, W.E.; Csiszar, A.; Ungvari, Z. The GH/IGF-1 Axis in a Critical Period Early in Life Determines Cellular DNA Repair Capacity by Altering Transcriptional Regulation of DNA Repair-Related Genes: Implications for the Developmental Origins of Cancer. GeroScience 2017, 39, 147–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollak, M. The Insulin and Insulin-like Growth Factor Receptor Family in Neoplasia: An Update. Nat. Rev. Cancer 2012, 12, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Resnicoff, M.; Burgaud, J.L.; Rotman, H.L.; Abraham, D.; Baserga, R. Correlation between Apoptosis, Tumorigenesis, and Levels of Insulin-like Growth Factor I Receptors. Cancer Res. 1995, 55, 3739–3741. [Google Scholar] [PubMed]
- Rajah, R.; Valentinis, B.; Cohen, P. Insulin-like Growth Factor (IGF)-Binding Protein-3 Induces Apoptosis and Mediates the Effects of Transforming Growth Factor-Beta1 on Programmed Cell Death through a P53- and IGF-Independent Mechanism. J. Biol. Chem. 1997, 272, 12181–12188. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, P.J.; Mukherjee, A.; Shalet, S.M. Does Growth Hormone Cause Cancer? Clin. Endocrinol. 2006, 64, 115–121. [Google Scholar] [CrossRef]
- Menashe, I.; Maeder, D.; Garcia-Closas, M.; Figueroa, J.D.; Bhattacharjee, S.; Rotunno, M.; Kraft, P.; Hunter, D.J.; Chanock, S.J.; Rosenberg, P.S.; et al. Pathway Analysis of Breast Cancer Genome-Wide Association Study Highlights Three Pathways and One Canonical Signaling Cascade. Cancer Res. 2010, 70, 4453–4459. [Google Scholar] [CrossRef] [Green Version]
- Mukhina, S.; Mertani, H.C.; Guo, K.; Lee, K.-O.; Gluckman, P.D.; Lobie, P.E. Phenotypic Conversion of Human Mammary Carcinoma Cells by Autocrine Human Growth Hormone. Proc. Natl. Acad. Sci. USA 2004, 101, 15166–15171. [Google Scholar] [CrossRef] [Green Version]
- Waters, M.J.; Conway-Campbell, B.L. The Oncogenic Potential of Autocrine Human Growth Hormone in Breast Cancer. Proc. Natl. Acad. Sci. USA 2004, 101, 14992–14993. [Google Scholar] [CrossRef] [Green Version]
- Chesnokova, V.; Zonis, S.; Zhou, C.; Recouvreux, M.V.; Ben-Shlomo, A.; Araki, T.; Barrett, R.; Workman, M.; Wawrowsky, K.; Ljubimov, V.A.; et al. Growth Hormone Is Permissive for Neoplastic Colon Growth. Proc. Natl. Acad. Sci. USA 2016, 113, E3250–E3259. [Google Scholar] [CrossRef]
- Perry, J.K.; Wu, Z.-S.; Mertani, H.C.; Zhu, T.; Lobie, P.E. Tumour-Derived Human Growth Hormone as a Therapeutic Target in Oncology. Trends Endocrinol. Metab. 2017, 28, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Beckwith, H.; Yee, D. Minireview: Were the IGF Signaling Inhibitors All Bad? Mol. Endocrinol. 2015, 29, 1549–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iams, W.T.; Lovly, C.M. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin. Cancer Res. 2015, 21, 4270–4277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berryman, D.E.; Christiansen, J.S.; Johannsson, G.; Thorner, M.O.; Kopchick, J.J. Role of the GH/IGF-1 Axis in Lifespan and Healthspan: Lessons from Animal Models. Growth Horm. IGF Res. 2008, 18, 455–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartke, A.; Chandrashekar, V.; Bailey, B.; Zaczek, D.; Turyn, D. Consequences of Growth Hormone (GH) Overexpression and GH Resistance. Neuropeptides 2002, 36, 201–208. [Google Scholar] [CrossRef]
- Varma Shrivastav, S.; Bhardwaj, A.; Pathak, K.A.; Shrivastav, A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects within the Cell. Front. Cell Dev. Biol. 2020, 8, 286. [Google Scholar] [CrossRef]
- Higham, C.E.; Johannsson, G.; Shalet, S.M. Hypopituitarism. Lancet 2016, 388, 2403–2415. [Google Scholar] [CrossRef]
- Melmed, S. Pathogenesis and Diagnosis of Growth Hormone Deficiency in Adults. N. Engl. J. Med. 2019, 380, 2551–2562. [Google Scholar] [CrossRef]
