Impact of Hyperkalemia in Heart Failure and Reduced Ejection Fraction: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Data Collection
2.3. Ethical Aspects
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Incidence and Predictors of Hyperkelemia
3.3. Overall Survival and Mortality Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmer, B.F. Regulation of Potassium Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Fisch, C.; Knoebel, S.B.; Feigenbaum, H.; Greenspan, K. Potassium and the monophasic action potential, electrocardiogram, conduction and arrhythmias. Prog. Cardiovasc. Dis. 1966, 8, 387–418. [Google Scholar] [CrossRef] [PubMed]
- Aldahl, M.; Jensen, A.C.; Davidsen, L.; Eriksen, M.A.; Møller Hansen, S.; Nielsen, B.J.; Krogager, M.L.; Køber, L.; Torp-Pedersen, C.; Søgaard, P. Associations of serum potassium levels with mortality in chronic heart failure patients. Eur. Heart J. 2017, 38, 2890–2896. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Kotla, S.; Little, B.B.; Weideman, R.A.; Brilakis, E.S.; Reilly, R.F.; Banerjee, S. Predictors of hyperkalemia and death in patients with cardiac and renal disease. Am. J. Cardiol. 2012, 109, 1510–1513. [Google Scholar] [CrossRef]
- McCullough, P.A.; Beaver, T.M.; Bennett-Guerrero, E.; Emmett, M.; Fonarow, G.C.; Goyal, A.; Herzog, C.A.; Kosiborod, M.; Palmer, B.F. Acute and chronic cardiovascular effects of hyperkalemia: New insights into prevention and clinical management. Rev. Cardiovasc. Med. 2014, 15, 11–23. [Google Scholar] [CrossRef]
- Núñez, J.; Bayés-Genís, A.; Zannad, F.; Rossignol, P.; Núñez, E.; Bodí, V.; Miñana, G.; Santas, E.; Chorro, F.J.; Mollar, A.; et al. Long-Term Potassium Monitoring and Dynamics in Heart Failure and Risk of Mortality. Circulation 2018, 137, 1320–1330. [Google Scholar] [CrossRef]
- Chisholm-Burns, M.A.; Schwinghammer, T.L.; Malone, P.M.; Kolesar, J.M.; Bradon Bookstaver, P.; Lee, K.C. Chapter 28: Fluids and Electrolytes. In Pharmacotherapy Principles and Practice, 6th ed.; McGraw Hill: New York, NY, USA, 2022; Volume 1, pp. 479–492. [Google Scholar]
- Hernáez, Á.; Delgado, J.F.; Cinca, J.; Fernández-Avilés, F.; Marrugat, J. Prevalence and incidence of hyperkalaemia in the Spanish population with heart failure with reduced ejection fraction: A systematic review and populational relevance. Rev. Clin. Esp. (Barc.) 2018, 218, 253–260. [Google Scholar] [CrossRef]
- Sarwar, C.M.; Papadimitriou, L.; Pitt, B.; Piña, I.; Zannad, F.; Anker, S.D.; Gheorghiade, M.; Butler, J. Hyperkalemia in Heart Failure. J. Am. Coll. Cardiol. 2016, 68, 1575–1589. [Google Scholar] [CrossRef]
- Desai, A.S. Hyperkalemia in patients with heart failure: Incidence, prevalence, and management. Curr. Heart Fail. Rep. 2009, 6, 272–280. [Google Scholar] [CrossRef]
