A Systematic Review on Combined [18F]FDG and 68Ga-SSA PET/CT in Pulmonary Carcinoid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Data Collection
3. Results
3.1. Search Results
3.2. Radiological Imaging of Pulmonary Carcinoids
3.3. Conventional Somatostatin Receptors Imaging
3.4. [18F]FDG PET/CT Imaging
3.5. Combined 68Ga-SSA and [18F]FDG PET/CT in Pulmonary Carcinoids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caplin, M.E.; Baudin, E.; Ferolla, P.; Filosso, P.; Garcia-Yuste, M.; Lim, E.; Oberg, K.; Pelosi, G.; Perren, A.; Rossi, R.E.; et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015, 26, 1604–1620. [Google Scholar] [CrossRef]
- Faggiano, A.; Ferolla, P.; Grimaldi, F.; Campana, D.; Manzoni, M.; Davì, M.V.; Bianchi, A.; Valcavi, R.; Papini, E.; Giuffrida, D.; et al. Natural history of gastro-entero-pancreatic and thoracic neuroendocrine tumors. Data from a large prospective and retrospective Italian epidemiological study: The NET management study. J. Endocrinol. Investig. 2012, 35, 817–823. [Google Scholar]
- Cameselle-Teijeiro, J.M.; Mato Mato, J.A.; Fernández Calvo, O.; García Mata, J. Neuroendocrine Pulmonary Tumors of Low, Interme-diate and High Grade: Anatomopathological Diagnosis-Prognostic and Predictive Factors. Mol. Diagn. Ther. 2018, 22, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Metovic, J.; Barella, M.; Bianchi, F.; Hofman, P.; Hofman, V.; Remmelink, M.; Kern, I.; Carvalho, L.; Pattini, L.; Sonzogni, A.; et al. Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch. 2021, 478, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Florisson, D.; Telianidis, S.; Yaftian, N.; Lee, J.; Knight, S.; Barnett, S.; Seevanayagam, S.; Antippa, P.; Alam, N.; et al. Pulmonary carcinoid tumours: A multi-centre analysis of survival and predictors of outcome following sublobar, lobar, and extended pulmonary resections. Asian Cardiovasc. Thorac. Ann. 2021, 29, 532–540. [Google Scholar] [CrossRef]
- Evangelista, L.; Ravelli, I.; Bignotto, A.; Cecchin, D.; Zucchetta, P. Ga-68 DOTA-peptides and F-18 FDG PET/CT in patients with neuroendocrine tumor: A review. Clin. Imaging. 2020, 67, 113–116. [Google Scholar] [CrossRef]
- Jindal, T.; Kumar, A.; Venkitaraman, B.; Meena, M.; Kumar, R.; Malhotra, A.; Dutta, R. Evaluation of the role of [18F]FDG-PET/CT and [68Ga]DOTATOC-PET/CT in differentiating typical and atypical pulmonary carcinoids. Cancer Imaging 2011, 11, 70–75. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Kayani, I.; Conry, B.G.; Groves, A.M.; Win, T.; Dickson, J.; Caplin, M.; Bomanji, J.B. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J. Nucl. Med. 2009, 50, 1927–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkitaraman, B.; Karunanithi, S.; Kumar, A.; Khilnani, G.C.; Kumar, R. Role of 68Ga-DOTATOC PET/CT in initial evaluation of patients with suspected bronchopulmonary carcinoid. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 856–864. [Google Scholar] [CrossRef]
- Lococo, F.; Perotti, G.; Cardillo, G.; De Waure, C.; Filice, A.; Graziano, P.; Rossi, G.; Sgarbi, G.; Stefanelli, A.; Giordano, A.; et al. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid. Clin. Nucl. Med. 2015, 40, e183–e189. [Google Scholar] [CrossRef]