- Fleseriu, M.; Hashim, I.A.; Karavitaki, N.; Melmed, S.; Murad, M.H.; Salvatori, R.; Samuels, M.H. Hormonal Replacement in Hypopituitarism in Adults: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 3888–3921. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.K.Y. Consensus Guidelines for the Diagnosis and Treatment of Adults with GH Deficiency II: A Statement of the GH Research Society in Association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur. J. Endocrinol. 2007, 157, 695–700. [Google Scholar] [CrossRef]
- Yuen, K.C.J.; Biller, B.M.K.; Radovick, S.; Carmichael, J.D.; Jasim, S.; Pantalone, K.M.; Hoffman, A.R. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Growth Hormone Deficiency in Adults and Patients Transitioning from Pediatric to Adult Care. Endocr. Pract. 2019, 25, 1191–1232. [Google Scholar] [CrossRef]
- Krzyzanowska-Mittermayer, K.; Mattsson, A.F.; Maiter, D.; Feldt-Rasmussen, U.; Camacho-Hübner, C.; Luger, A.; Abs, R. New Neoplasm During GH Replacement in Adults with Pituitary Deficiency Following Malignancy: A KIMS Analysis. J. Clin. Endocrinol. Metab. 2018, 103, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Olsson, D.S.; Nilsson, A.G.; Bryngelsson, I.-L.; Trimpou, P.; Johannsson, G.; Andersson, E. Excess Mortality in Women and Young Adults with Nonfunctioning Pituitary Adenoma: A Swedish Nationwide Study. J. Clin. Endocrinol. Metab. 2015, 100, 2651–2658. [Google Scholar] [CrossRef] [Green Version]
- Chemaitilly, W.; Li, Z.; Huang, S.; Ness, K.K.; Clark, K.L.; Green, D.M.; Barnes, N.; Armstrong, G.T.; Krasin, M.J.; Srivastava, D.K.; et al. Anterior Hypopituitarism in Adult Survivors of Childhood Cancers Treated with Cranial Radiotherapy: A Report from the St Jude Lifetime Cohort Study. J. Clin. Oncol. 2015, 33, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; et al. Temporal Trends in Treatment and Subsequent Neoplasm Risk Among 5-Year Survivors of Childhood Cancer, 1970–2015. JAMA 2017, 317, 814. [Google Scholar] [CrossRef] [Green Version]
- Boguszewski, M.C.S.; Boguszewski, C.L.; Chemaitilly, W.; E Cohen, L.; Gebauer, J.; Higham, C.; Hoffman, A.R.; Polak, M.; Yuen, K.C.J.; Alos, N.; et al. Safety of growth hormone replacement in survivors of cancer and intracranial and pituitary tumours: A consensus statement. Eur. J. Endocrinol. 2022, 186, P35–P52. [Google Scholar] [CrossRef]
- Garcia, J.M.; Biller, B.M.K.; Korbonits, M.; Popovic, V.; Luger, A.; Strasburger, C.J.; Chanson, P.; Medic-Stojanoska, M.; Schopohl, J.; Zakrzewska, A.; et al. Macimorelin as a Diagnostic Test for Adult GH Deficiency. J. Clin. Endocrinol. Metab. 2018, 103, 3083–3093. [Google Scholar] [CrossRef]
- Höybye, C.; Beck-Peccoz, P.; Simsek, S.; Zabransky, M.; Zouater, H.; Stalla, G.; Murray, R.D. Safety of Current Recombinant Human Growth Hormone Treatments for Adults with Growth Hormone Deficiency and Unmet Needs. Expert Opin. Drug Saf. 2020, 19, 1539–1548. [Google Scholar] [CrossRef]
- Birzniece, V.; Ho, K.K.Y. Sex Steroids and the GH Axis: Implications for the Management of Hypopituitarism. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Follin, C.; Thilén, U.; Ahrén, B.; Erfurth, E.M. Improvement in Cardiac Systolic Function and Reduced Prevalence of Metabolic Syndrome after Two Years of Growth Hormone (GH) Treatment in GH-Deficient Adult Survivors of Childhood-Onset Acute Lymphoblastic Leukemia. J. Clin. Endocrinol. Metab. 2006, 91, 1872–1875. [Google Scholar] [CrossRef]