- Bao, J.; Kan, R.; Chen, J.; Xuan, H.; Wang, C.; Li, D.; Xu, T. Combination pharmacotherapies for cardiac reverse remodeling in heart failure patients with reduced ejection fraction: A systematic review and network meta-analysis of randomized clinical trials. Pharmacol. Res. 2021, 169, 105573. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Barge-Caballero, E.; Segovia-Cubero, J.; González-Costello, J.; López-Fernández, S.; García-Pinilla, J.M.; Almenar-Bonet, L.; de Juan-Bagudá, J.; Roig-Minguell, E.; Bayés-Genís, A.; et al. Hyperkalemia in heart failure patients in Spain and its impact on guidelines and recommendations: ESC-EORP-HFA Heart Failure Long-Term Registry. Rev. Esp. Cardiol. (Engl. Ed.) 2020, 73, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Konstam, M.A.; Neaton, J.D.; Dickstein, K.; Drexler, H.; Komajda, M.; Martinez, F.A.; Riegger, G.A.; Malbecq, W.; Smith, R.D.; Guptha, S.; et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): A randomised, double-blind trial. Lancet 2009, 374, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Poole-Wilson, P.A.; Armstrong, P.W.; Cleland, J.G.; Horowitz, J.D.; Massie, B.M.; Rydén, L.; Thygesen, K.; Uretsky, B.F. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation 1999, 100, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.E.; Struthers, A.D. What is the optimal serum potassium level in cardiovascular patients? J. Am. Coll. Cardiol. 2004, 43, 155–161. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Ekundayo, O.J.; Mujib, M.; Campbell, R.C.; Sanders, P.W.; Pitt, B.; Perry, G.J.; Bakris, G.; Aban, I.; Love, T.E.; et al. Mild hyperkalemia and outcomes in chronic heart failure: A propensity matched study. Int. J. Cardiol. 2010, 144, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Jones, L.; Rysz, J.; Aronow, W.S.; Banach, M. The meaning of hypokalemia in heart failure. Int. J. Cardiol. 2012, 158, 12–17. [Google Scholar] [CrossRef]
- Bowling, C.B.; Pitt, B.; Ahmed, M.I.; Aban, I.B.; Sanders, P.W.; Mujib, M.; Campbell, R.C.; Love, T.E.; Aronow, W.S.; Allman, R.M.; et al. Hypokalemia and outcomes in patients with chronic heart failure and chronic kidney disease: Findings from propensity-matched studies. Circ. Heart Fail. 2010, 3, 253–260. [Google Scholar] [CrossRef]
- Hoss, S.; Elizur, Y.; Luria, D.; Keren, A.; Lotan, C.; Gotsman, I. Serum Potassium Levels and Outcome in Patients with Chronic Heart Failure. Am. J. Cardiol. 2016, 118, 1868–1874. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 523. [Google Scholar] [CrossRef]
- Delgado-Jiménez, J.F.; Segovia-Cubero, J.; Almenar-Bonet, L.; de Juan-Bagudá, J.; Lara-Padrón, A.; García-Pinilla, J.M.; Bonilla-Palomas, J.L.; López-Fernández, S.; Mirabet-Pérez, S.; Gómez-Otero, I.; et al. Prevalence, Incidence, and Outcomes of Hyperkalaemia in Patients with Chronic Heart Failure and Reduced Ejection Fraction from a Spanish Multicentre Study: SPANIK-HF Design and Baseline Characteristics. J. Clin. Med. 2022, 11, 1170. [Google Scholar] [CrossRef]
- Thomsen, R.W.; Nicolaisen, S.K.; Hasvold, P.; Garcia-Sanchez, R.; Pedersen, L.; Adelborg, K.; Egfjord, M.; Egstrup, K.; Sørensen, H.T. Elevated Potassium Levels in Patients with Congestive Heart Failure: Occurrence, Risk Factors, and Clinical Outcomes: A Danish Population-Based Cohort Study. J. Am. Heart Assoc. 2018, 7, 8912. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.; Martín-Pérez, M.; Ruigómez, A.; García Rodríguez, L.A. Risk factors for hyperkalaemia in a cohort of patients with newly diagnosed heart failure: A nested case-control study in UK general practice. Eur J. Heart Fail. 2015, 17, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Hyperkalemia across the Continuum of Kidney Function. Clin. J. Am. Soc. Nephrol. 2018, 13, 155–157. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Sherwin, R.S.; Felig, P.; Bia, M. Nonuremic diabetic hyperkalemia. Possible role of insulin deficiency. Arch. Intern. Med. 1977, 137, 842–843. [Google Scholar] [CrossRef] [PubMed]