- Lococo, F.; Rapicetta, C.; Mengoli, M.C.; Filice, A.; Paci, M.; Di Stefano, T.; Coruzzi, C.; Versari, A. Diagnostic performances of 68Ga-DOTATOC versus 18Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumours and interrelationship with histological features. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Komek, H.; Can, C.; Urakçi, Z.; Kepenek, F. Comparison of (18F)FDG PET/CT and (68Ga)DOTATATE PET/CT imaging methods in terms of detection of histological subtype and related SUVmax values in patients with pulmonary carcinoid tumors. Nucl. Med. Commun. 2019, 40, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Zidan, L.; Iravani, A.; Kong, G.; Akhurst, T.; Michael, M.; Hicks, R.J. Theranostic implications of molecular imaging phenotype of well-differentiated pulmonary carcinoid based on 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 204–216. [Google Scholar] [CrossRef]
- Deleu, A.L.; Laenen, A.; Decaluwé, H.; Weynand, B.; Dooms, C.; De Wever, W.; Jentjens, S.; Goffin, K.; Vansteenkiste, J.; Van Laere, K.; et al. Value of [68Ga]Ga-somatostatin receptor PET/CT in the grading of pulmonary neuroendocrine (carcinoid) tumours and the detection of disseminated disease: Single-centre pathology-based analysis and review of the literature. EJNMMI Res. 2022, 12, 28. [Google Scholar] [CrossRef]
- Albano, D.; Dondi, F.; Bauckneht, M.; Albertelli, M.; Durmo, R.; Filice, A.; Versari, A.; Morbelli, S.; Berruti, A.; Bertagna, F. The diagnostic and prognostic role of combined [18F]FDG and [68Ga]-DOTA-peptides PET/CT in primary pulmonary carcinoids: A multicentric experience. Eur. Radiol. 2022, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.L.; Frilling, A.; De Herder, W.W.; Hörsch, D.; Knigge, U.; et al. Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 439–451. [Google Scholar] [CrossRef]
- MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.C.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M.; et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017, 284, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Sundin, A.; Vullierme, M.P.; Kaltsas, G.; Plöckinger, U. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine & Hybrid Imaging. Neuroendocrinology 2017, 105, 212–244. [Google Scholar]
- Bombardieri, E.; Ambrosini, V.; Aktolun, C.; Baum, R.P.; Bishof-Delaloye, A.; Del Vecchio, S.; Maffioli, L.; Mortelmans, L.; Oyen, W.; Pepe, G.; et al. Oncology Committee of the EANM. 111In-pentetreotide scintigraphy: Procedure guidelines for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 441–448. [Google Scholar]
- Castaldi, P.; Rufini, V.; Treglia, G.; Bruno, I.; Perotti, G.; Stifano, G.; Barbaro, B.; Giordano, A. Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumors. Radiol. Med. 2008, 113, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Decristoforo, C.; Maina, T.; Nock, B.; von Guggenberg, E.; Cordopatis, P.; Moncayo, R. 99mTc-N4-[Tyr3]Octreotate Versus 99mTc-EDDA/ HYNIC-[Tyr3]Octreotide: An intrapatient comparison of two novel Technetium-99m labeled tracers for somatostatin receptor scintigraphy. Cancer Biother. Radiopharm. 2004, 19, 73–79. [Google Scholar] [CrossRef]
- Pavlovic, S.; Artiko, V.; Sobic-Saranovic, D.; Damjanovic, S.; Popovic, B.; Jakovic, R.; Petrasinovic, Z.; Jaksic, E.; Todorovic-Tirnanic, M.; Saranovic, D.; et al. The utility of 99mTc-EDDA/HYNICTOC scintigraphy for assessment of lung lesions in patients with neuroendocrine tumors. Neoplasma 2010, 57, 68–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czepczyński, R.; Parisella, M.G.; Kosowicz, J.; Mikołajczak, R.; Ziemnicka, K.; Gryczyńska, M.; Sowiński, J.; Signore, A. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1635–1645. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovács, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: Comparison with somatostatin receptors scintigraphy and CT. J. Nucl. Med. 2007, 48, 508–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrio, M.; Czernin, J.; Fanti, S.; Ambrosini, V.; Binse, I.; Du, L.; Eiber, M.; Herrmann, K.; Fendler, W.P. The Impact of Somatostatin Receptor-Directed PET/CT on the Management of Patients with Neuroendocrine Tumor: A Systematic Review and Meta-Analysis. J. Nucl. Med. 2017, 58, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Paeng, J.C.; Lee, S.J.; Shin, C.S.; Jang, J.Y.; Cheon, G.J.; Lee, D.S.; Chung, J.K.; Kang, K.W. Comparison of Diagnostic Sensitivity and Quantitative Indices between 68Ga-DOTATOC PET/CT and 111In-Pentetreotide SPECT/CT in Neuroendocrine Tumors: A Preliminary Report. Nucl. Med. Mol. Imaging 2015, 49, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Van Binnebeek, S.; Vanbilloen, B.; Baete, K.; Terwinghe, C.; Koole, M.; Mottaghy, F.M.; Clement, P.M.; Mortelmans, L.; Bogaerts, K.; Haustermans, K.; et al. Comparison of diagnostic accuracy of (111)In-pentetreotide SPECT and (68)Ga-DOTATOC PET/CT: A lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours. Eur. Radiol. 2016, 26, 900–909. [Google Scholar] [CrossRef]
- Ambrosini, V.; Kunikowska, J.; Baudin, E.; Bodei, L.; Bouvier, C.; Capdevila, J.; Cremonesi, M.; de Herder, W.W.; Dromain, C.; Falconi, M.; et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur. J. Cancer 2021, 146, 56–73. [Google Scholar] [CrossRef]
- Rinzivillo, M.; Prosperi, D.; Bartolomei, M.; Panareo, S.; Iannicelli, E.; Magi, L.; Panzuto, F. Efficacy of Lutetium-Peptide Receptor Radionuclide Therapy in Inducing Prolonged Tumour Regression in Small-Bowel Neuroendocrine Tumours: A Case of Favourable Response to Retreatment after Initial Objective Response. Oncol. Res. Treat. 2021, 44, 276–280. [Google Scholar] [CrossRef]
- Rivinzillo, M.; Panzuto, F.; Esposito, G.; Lahner, E.; Signore, A.; Annibale, B. Usefulness of 68-Gallium PET in Type I Gastric Neuroendocrine Neoplasia: A Case Series. J. Clin. Med. 2022, 11, 1641. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.F.; Virgolini, I.; Balogova, S.; Beheshti, M.; Rubello, D.; Decristoforo, C.; Ambrosini, V.; Kjaer, A.; Delgado-Bolton, R.; Kunikowska, J.; et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1588–1601. [Google Scholar] [CrossRef] [Green Version]
- Cives, M.; Pellè, E.; Rinzivillo, M.; Prosperi, D.; Tucci, M.; Silvestris, F.; Panzuto, F. Bone Metastases in Neuroendocrine Tumors: Molecular Pathogenesis and Implications in Clinical Practice. Neuroendocrinology 2021, 111, 207–216. [Google Scholar] [CrossRef]
- Briganti, V.; Cuccurullo, V.; Berti, V.; Di Stasio, G.D.; Linguanti, F.; Mungai, F.; Mansi, L. 99mTc-EDDA/HYNIC-TOC is a New Opportunity in Neuroendocrine Tumors of the Lung (and in other Malignant and Benign Pulmonary Diseases). Curr. Radiopharm. 2020, 13, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Carideo, L.; Prosperi, D.; Panzuto, F.; Magi, L.; Pratesi, M.S.; Rinzivillo, M.; Annibale, B.; Signore, A. Role of Combined [68Ga]Ga-DOTA-SST Analogues and [18F]FDG PET/CT in the Management of GEP-NENs: A Systematic Review. J. Clin. Med. 2019, 8, 1032. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, V.; Castellucci, P.; Rubello, D.; Nanni, C.; Musto, A.; Allegri, V.; Montini, G.C.; Mattioli, S.; Grassetto, G.; Al-Nahhas, A.; et al. 68Ga-DOTA-NOC: A new PET tracer for evaluating patients with bronchial carcinoid. Nucl. Med. Commun. 2008, 30, 281–286. [Google Scholar] [CrossRef]