- van den Heijkant, S.; Hoorweg-Nijman, G.; Huisman, J.; Drent, M.; van der Pal, H.; Kaspers, G.-J.; Delemarre-van de Waal, H. Effects of Growth Hormone Therapy on Bone Mass, Metabolic Balance, and Well-Being in Young Adult Survivors of Childhood Acute Lymphoblastic Leukemia. J. Pediatr. Hematol. Oncol. 2011, 33, e231–e238. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, Q.; Li, Y.; Fu, J.; Huang, X.; Shen, L. Growth Hormone Replacement Therapy Reduces Risk of Cancer in Adult with Growth Hormone Deficiency: A Meta-Analysis. Oncotarget 2016, 7, 81862–81869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Child, C.J.; Zimmermann, A.G.; Woodmansee, W.W.; Green, D.M.; Li, J.J.; Jung, H.; Erfurth, E.M.; Robison, L.L. Assessment of Primary Cancers in GH-Treated Adult Hypopituitary Patients: An Analysis from the Hypopituitary Control and Complications Study. Eur. J. Endocrinol. 2011, 165, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, V.; Mattsson, A.F.; Gaillard, R.C.; Wilton, P.; Kołtowska-Häggström, M.; Ranke, M.B. Serum Insulin-Like Growth Factor I (IGF-I), IGF-Binding Proteins 2 and 3, and the Risk for Development of Malignancies in Adults with Growth Hormone (GH) Deficiency Treated with GH: Data from KIMS (Pfizer International Metabolic Database). J. Clin. Endocrinol. Metab. 2010, 95, 4449–4454. [Google Scholar] [CrossRef]
- Lundberg, E.; Kriström, B.; Zouater, H.; Deleskog, A.; Höybye, C. Ten Years with Biosimilar RhGH in Clinical Practice in Sweden—Experience from the Prospective PATRO Children and Adult Studies. BMC Endocr. Disord. 2020, 20, 55. [Google Scholar] [CrossRef]
- Sävendahl, L.; Cooke, R.; Tidblad, A.; Beckers, D.; Butler, G.; Cianfarani, S.; Clayton, P.; Coste, J.; Hokken-Koelega, A.C.S.; Kiess, W.; et al. Long-Term Mortality after Childhood Growth Hormone Treatment: The SAGhE Cohort Study. Lancet Diabetes Endocrinol. 2020, 8, 683–692. [Google Scholar] [CrossRef]
- Sklar, C.A.; Antal, Z.; Chemaitilly, W.; Cohen, L.E.; Follin, C.; Meacham, L.R.; Murad, M.H. Hypothalamic–Pituitary and Growth Disorders in Survivors of Childhood Cancer: An Endocrine Society* Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 2761–2784. [Google Scholar] [CrossRef] [Green Version]
- Yuen, K.C.; Popovic, V. Growth Hormone Replacement in Patients with a History of Malignancy: A Review of the Literature and Best Practice for Offering Treatment. Expert Rev. Endocrinol. Metab. 2015, 10, 319–326. [Google Scholar] [CrossRef]
- Hartman, M.L.; Xu, R.; Crowe, B.J.; Robison, L.L.; Erfurth, E.M.; Kleinberg, D.L.; Zimmermann, A.G.; Woodmansee, W.W.; Cutler, G.B.; Chipman, J.J.; et al. Prospective Safety Surveillance of GH-Deficient Adults: Comparison of GH-Treated vs Untreated Patients. J. Clin. Endocrinol. Metab. 2013, 98, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Holdaway, I.M.; Hunt, P.; Manning, P.; Cutfield, W.; Gamble, G.; Ninow, N.; Staples-Moon, D.; Moodie, P.; Metcalfe, S. Three-Year Experience with Access to Nationally Funded Growth Hormone (GH) Replacement for GH-Deficient Adults. Clin. Endocrinol. 2015, 83, 85–90. [Google Scholar] [CrossRef]
- Kremidas, D.; Wisniewski, T.; Divino, V.M.; Bala, K.; Olsen, M.; Germak, J.; Aagren, M.; Holot, N.; Lee, W.C. Administration Burden Associated with Recombinant Human Growth Hormone Treatment: Perspectives of Patients and Caregivers. J. Pediatr. Nurs. 2013, 28, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Auer, M.K.; Stieg, M.R.; Hoffmann, J.; Stalla, G.K. Is Insulin-like Growth Factor-I a Good Marker for Treatment Adherence in Growth Hormone Deficiency in Adulthood? Clin. Endocrinol. 2016, 84, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Vergani, E.; Bruno, C.; Palladino, A.; Brunetti, A. Relevance of Adherence Monitoring in Adult Patients with Growth Hormone Deficiency Under Replacement Therapy: Preliminary Monocentric Data with EasypodTM Connect. Front. Endocrinol. 2019, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.S.; Velazquez, E.; Yuen, K.C.J. Long-Acting Growth Hormone Preparations—Current Status and Future Considerations. J. Clin. Endocrinol. Metab. 2020, 105, e2121–e2133. [Google Scholar] [CrossRef]