- Dini, F.L.; Demmer, R.T.; Simioniuc, A.; Morrone, D.; Donati, F.; Guarini, G.; Orsini, E.; Caravelli, P.; Marzilli, M.; Colombo, P.C. Right ventricular dysfunction is associated with chronic kidney disease and predicts survival in patients with chronic systolic heart failure. Eur. J. Heart Fail. 2012, 14, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Pocock, S.J.; Wang, D.; Pfeffer, M.A.; Yusuf, S.; McMurray, J.J.; Swedberg, K.B.; Ostergren, J.; Michelson, E.L.; Pieper, K.S.; Granger, C.B. Predictors of mortality and morbidity in patients with chronic heart failure. Eur. Heart J. 2006, 27, 65–75. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Groenveld, H.F.; Januzzi, J.L.; Damman, K.; van Wijngaarden, J.; Hillege, H.L.; van Veldhuisen, D.J.; van der Meer, P. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2008, 52, 818–827. [Google Scholar] [CrossRef]
- Horwich, T.B.; Fonarow, G.C.; Hamilton, M.A.; MacLellan, W.R.; Borenstein, J. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J. Am. Coll. Cardiol. 2002, 39, 1780–1786. [Google Scholar] [CrossRef]
- Olshausen, K.V.; Stienen, U.; Schwarz, F.; Kübler, W.; Meyer, J. Long-term prognostic significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1988, 61, 146–151. [Google Scholar] [CrossRef]
- Tan, N.Y.; Roger, V.L.; Killian, J.M.; Cha, Y.M.; Noseworthy, P.A.; Dunlay, S.M. Ventricular Arrhythmias Among Patients with Advanced Heart Failure: A Population-Based Study. J. Am. Heart Assoc. 2022, 11, e023377. [Google Scholar] [CrossRef] [PubMed]
- Ghio, S.; Recusani, F.; Klersy, C.; Sebastiani, R.; Laudisa, M.L.; Campana, C.; Gavazzi, A.; Tavazzi, L. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am. J. Cardiol. 2000, 85, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Swedberg, K.; Kjekshus, J.; CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 1987, 316, 1429–1435. [Google Scholar] [CrossRef]
- Yusuf, S.; Pitt, B.; Davis, C.E.; Hood, W.B.; Cohn, J.N. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 1991, 325, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.B.; McMurray, J.J.; Yusuf, S.; Held, P.; Michelson, E.L.; Olofsson, B.; Ostergren, J.; Pfeffer, M.A.; Swedberg, K. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: The CHARM-Alternative trial. Lancet 2003, 362, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Vardeny, O.; Wu, D.H.; Desai, A.; Rossignol, P.; Zannad, F.; Pitt, B.; Solomon, S.D.; RALES Investigators. Influence of baseline and worsening renal function on efficacy of spironolactone in patients with severe heart failure: Insights from RALES (Randomized Aldactone Evaluation Study). J. Am. Coll. Cardiol. 2012, 60, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; McMurray, J.J.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011, 364, 11–21. [Google Scholar] [CrossRef]