- Jiang, Y.; Hou, G.; Cheng, W. The utility of 18F-FDG and 68Ga-DOTA-Peptide PET/TC. In the evaluation of primary pulmonary carcinoid A systematic review and meta-analysis. Medicine 2019, 98, e14769. [Google Scholar] [CrossRef]
- Wei, L.; Ren, X.; Zhao, Y.; Wang, L.; Zhao, Y. Facilitative glucose transporters: Expression, distribution and the relationship to diseases. Sheng Li Xue Bao 2019, 71, 350–360. [Google Scholar] [PubMed]
- Mamede, M.; Higashi, T.; Kitaichi, M.; Ishizu, K.; Ishimori, T.; Nakamoto, Y.; Yanagihara, K.; Li, M.; Tanaka, F.; Wada, H.; et al. [18F]FDG uptake and PCNA, Glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005, 7, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Prosperi, D.; Gentiloni Silveri, G.; Panzuto, F.; Faggiano, A.; Russo, V.M.; Caruso, D.; Polici, M.; Lauri, C.; Filice, A.; Laghi, A.; et al. Nuclear Medicine and Radiological Imaging of Pancreatic Neuroendocrine Neoplasms: A Multidisciplinary Update. J. Clin. Med. 2022, 11, 6836. [Google Scholar] [CrossRef]
- Magi, L.; Prosperi, D.; Lamberti, G.; Marasco, M.; Ambrosini, V.; Rinzivillo, M.; Campana, D.; Gentiloni, G.; Annibale, B.; Signore, A.; et al. Role of 18-F -FDG PET/CT in the managment of G1 gastenteropancreatic neuroendocrine tumors. Endocrine 2022, 76, 484–490. [Google Scholar] [CrossRef]
- Binderup, T.; Knigge, U.; Loft, A.; Federspiel, B.; Kjaer, A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 2010, 16, 978–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anzola, L.; Lauri, C.; Granados, C.; Laganà, B.; Signore, A. Uptake pattern of [68Ga]Ga-DOTA-NOC in tissues: Implications for inflammatory diseases. Q. J. Nucl. Med. Mol. Imaging 2022, 66, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Anzola Fuentes, L.C.; Chianelli, M. Somatostatin receptors Scintigraphy in Inflammation and infection imaging. In Somatostatin Analogues: From Research to Clinical Practice; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Del Gobbo, A.; Pellegrinelli, A.; Gaudioso, G.; Castellani, M.; Zito Marino, F.; Franco, R.; Palleschi, A.; Nosotti, M.; Bosari, S.; Vaira, V.; et al. Analysis of NSCLC tumour heterogeneity, proliferative and 18F-FDG PET indices reveals Ki67 prognostic role in adenocarcinomas. Histopathology 2016, 68, 746–751. [Google Scholar] [CrossRef] [PubMed]
Reference | Patients | Research Type | Histology | Radiopharmaceuticals |
---|---|---|---|---|
Kayani I et al. [9] | 13 | Retrospective | 11 TC, 2 AC | 68Ga-DOTA-TATE and [18F]FDG |
Jindal T et al. [7] | 20 | Retrospective | 13 TC, 7 AC | 68Ga-DOTA-TOC and [18F]FDG |
Venkitaraman B et al. [10] | 26 | Prospective | 21 TC, 5 AC | 68Ga-DOTA-TOC and [18F]FDG |
Lococo F et al. [11] | 33 | Retrospective | 23 TC, 10 AC | 68Ga-DOTA-TATE/NOC/TOC and [18F]FDG |
Lococo F et al. [12] | 62 | Retrospective | 55 TC, 7 AC | 68Ga-DOTA-TOC and [18F]FDG |
Komek H et al. [13] | 20 | Retrospective | 13 TC, 7 AC | 68Ga-DOTA-TATE and [18F]FDG |
Zidan L et al. [14] | 56 | Retrospective | 22 TC, 34 AC | 68Ga-DOTA-TATE and [18F]FDG |
Deleu AL et al. [15] | 64 | Retrospective | 52 TC, 12 AC | 68Ga-DOTA-TATE/TOC and [18F]FDG |
Albano D et al. [16] | 61 | Retrospective | 35 TC, 26 AC | 68Ga-DOTA-TATE and [18F]FDG |
Title | Comments and Conclusions | Reference |
---|---|---|