- Yuen, K.C.J.; Miller, B.S.; Biller, B.M.K. The Current State of Long-Acting Growth Hormone Preparations for Growth Hormone Therapy. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.C.J.; Miller, B.S.; Boguszewski, C.L.; Hoffman, A.R. Usefulness and Potential Pitfalls of Long-Acting Growth Hormone Analogs. Front. Endocrinol. 2021, 12, 637209. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Liu, W.; Leisenring, W.; Yasui, Y.; Hammond, S.; Bhatia, S.; Neglia, J.P.; Stovall, M.; Srivastava, D.; Robison, L.L. Occurrence of Multiple Subsequent Neoplasms in Long-Term Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2011, 29, 3056–3064. [Google Scholar] [CrossRef] [PubMed]
- Chemaitilly, W.; Robison, L.L. Safety of Growth Hormone Treatment in Patients Previously Treated for Cancer. Endocrinol. Metab. Clin. N. Am. 2012, 41, 785–792. [Google Scholar] [CrossRef]
- Bowers, D.C.; Nathan, P.C.; Constine, L.; Woodman, C.; Bhatia, S.; Keller, K.; Bashore, L. Subsequent Neoplasms of the CNS among Survivors of Childhood Cancer: A Systematic Review. Lancet Oncol. 2013, 14, e321–e328. [Google Scholar] [CrossRef] [Green Version]
- Nishio, S.; Morioka, T.; Inamura, T.; Takeshita, I.; Fukui, M.; Sasaki, M.; Nakamura, K.; Wakisaka, S. Radiation-Induced Brain Tumours: Potential Late Complications of Radiation Therapy for Brain Tumours. Acta Neurochir. 1998, 140, 763–770. [Google Scholar] [CrossRef]
- Darendeliler, F.; Karagiannis, G.; Wilton, P.; Ranke, M.; Albertsson-Wikland, K.; Anthony Price, D.; Behalf of The Kigs International Bo, O. Recurrence of Brain Tumours in Patients Treated with Growth Hormone: Analysis of KIGS (Pfizer International Growth Database). Acta Paediatr. 2006, 95, 1284–1290. [Google Scholar] [CrossRef]
- Journy, N.M.Y.; Zrafi, W.S.; Bolle, S.; Fresneau, B.; Alapetite, C.; Allodji, R.S.; Berchery, D.; Haddy, N.; Kobayashi, I.; Labbé, M.; et al. Risk Factors of Subsequent Central Nervous System Tumors after Childhood and Adolescent Cancers: Findings from the French Childhood Cancer Survivor Study. Cancer Epidemiol. Biomarkers Prev. 2021, 30, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Garrè, M.L.; Cama, A. Craniopharyngioma: Modern Concepts in Pathogenesis and Treatment. Curr. Opin. Pediatr. 2007, 19, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Bogusz, A.; Müller, H.L. Childhood-Onset Craniopharyngioma: Latest Insights into Pathology, Diagnostics, Treatment, and Follow-Up. Expert Rev. Neurother. 2018, 18, 793–806. [Google Scholar] [CrossRef]
- Drapeau, A.; Walz, P.C.; Eide, J.G.; Rugino, A.J.; Shaikhouni, A.; Mohyeldin, A.; Carrau, R.L.; Prevedello, D.M. Pediatric Craniopharyngioma. Childs Nerv. Syst. 2019, 35, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Olsson, D.S.; Buchfelder, M.; Wiendieck, K.; Kremenevskaja, N.; Bengtsson, B.-Å.; Jakobsson, K.-E.; Jarfelt, M.; Johannsson, G.; Nilsson, A.G. Tumour Recurrence and Enlargement in Patients with Craniopharyngioma with and without GH Replacement Therapy during More than 10 Years of Follow-Up. Eur. J. Endocrinol. 2012, 166, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Kanev, P.M.; Lefebvre, J.F.; Mauseth, R.S.; Berger, M.S. Growth Hormone Deficiency Following Radiation Therapy of Primary Brain Tumors in Children. J. Neurosurg. 1991, 74, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Moshang, T. Is Brain Tumor Recurrence Increased Following Growth Hormone Treatment? Trends Endocrinol. Metab. 1995, 6, 205–209. [Google Scholar] [CrossRef]
- Karavitaki, N.; Warner, J.T.; Marland, A.; Shine, B.; Ryan, F.; Arnold, J.; Turner, H.E.; Wass, J.A.H. GH Replacement Does Not Increase the Risk of Recurrence in Patients with Craniopharyngioma. Clin. Endocrinol. 2006, 64, 556–560. [Google Scholar] [CrossRef]
- Rohrer, T.R.; Langer, T.; Grabenbauer, G.G.; Buchfelder, M.; Glowatzki, M.; Dörr, H.G. Growth Hormone Therapy and the Risk of Tumor Recurrence after Brain Tumor Treatment in Children. J. Pediatr. Endocrinol. Metab. 2010, 23, 935–942. [Google Scholar] [CrossRef]