- Rossignol, P.; Dobre, D.; McMurray, J.J.; Swedberg, K.; Krum, H.; van Veldhuisen, D.J.; Shi, H.; Messig, M.; Vincent, J.; Girerd, N.; et al. Incidence, determinants, and prognostic significance of hyperkalemia and worsening renal function in patients with heart failure receiving the mineralocorticoid receptor antagonist eplerenone or placebo in addition to optimal medical therapy: Results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Circ. Heart Fail. 2014, 7, 51–58. [Google Scholar] [CrossRef]
- Choy, A.M.; Lang, C.C.; Chomsky, D.M.; Rayos, G.H.; Wilson, J.R.; Roden, D.M. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation 1997, 96, 2149–2154. [Google Scholar] [CrossRef]
- Vardeny, O.; Claggett, B.; Anand, I.; Rossignol, P.; Desai, A.S.; Zannad, F.; Pitt, B.; Solomon, S.D. Incidence, predictors, and outcomes related to hypo- and hyperkalemia in patients with severe heart failure treated with a mineralocorticoid receptor antagonist. Circ. Heart Fail. 2014, 7, 573–579. [Google Scholar] [CrossRef]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in chronic heart failure: Results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.; Reaven, N.L.; Funk, S.E.; McGaughey, K.J.; Oestreicher, N.; Knispel, J. Evaluation of the treatment gap between clinical guidelines and the utilization of renin-angiotensin-aldosterone system inhibitors. Am. J. Manag. Care 2015, 21, S212–S220. [Google Scholar] [PubMed]
- Ferreira, J.P.; Butler, J.; Rossignol, P.; Pitt, B.; Anker, S.D.; Kosiborod, M.; Lund, L.H.; Bakris, G.L.; Weir, M.R.; Zannad, F. Abnormalities of Potassium in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2836–2850. [Google Scholar] [CrossRef] [PubMed]
- Beusekamp, J.C.; Tromp, J.; van der Wal, H.H.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H.L.; Lang, C.C.; et al. Potassium and the use of renin-angiotensin-aldosterone system inhibitors in heart failure with reduced ejection fraction: Data from BIOSTAT-CHF. Eur. J. Heart Fail. 2018, 20, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, P.; Lainscak, M.; Crespo-Leiro, M.G.; Laroche, C.; Piepoli, M.F.; Filippatos, G.; Rosano, G.M.C.; Savarese, G.; Anker, S.D.; Seferovic, P.M.; et al. Unravelling the interplay between hyperkalaemia, renin-angiotensin-aldosterone inhibitor use and clinical outcomes. Data from 9222 chronic heart failure patients of the ESC-HFA-EORP Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2020, 22, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.H.; Pitt, B. Is hyperkalaemia in heart failure a risk factor or a risk marker? Implications for renin-angiotensin-aldosterone system inhibitor use. Eur. J. Heart Fail. 2018, 20, 931–932. [Google Scholar] [CrossRef] [PubMed]
- van Deursen, V.M.; Urso, R.; Laroche, C.; Damman, K.; Dahlström, U.; Tavazzi, L.; Maggioni, A.P.; Voors, A.A. Co-morbidities in patients with heart failure: An analysis of the European Heart Failure Pilot Survey. Eur. J. Heart Fail. 2014, 16, 103–111. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Rev. Esp. Cardiol. (Engl. Ed.) 2016, 69, 1167. [Google Scholar] [CrossRef]
Characteristics | N = 1013 | |
---|---|---|
Male gender, n (%) | 776 (76.6%) | |
Age (years) | 66.6 ± 11.2 | |
Arterial hypertension, n (%) | 605 (59.7%) | |
Diabetes mellitus, n (%) | 327 (32.3%) | |