A comparison of 68Ga-DOTA-TATE and [18F]FDG in pulmonary neuroendocrine tumors | Role of combined imaging with 68Ga-DOTA-TATE and [18F]FDG in PCs, correlating uptake values with metabolic grade and histology (TCs vs. ACs) | Kayani I et al. [9] |
Evaluation of the role of [18F]FDG and 68Ga-DOTA-TOC in differentiating typical and atypical pulmonary carcinoids | The analysis of tumor uptake parameters on [18F]FDG and 68Ga-DOTA-TOC was able to differentiate between typical and atypical carcinoids | Baudin E et al. [7] |
The diagnostic and prognostic role of combined [18F]FDG and 68Ga-DOTA-peptides in primary pulmonary carcinoids: a multicentric experience | Importance of dual tracer approach with 68Ga-DOTA-TATE and [18F]FDG to stratify patients in order to predict histological results (TC or AC) and give prognostic information | Albano D et al. [16] |
Multicenter comparison of [18F]FDG and 68Ga-DOTA-peptide for pulmonary carcinoid | DR evaluation of 68Ga-DOTA-peptide and [18F]FDG in PC, with proposal of some semi-quantitative parameters to distinguish between TCs and ACs | Lococo F et al. [11] |
Diagnostic performances of 68Ga-DOTA-TOC versus 18Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumors and interrelationship with histological features | Diagnostic ability of [18F]FDG and 68Ga-DOTA-TOC in PCs and correlation of the results with histopathology after surgery | Lococo F et al. [12] |
Comparison of [18F]FDG and 68Ga-DOTA-TATE imaging methods in terms of detection of histological subtype and related SUVmax values in patients with pulmonary carcinoid tumors | Combined use of 1[18F]FDG and 68Ga-DOTA-TATE in patients with PCs; DR analysis with a focus on histological prediction (TC vs. AC) | Komek H et al. [13] |
Value of 68Ga-somatostatin in the grading of pulmonary neuroendocrine (carcinoid) tumors and the detection of disseminated disease: single-center pathology-based analysis and review of the literature | Importance of dual tracer approach to differentiate between ACs and TCs, highlighting the excellent performance of SSTR PET/CT to detect nodal and distant metastases confirmed by pathological analysis | Deleu AL et al. [15] |
Role of 68Ga-DOTA-TOC in initial evaluation of patients with suspected bronchopulmonary carcinoid | Showing the superior diagnostic performance of 68Ga-DOTA-TOC compared to [18F]FDG in patients with suspect PC, and correlation with histopathology | Venkitaraman B et al. [10] |
Theranostic implications of molecular imaging phenotype of well-differentiated pulmonary carcinoid based on 68Ga-DOTA-TATE and [18F]FDG | Introducing some scores to define tumor heterogeneity thanks to the combined approach with [18F]FDG and 68Ga-DOTA-TATE, in order to have the optimal selection of patients with PC suitable for PRRT | Zidan L et al. [14] |
SSTR | Positive Human Tumors | Cell Line | Affinity for 68Ga-SSA |
---|---|---|---|
SSTR 1 | Breast carcinoma, Paragangliomas, Prostate cancer, Sarcomas, Inactive pituitary adenomas, GEP-NET, Pheochromocytomas, Gastric cancer, and Ependymomas | Colon cancer (with neuroendocrine features), and Gastric cancer | Low |
SSTR 2 | Neuroblastomas, Meningiomas, Medulloblastomas, Breast cancer, Lymphomas, Renal cell carcinomas, Paragangliomas, Small cell lung cancer, Hepatomas Sarcomas, Inactive pituitary adenomas, GH-secreting adenomas, GEP-NET, Pheochromocytomas, and Gastric cancer | Breast cancer, Colon cancer, Gastric cancer, and Glioblastoma | Very high |
SSTR 3 | Paragangliomas (low density), Inactive pituitary adenomas, GH-secreting adenomas (low density), and GEP-NET | Lung cancer (squamous), and Colon cancer (with neuroendocrine features) | High |