- Losa, M.; Castellino, L.; Pagnano, A.; Rossini, A.; Mortini, P.; Lanzi, R. Growth Hormone Therapy Does Not Increase the Risk of Craniopharyngioma and Nonfunctioning Pituitary Adenoma Recurrence. J. Clin. Endocrinol. Metab. 2020, 105, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Abs, R.; Bengtsson, B.-Å.; Hernberg-Ståhl, E.; Monson, J.P.; Tauber, J.-P.; Wilton, P.; Wüster, C. GH Replacement in 1034 Growth Hormone Deficient Hypopituitary Adults: Demographic and Clinical Characteristics, Dosing and Safety: Adult GH Replacement. Clin. Endocrinol. 1999, 50, 703–713. [Google Scholar] [CrossRef]
- Moshang, T.; Rundle, A.C.; Graves, D.A.; Nickas, J.; Johanson, A.; Meadows, A. Brain Tumor Recurrence in Children Treated with Growth Hormone: The National Cooperative Growth Study Experience. J. Pediatr. 1996, 128, S4–S7. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.R.; Cote, D.J.; Jane, J.A.; Laws, E.R. Physiological Growth Hormone Replacement and Rate of Recurrence of Craniopharyngioma: The Genentech National Cooperative Growth Study. J. Neurosurg. Pediatr. 2016, 18, 408–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alotaibi, N.M.; Noormohamed, N.; Cote, D.J.; Alharthi, S.; Doucette, J.; Zaidi, H.A.; Mekary, R.A.; Smith, T.R. Physiologic Growth Hormone–Replacement Therapy and Craniopharyngioma Recurrence in Pediatric Patients: A Meta-Analysis. World Neurosurg. 2018, 109, 487–496.e1. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.C.J.; Mattsson, A.F.; Burman, P.; Erfurth, E.-M.; Camacho-Hubner, C.; Fox, J.L.; Verhelst, J.; Geffner, M.E.; Abs, R. Relative Risks of Contributing Factors to Morbidity and Mortality in Adults with Craniopharyngioma on Growth Hormone Replacement. J. Clin. Endocrinol. Metab. 2018, 103, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Wijnen, M.; Olsson, D.S.; van den Heuvel-Eibrink, M.M.; Hammarstrand, C.; Janssen, J.A.M.J.L.; van der Lely, A.J.; Johannsson, G.; Neggers, S.J.C.M.M. Excess Morbidity and Mortality in Patients with Craniopharyngioma: A Hospital-Based Retrospective Cohort Study. Eur. J. Endocrinol. 2018, 178, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Profka, E.; Giavoli, C.; Bergamaschi, S.; Ferrante, E.; Malchiodi, E.; Sala, E.; Verrua, E.; Rodari, G.; Filopanti, M.; Beck-Peccoz, P.; et al. Analysis of Short- and Long-Term Metabolic Effects of Growth Hormone Replacement Therapy in Adult Patients with Craniopharyngioma and Non-Functioning Pituitary Adenoma. J. Endocrinol. Investig. 2015, 38, 413–420. [Google Scholar] [CrossRef]
- Webb, S.M.; Strasburger, C.J.; Mo, D.; Hartman, M.L.; Melmed, S.; Jung, H.; Blum, W.F.; Attanasio, A.F. Changing Patterns of the Adult Growth Hormone Deficiency Diagnosis Documented in a Decade-Long Global Surveillance Database. J. Clin. Endocrinol. Metab. 2009, 94, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Abs, R.; Mattsson, A.F.; Thunander, M.; Verhelst, J.; Góth, M.I.; Wilton, P.; Kołtowska-Häggström, M.; Luger, A. Prevalence of Diabetes Mellitus in 6050 Hypopituitary Patients with Adult-Onset GH Deficiency before GH Replacement: A KIMS Analysis. Eur. J. Endocrinol. 2013, 168, 297–305. [Google Scholar] [CrossRef]