Smoking habit (former and current habit), n (%) | 535 (52.8%) | |
Alcohol abuse (former and current: >2 alcoholic drink equivalents (per day) in men and >1 in women), n (%) | 442 (43.6%) | |
Body mass index (Kg/m2) | 28.8 ± 4.8 | |
NYHA functional classification ≥2, n (%) | 703 (69.5%) | |
Systolic hypertension, (mmHg) | 130.8 ± 21.4 | |
Diastolic hypertension, (mmHg) | 71.7 ± 11.5 | |
Primary etiology, n (%) | ||
Ischemic | 364 (35.9%) | |
Idiopathic | 200 (19.7%) | |
Alcoholic | 113 (11.2%) | |
Tachycardia-induced cardiomyopathy | 95 (9.4%) | |
Hypertensive | 94 (9.3%) | |
Others | 147 (14.5%) | |
End-diastolic left ventricular diameter, (mm) | 59.5 ± 7.8 | |
Left ventricular ejection fraction (%) | 33.8 ± 9.1 | |
Mitral valve regurgitation (any grade), n (%) | 799 (79.5%) | |
Right ventricle function—TAPSE (mm) | 18.9 ± 4.3 | |
Pulmonary artery systolic pressure (mmHg) | 40.9 ± 11.8 | |
Hematocrit (%) | 41.3 ± 5.1 | |
Creatinine clearance MDRD (mL/min/1.73 m2) | 73.1 ± 24.66 | |
Creatinine clearance <60 mL/min/1.73 m2, n (%) | 296 (29.2%) | |
Baseline potassium (mEq/L) | 4.66 ± 0.44 | |
High normal potassium (5–5.5 mEq/L), n (%) | 177 (17.9%) | |
Potassium >5.5 baseline (mEq/L), n (%) | 24 (2.42%) | |
Treatment (first consultation), n (%) | ||
ARNI/ACEI/ARB | 803 (79.3%) | |
BB | 988 (97.5%) | |
MRA | 592 (58.4%) | |
ISGLT2 | 6 (0.6%) | |
Loop diuretics | 615 (60.7%) | |
Potassium supplements | 2(0.2%) | |
Drug doses at first consultation (over 1, maximum dose in ESC guidelines) | ||
ARNI/ACEI/ARB | 0.59 ± 0.39 | |
BB | 0.82 ± 0.30 | |
MRA | 0.48 ± 0.14 | |
Loop diuretic | 1.41 ± 0.71 | |
Treatment (at 1 year), n (%) | ||
ARNI/ACEI/ARB | 965 (97.8%) | |
BB | 953 (97.3%) | |
MRA | 560 (70%) | |
Loop diuretic | 509 (53.9%) | |
Drug doses at 1 year (over 1, maximum dose in ESC guidelines) | ||
ARNI/ACEI/ARB | 0.81 ± 0.48 | |
BB | 0.85 ± 0.30 | |
MRA | 0.47 ± 0.16 | |
Loop diuretic | 1.17 ± 0.76 | |
Devices, n (%) | ||
IAD | 151 (14.9%) | |
CRT | 19 (1.9%) | |
CRT-IAD | 63 (6.2%) | |
Characteristics Electrocardiographic/Holter, n (%) | ||
Sinus rhythm | 648 (66.3%) | |
Atrial fibrillation/flutter | 325 (33.3%) | |
LBB | 229 (27.4%) | |
QRS < 120 ms | 389 (38.4%) | |
Ventricular arrhythmias | 207 (20.4%) |
Variable | p | Hazard Ratio | 95% Confidence Interval |
---|---|---|---|
Age | <0.001 | 1.04 | 1.03–1.06 |
Creatinine clearance MDRD (mL/min/1.73 m2) | <0.001 | 0.98 | 0.98–0.99 |
QRS < 120 ms | <0.001 | 0.48 | 0.33–0.69 |
Baseline potassium | <0.001 | 4.14 | 2.96–5.79 |
Hematocrit | 0.001 | 0.95 | 0.93–0.98 |
Diabetes mellitus | <0.001 | 1.64 | 1.26–2.14 |
End-diastolic left ventricular diameter | 0.032 | 1.02 | 1.00–1.04 |
Pulmonary artery systolic pressure | 0.003 | 1.02 | 1.01–1.04 |
Right ventricle function—TAPSE (mm) | 0.006 | 0.95 | 0.91–0.98 |
Mitral valve regurgitation (any grade) | 0.005 | 1.56 | 1.15–2.13 |
NYHA ≥ 2 | 0.261 | 1.36 | 0.80–2.31 |
Diastolic blood pressure | <0.001 | 0.97 | 0.96–0.99 |
Beta-blockers | 0.045 | 0.46 | 0.22–0.98 |
Loop diuretics | 0.021 | 1.48 | 1.06–2.07 |
Arrhythmias | 0.195 | 1.28 | 0.90–1.82 |
Device (CRT-IAD) | 0.178 | 1.38 | 0.87–2.20 |
Ischemic heart disease | 0.034 | 1.40 | 1.03–1.92 |
Variable | p | Hazard Ratio | 95% Confidence Interval |