SSTR 4 | Sarcomas | Monoblastic leukemia, and Breast cancer | Low |
SSTR 5 | Lymphomas (low density), Prostate cancer (low density), Inactive pituitary adenomas, GH-secreting adenomas, GEP-NET, Pheochromocytomas (low density), Gastric cancer, and Ependymomas | Breast cancer, Gastric cancer, and Colon cancer | High |
GLUT | Tissue Distribution | Sub-Cellular Localization | Substrate Selectivity | Up-Regulated Expression |
---|---|---|---|---|
GLUT 1 | Widely distributed, and highly expressed especially in erythrocytes, brain, testis and kidney | Cell membrane | Glucose, dehydriascorbic acid | Tumor cells, endothelial cells, renal cells, skeletal muscle cells, adipocytes, hepatocytes, and brain |
GLUT 2 | Widely distributed, and highly expressed in erythrocytes, brain, testis and kidney | Cell membrane | Glucose, and fructose | Unclear |
GLUT 3 | Widely distributed, and highly expressed in erythrocytes, brain, testis and kidney | Cell membrane | Glucose | Tumor cell, and pancreatic cells |
GLUT 4 | Adipose tissue, skeletal, and cardiac muscle | Cell membrane | Insulin | Skeletal muscle cells |
GLUT 5 | Small intestine, kidney, testis, and adipose cell | Cell membrane | Fructose | Tumor cells |
GLUT 6 | Brain, spleen, immune cells, and adipose cell | Cell membrane | Glucose | Brain |
GLUT 7 | Small intestine and colon, testis and prostate | Cell membrane | Glucose and fructose | Small intestine tissue |
GLUT 8 | Brain (hippocampus), testis, epencephalon, and adrenal glands | Cell membrane, and endoplasmic reticulum | Glucose, fructose and trehalose | Neuronal cells and tumor cells |
GLUT 9 | Liver, kidneys, small intestine, leukocytes, and chondrocytes | Cell membrane | Uric acid | Ovarian granular cells |
GLUT 10 | Liver and pancreas | Cell membrane, endoplasmic reticulum | Glucose | Brain tissue |
GLUT 11 | Skeletal muscles, heart, kidneys, adipose tissue, placenta, and pancreas | Cell membrane | Glucose | Unclear |
GLUT 12 | Skeletal muscles, heart, placenta, and prostate | Cell membrane and intracellular organelles | Glucose, fructose and galactose | Mammary tumor cells |
GLUT 13 | Cerebrum, adipose tissue, and kidneys | Cell membrane and vesicles | Inositol | Unclear |
GLUT 14 | Testis | Cell membrane | Unclear | Unclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosperi, D.; Carideo, L.; Russo, V.M.; Meucci, R.; Campagna, G.; Lastoria, S.; Signore, A. A Systematic Review on Combined [18F]FDG and 68Ga-SSA PET/CT in Pulmonary Carcinoid. J. Clin. Med. 2023, 12, 3719. https://doi.org/10.3390/jcm12113719
Prosperi D, Carideo L, Russo VM, Meucci R, Campagna G, Lastoria S, Signore A. A Systematic Review on Combined [18F]FDG and 68Ga-SSA PET/CT in Pulmonary Carcinoid. Journal of Clinical Medicine. 2023; 12(11):3719. https://doi.org/10.3390/jcm12113719
Chicago/Turabian StyleProsperi, Daniela, Luciano Carideo, Vincenzo Marcello Russo, Rosaria Meucci, Giuseppe Campagna, Secondo Lastoria, and Alberto Signore. 2023. "A Systematic Review on Combined [18F]FDG and 68Ga-SSA PET/CT in Pulmonary Carcinoid" Journal of Clinical Medicine 12, no. 11: 3719. https://doi.org/10.3390/jcm12113719
APA StyleProsperi, D., Carideo, L., Russo, V. M., Meucci, R., Campagna, G., Lastoria, S., & Signore, A. (2023). A Systematic Review on Combined [18F]FDG and 68Ga-SSA PET/CT in Pulmonary Carcinoid. Journal of Clinical Medicine, 12(11), 3719. https://doi.org/10.3390/jcm12113719