- Olsson, D.S.; Buchfelder, M.; Schlaffer, S.; Bengtsson, B.-Å.; Jakobsson, K.-E.; Johannsson, G.; Nilsson, A.G. Comparing Progression of Non-Functioning Pituitary Adenomas in Hypopituitarism Patients with and without Long-Term GH Replacement Therapy. Eur. J. Endocrinol. 2009, 161, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Hatrick, A.; Boghalo, P.; Bingham, J.; Ayres, A.; Sonksen, P.; Russell-Jones, D. Does GH Replacement Therapy in Adult GH-Deficient Patients Result in Recurrence or Increase in Size of Pituitary Tumours? Eur. J. Endocrinol. 2002, 146, 807–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfelder, M.; Kann, P.H.; Wüster, C.; Tuschy, U.; Saller, B.; Brabant, G.; Kleindienst, A.; Nomikos, P. Influence of GH Substitution Therapy in Deficient Adults on the Recurrence Rate of Hormonally Inactive Pituitary Adenomas: A Case–Control Study. Eur. J. Endocrinol. 2007, 157, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, J.R.; Arnold, D.F.; Marland, A.; Karavitaki, N.; Wass, J.A.H. GH Replacement in Patients with Non-Functioning Pituitary Adenoma (NFA) Treated Solely by Surgery Is Not Associated with Increased Risk of Tumour Recurrence. Clin. Endocrinol. 2009, 70, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Gasco, V.; Caputo, M.; Cambria, V.; Beccuti, G.; Caprino, M.P.; Ghigo, E.; Maccario, M.; Grottoli, S. Progression of Pituitary Tumours: Impact of GH Secretory Status and Long-Term GH Replacement Therapy. Endocrine 2019, 63, 341–347. [Google Scholar] [CrossRef]
- Miller, K.K.; Wexler, T.; Fazeli, P.; Gunnell, L.; Graham, G.J.; Beauregard, C.; Hemphill, L.; Nachtigall, L.; Loeffler, J.; Swearingen, B.; et al. Growth Hormone Deficiency after Treatment of Acromegaly: A Randomized, Placebo-Controlled Study of Growth Hormone Replacement. J. Clin. Endocrinol. Metab. 2010, 95, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Norrman, L.-L.; Johannsson, G.; Sunnerhagen, K.S.; Svensson, J. Baseline Characteristics and the Effects of Two Years of Growth Hormone (GH) Replacement Therapy in Adults with GH Deficiency Previously Treated for Acromegaly. J. Clin. Endocrinol. Metab. 2008, 93, 2531–2538. [Google Scholar] [CrossRef] [Green Version]
- Tritos, N.A.; Johannsson, G.; Korbonits, M.; Miller, K.K.; Feldt-Rasmussen, U.; Yuen, K.C.J.; King, D.; Mattsson, A.F.; Jonsson, P.J.; Koltowska-Haggstrom, M.; et al. Effects of Long-Term Growth Hormone Replacement in Adults with Growth Hormone Deficiency Following Cure of Acromegaly: A KIMS Analysis. J. Clin. Endocrinol. Metab. 2014, 99, 2018–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelfsema, F.; Biermasz, N.R.; Pereira, A.M. Clinical Factors Involved in the Recurrence of Pituitary Adenomas after Surgical Remission: A Structured Review and Meta-Analysis. Pituitary 2012, 15, 71–83. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Group | New Malignancy/Recurrence | Conclusions | |
---|---|---|---|---|
Arslanian et al., 1985 [10] | 34 CNS tumors: Germinomas (4), craniopharyngiomas (18), astrocytomas (3), medulloblastomas (2), others (7); 94% GHD | GH-treated (24/34): 8 (33%) recurrences. Follow-up 8–72 months after GH therapy initiation | Non-GH treated (10/34): 3 (30%) recurrences | Likely no association between GH therapy and tumor recurrence |
Clayton et al., 1987 [11] | 31 patients with cranial irradiation for medulloblastoma (14), gliomas (8), ependymomas (2), leukemia (6), lymphoma (1); all GHD | GH-treated (21/21): 5 (23,8%) recurrences (1 optic nerve glioma, 2 medulloblastomas, 2 ependymomas); 3 during and 2 after GH treatment | Risk of recurrence of medulloblastoma, glioma, and leukemia did not increase | |
Corrias et al., 1997 [12] | Patients irradiated for brain tumors with GHD: 25 GH-treated (11 medulloblastomas, 8 gliomas, 6 ependymomas); Control group: 100 non-GH treated | GH-treated: 4 tumor recurrences (16%) | Non-GH treated: 18 tumor recurrences (18%) | Risk of brain tumor relapse after radiotherapy and GH therapy did not increase |
Nishi et al., 1999 [13] | Japanese cohort of 32,000 GHD patients on treatment from 1975 to 1997 | GH-treated: 14 leukemia and 1 myelodysplastic syndrome (6 with risk factors). 9 observed in patients without risk factors. Cases expected: 6.96–9.28 | In patients on treatment with GH without risk factors, the incidence of leukemia did not increase | |