---|---|---|---|
Baseline potassium | <0.001 | 3.13 | 2.15–4.60 |
Creatinine clearance MDRD (mL/min/1.73 m2) | 0.013 | 0.99 | 0.98–0.99 |
Right ventricle function—TAPSE (mm) | 0.016 | 0.95 | 0.91–0.99 |
Diabetes mellitus | 0.047 | 1.40 | 1.01–1.96 |
Variable | p | Hazard Ratio | 95% Confidence Interval |
---|---|---|---|
Female gender | <0.001 | 0.52 | 0.35–0.77 |
End-diastolic left ventricular diameter | <0.001 | 1.03 | 1.01–1.05 |
Pulmonary artery systolic pressure | <0.001 | 1.03 | 1.01–1.04 |
Right ventricle function–TAPSE (mm) | <0.001 | 0.93 | 0.90–0.97 |
Arterial hypertension | 0.011 | 1.47 | 1.09–1.97 |
Diabetes mellitus | <0.001 | 1.57 | 1.23–1.99 |
NYHA (per each grade) | <0.001 | 2.02 | 1.34–3.00 |
Age | <0.001 | 1.04 | 1.03–1.06 |
Smoking | 0.001 | 1.27 | 1.10–1.47 |
Creatinine clearance MDRD (mL/min/1.73 m2) | <0.001 | 0.98 | 0.97–0.99 |
Arrhythmias | <0.001 | 1.91 | 1.41–2.59 |
Baseline potassium | <0.001 | 1.13 | 1.07–1.19 |
Hematocrit | 0.001 | 0.95 | 0.97–0.98 |
Systolic blood pressure | 0.029 | 0.99 | 0.98–0.99 |
Diastolic blood pressure | 0.002 | 0.98 | 0.97–0.99 |
ACEI/ARB | <0.001 | 0.28 | 0.16–0.50 |
Loop diuretics | <0.001 | 2.18 | 1.58–3.02 |
Ischemic heart disease | <0.001 | 1.67 | 1.26–2.21 |
CRT-IAD start | 0.049 | 1.51 | 1.00–2.28 |
Variable | p | Hazard Ratio | 95% Confidence Interval |
---|---|---|---|
Age | 0.002 | 1.03 | 1.01–1.05 |
Female gender | <0.001 | 0.43 | 0.27–0.68 |
Diabetes mellitus | 0.003 | 1.64 | 1.19–2.27 |
NYHA (per each grade) | 0.034 | 1.58 | 1.04–2.42 |
Hematocrit | 0.013 | 0.96 | 0.94–0.99 |
Creatinine clearance ≥ 60 mL/min/1.73 m2(MDRD) | 0.007 | 0.61 | 0.43–0.48 |
Mild hyperkalemia (5–5.5) | 0.025 | 0.60 | 0.38–0.94 |
Right ventricle function—TAPSE (mm) | 0.012 | 0.95 | 0.92–0.99 |
Ventricular arrhythmia | <0.001 | 1.85 | 1.32–2.59 |
ACEI or ARB | 0.020 | 0.36 | 0.16–0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-López, A.; Franco-Gutiérrez, R.; Pérez-Pérez, A.J.; Regueiro-Abel, M.; Elices-Teja, J.; Abou-Jokh-Casas, C.; González-Juanatey, C. Impact of Hyperkalemia in Heart Failure and Reduced Ejection Fraction: A Retrospective Study. J. Clin. Med. 2023, 12, 3595. https://doi.org/10.3390/jcm12103595
Lopez-López A, Franco-Gutiérrez R, Pérez-Pérez AJ, Regueiro-Abel M, Elices-Teja J, Abou-Jokh-Casas C, González-Juanatey C. Impact of Hyperkalemia in Heart Failure and Reduced Ejection Fraction: A Retrospective Study. Journal of Clinical Medicine. 2023; 12(10):3595. https://doi.org/10.3390/jcm12103595
Chicago/Turabian StyleLopez-López, Andrea, Raúl Franco-Gutiérrez, Alberto José Pérez-Pérez, Margarita Regueiro-Abel, Juliana Elices-Teja, Charigan Abou-Jokh-Casas, and Carlos González-Juanatey. 2023. "Impact of Hyperkalemia in Heart Failure and Reduced Ejection Fraction: A Retrospective Study" Journal of Clinical Medicine 12, no. 10: 3595. https://doi.org/10.3390/jcm12103595
APA StyleLopez-López, A., Franco-Gutiérrez, R., Pérez-Pérez, A. J., Regueiro-Abel, M., Elices-Teja, J., Abou-Jokh-Casas, C., & González-Juanatey, C. (2023). Impact of Hyperkalemia in Heart Failure and Reduced Ejection Fraction: A Retrospective Study. Journal of Clinical Medicine, 12(10), 3595. https://doi.org/10.3390/jcm12103595