Leung et al., 2002 [14] | 47 CCS after ALL with GHD and treated with GH for 1 to 8 years. Control group: 544 CCS after ALL, non-GH treated | GH-treated: 1 case of sclerosing sweat duct carcinoma of the scalp, 1 case of myelodysplastic syndrome, no cases of leukemia recurrence | Non-GH treated: 8 leukemia relapses, 16 s tumors | In CCS after ALL with GHD, GH replacement is safe |
Sklar et al., 2002 [15] | CCS: 361 treated with GH for 4.6 years. 12,963 non-GH-treated. Follow-up: 6.2 years. | GH-treated: 9 recurrences; 15 s tumors (all solid tumors, no leukemia) | Non-GH treated: 502 recurrences, 344 s tumor | In CCS GH-treated patients, there was no increased risk of cancer recurrence or death, but secondary solid tumor risk increased |
Ergun-Longmire et al., 2006 [16] | CCS patients: 361 GH-treated for 4.6 years (0.1–14). 13,747 non-GH-treated. Follow-up: 5 years | GH-treated: 20 s tumors (9 meningiomas) | Non-GH treated: 555 s tumors (62 meningiomas) | In CCS-treated patients with GH, there was an increased risk of second solid tumor, but this risk seems to decrease with a longer follow-up |
Wilton et al., 2010 [17] | KIGS (Pfizer International Growth Database): 58,603 patients (54% IGHD, 11% TS, 7% SGA, others). Mean follow-up: 3.6 years. | GH-treated: 32 new malignancies (9 CNS tumors, 3 NHL, 3 leukemias, 3 testicular cancers, 14 others) | There was a similar incidence of cancer between young GH-treated patients without known risk factors and general population | |
Mackenzie et al., 2011 [18] | Brain-irradiated CCS: 110 GH-treated for 8 years, follow-up of 14.5 years. 110 non-GH-treated, follow-up of 15 years. | GH treated: 6 tumor recurrence, 5 s tumors (4 meningiomas) | Non-GH treated: 8 tumor recurrence, 3 s tumors (2 meningiomas) | risk for recurrence or second neoplasm did not increase |
Patterson et al. 2014 [19] | Childhood Cancer Survivor Study: 12,098 CCS, 338 GH-treated, 11,760 non-GH-treated. Follow up 15 years | GH-treated: 16 (4.7%) second tumors (10 meningiomas, 6 gliomas), 8 (2.4%) recurrences | Non-GH-treated: 203 (1.7%) CNS tumors (49 gliomas, 138 meningiomas, 16 others), 178 (1.5%) recurrences | After GH therapy, there was no increased risk of CNS second tumor. Meningiomas are more frequent, and the increased risk of glioma was linked to high dose of cranial radiation |
Brignardello et al., 2015 [20] | 49 GHD CCS patients (34 brain tumors, 10 ALL, 5 AML), 45 with cranial irradiation. 26 GH-treated; 23 non-GH-treated. Median follow-up: 16 years | GH-treated: 8 s tumors (5 meningiomas) | Non-GH-treated: 6 s tumors (4 meningiomas). No second tumor in 4 GHD patients without radiotherapy | Secondary tumor risk did not increase in CCS treated with GH. The most important risk factor for development of second tumor was radiotherapy. |
Child et al., 2015 [21] | HypoCCS database: 8418 patients GH-treated, 1268 patients untreated. Of these, 3668 GH-treated and 720 untreated patients had PA, and 956 GH-treated and 102 untreated patients had CP. | GH-treated: 225 (breast, prostate, colorectal cancer) | Non GH-treated: 45 (breast, prostate, colorectal cancer) | No significant difference was observed in the incidence of primary malignancies between GH-treated and untreated patients. |
Libruder et al., 2016 [22] | GH-treated patients: 1687 low-risk (IGHD, SGA; follow-up 6.5 ± 4 years) and 440 intermediary-risk (MPHD, TS, SPW; follow-up 8.1 ± 4.6 years). | GH-treated: Low-risk group: 2 cases of malignancy, SIR 0.76; Intermediary-risk group: 4 cases of malignancy, SIR 4.52 | Cancer risk was increased only in the intermediary-risk group and not in the low-risk group. | |
Swerdlow et al., 2017 [23] | SAGhE (Safety and Appropriateness of Growth Hormone Treatments in Europe): 23,984 GH treated patients: 52% isolated growth failure (GHD, ISS, SGA), 14.6% TS, 10.4% MPHD, 9.3% CNS tumor, others. | GH-treated: In GH-treated patients with no previous cancer, SIR was 2.8 for bone and 16.3 for bladder. GH dose was not related to cancer risk, but for patients treated after previous cancer, the risk of cancer mortality increased with increasing daily dose | No increased risk in patients with isolated growth deficiency. Bone and bladder cancers increased in non-CCS group. Increasing daily GH-dose in CCS was related to increased cancer mortality risk. | |
Swerdlow et al., 2019 [24] | SAGhE (Safety and Appropriateness of Growth Hormone Treatments in Europe): 10,403 GH treated patients: 38% isolated growth failure (GHD, ISS, SGA), 16.5% TS, 12.9% organic MPHD, 12.6% CNS tumor, others. Mean follow-up: 14.9 years. | GH-treated: Non-cancer group: 1 meningioma (TS), SIR: 2.4; CCS (n = 1830): 37 meningiomas, SIR 466.3. CCS with previous radiotherapy (n = 1178): 30 meningiomas, SIR 658.4. | In patients treated during childhood with GH, there was a very high relative risk of meningioma after cranial radiotherapy for malignancy. The increased risk is primarily due to radiotherapy. Mean daily or cumulative dose and duration of GH therapy were not related to cancer risk. | |
Child et al., 2019 [25] | GeNeSIS (Genetics and Neuroendocrinology of Short Stature International Study): 22,311 GH-treated children: 58% GHD, 4.8% GHD after CNS tumor, 13% ISS, 8% TS, 6% SGA; 20,556 no previous cancer, 622 previous cancer. Follow-up 4.2–3.2 years; 456 non-GH treated (192 no previous cancer, 114 previous cancer) | GH-treated: 85 recurrences in 74 of 1087 (6.8%) GH-treated children with a history of previous neoplasm (77 intracranial tumors). In patients without cancer history, 14 primary cancers were observed [SIR: 0.71 (0.39, 1.20)]. | Non-GH-treated: 9 recurrences in 9 of 148 untreated patients (6.1%) | No increased risk for primary cancers |
Johannsson et al., 2022 [26] | KIMS study: 15,809 GH-treated patients of whom 14,533 did not have a prior history of cancer | GH-treated: 471 primary cancers in patients without cancer history. Prostate (n = 86), nonmelanoma skin (n = 57), breast (n = 39), lung (n = 37), brain (n = 29), melanoma (n = 25), and colon (n = 20) cancers. Second cancer developed in 3.2% (15/471) of patients | The overall risk for all-site de novo cancer among KIMS patients with GHD and no prior history of cancer is comparable to that expected in the general population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Somma, C.; Scarano, E.; Arianna, R.; Romano, F.; Lavorgna, M.; Serpico, D.; Colao, A. Long-Term Safety of Growth Hormone Deficiency Treatment in Cancer and Sellar Tumors Adult Survivors: Is There a Role of GH Therapy on the Neoplastic Risk? J. Clin. Med. 2023, 12, 662. https://doi.org/10.3390/jcm12020662
Di Somma C, Scarano E, Arianna R, Romano F, Lavorgna M, Serpico D, Colao A. Long-Term Safety of Growth Hormone Deficiency Treatment in Cancer and Sellar Tumors Adult Survivors: Is There a Role of GH Therapy on the Neoplastic Risk? Journal of Clinical Medicine. 2023; 12(2):662. https://doi.org/10.3390/jcm12020662
Chicago/Turabian StyleDi Somma, Carolina, Elisabetta Scarano, Rossana Arianna, Fiammetta Romano, Mariarosaria Lavorgna, Domenico Serpico, and Annamaria Colao. 2023. "Long-Term Safety of Growth Hormone Deficiency Treatment in Cancer and Sellar Tumors Adult Survivors: Is There a Role of GH Therapy on the Neoplastic Risk?" Journal of Clinical Medicine 12, no. 2: 662. https://doi.org/10.3390/jcm12020662
APA StyleDi Somma, C., Scarano, E., Arianna, R., Romano, F., Lavorgna, M., Serpico, D., & Colao, A. (2023). Long-Term Safety of Growth Hormone Deficiency Treatment in Cancer and Sellar Tumors Adult Survivors: Is There a Role of GH Therapy on the Neoplastic Risk? Journal of Clinical Medicine, 12(2), 662. https://doi.org/10.3390/jcm12020662