Intraoral Condylectomy with 3D-Printed Cutting Guide versus with Surgical Navigation: An Accuracy and Effectiveness Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computer Assisted Surgical Planning and Titanium Cutting Guide 3D Printing
2.2. Surgical Procedure
2.3. Condylectomy Accuracy Validation–Evaluation of 3D Condylar Residual Deviation
2.4. Effectiveness Assessment–Evaluation of the Restoration of Mandibular Symmetry
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, R.; Sun, L.; Sun, Z.; Li, G.; Zhao, Y.; Ma, X.; Sun, C. A three-dimensional study of hemimandibular hyperplasia, hemimandibular elongation, solitary condylar hyperplasia, simple mandibular asymmetry and condylar osteoma or osteochondroma. J. Cranio-Maxillo-Facial Surg. 2019, 47, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Shen, S.; Liu, Z.; Dai, J.; Wang, X. Evaluation of mandibular symmetry in patients with condylar osteochondroma who underwent intro-oral condylar resection and simultaneous bimaxillary orthognathic surgery. J. Craniofacial Surg. 2020, 31, 1390–1394. [Google Scholar] [CrossRef]
- Farina, R.; Pintor, F.; Perez, J.; Pantoja, R.; Berner, D. Low condylectomy as the sole treatment for active condylar hyperplasia: Facial, occlusal and skeletal changes. An observational study. Int. J. Oral Maxillofac. Surg. 2015, 44, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Wolford, L.M.; Movahed, R.; Dhameja, A.; Allen, W.R. Low condylectomy and orthognathic surgery to treat mandibular condylar osteochondroma: A retrospective review of 37 cases. J. Oral Maxillofac. Surg. 2014, 72, 1704–1728. [Google Scholar] [CrossRef] [PubMed]
- Haas Junior, O.L.; Farina, R.; Hernandez-Alfaro, F.; de Oliveira, R.B. Minimally invasive intraoral proportional condylectomy with a three-dimensionally printed cutting guide. Int. J. Oral Maxillofac. Surg. 2020, 16, 59. [Google Scholar] [CrossRef]
- Hasan, W.; Daly, M.J.; Chan, H.H.L.; Qiu, J.; Irish, J.C. Intraoperative cone-beam ct-guided osteotomy navigation in mandible and maxilla surgery. Laryngoscope 2019, 130, 1166–1172. [Google Scholar] [CrossRef]
- Huo, L.; Chen, M.J.; Yang, C.; Zhang, S.Y.; Zheng, J.S.; Chen, Y. Digital cutting guide and endoscopically-assisted vertical ramus osteotomy to treat condylar osteochondroma: A long-term study. Br. J. Oral Maxillofac. Surg. 2018, 56, 505–509. [Google Scholar] [CrossRef]
- Lin, L.; Fan, B.; Yu, Z.; Xu, L.; Yuan, J.; Wu, J.; Wei, M. Application of computer-assisted navigation in mandibular angle osteotomy. J. Int. Med. Res. 2019, 47, 3160–3170. [Google Scholar] [CrossRef]
- Mazzoni, S.; Bianchi, A.; Schiariti, G.; Badiali, G.; Marchetti, C. Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning. J. Oral Maxillofac. Surg. 2015, 73, 701–707. [Google Scholar] [CrossRef]
- Qi, L.; Cao, N.; Ge, W.; Jiang, T.; Fan, L.; Zhang, L. A new method for individual condylar osteotomy and repositioning guides used in patients with severe deformity secondary to condylar osteochondroma. Orphanet J. Rare Dis. 2021, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.N.; Hu, L.H.; Soh, H.Y.; Yu, Y.; Zhang, W.B.; Peng, X. Accuracy of mixed reality combined with surgical navigation assisted oral and maxillofacial tumor resection. Front. Oncol. 2021, 11, 715484. [Google Scholar] [CrossRef] [PubMed]
- Ter Braak, T.P.; Brouwer de Koning, S.G.; van Alphen, M.J.A.; van der Heijden, F.; Schreuder, W.H.; van Veen, R.L.P.; Karakullukcu, M.B. A surgical navigated cutting guide for mandibular osteotomies: Accuracy and reproducibility of an image-guided mandibular osteotomy. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, F.; Zhou, C.; Lin, L.; Zhang, Y.; Chai, G.; Xie, L.; Qi, F.; Li, Q. Does intraoperative navigation improve the accuracy of mandibular angle osteotomy: Comparison between augmented reality navigation, individualised templates and free-hand techniques. J. Plast. Reconstr. Aesthetic Surg. JPRAS 2018, 71, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, B.; Shen, S.; Yang, T.; Zhang, L.; Shen, S.G.; Wang, X. Image-guided endoscopic navigation for the precise resection of a mandibular condylar osteochondroma. J. Craniofacial Surg. 2013, 24, e573–e579. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Shen, G.F.; Zhang, S.L.; Wang, X.D.; Wang, C.T.; Lin, Y.P. Navigation-guided gap arthroplasty in the treatment of temporomandibular joint ankylosis. Int. J. Oral Maxillofac. Surg. 2009, 38, 1030–1035. [Google Scholar] [CrossRef]
- Gui, H.; Wu, J.; Shen, S.G.; Bautista, J.S.; Voss, P.J.; Zhang, S. Navigation-guided lateral gap arthroplasty as the treatment of temporomandibular joint ankylosis. J. Oral Maxillofac. Surg. 2014, 72, 128–138. [Google Scholar] [CrossRef]
- Hernandez-Alfaro, F.; Mendez-Manjon, I.; Valls-Ontanon, A.; Guijarro-Martinez, R. Minimally invasive intraoral condylectomy: Proof of concept report. Int. J. Oral Maxillofac. Surg. 2016, 45, 1108–1114. [Google Scholar] [CrossRef]
- Yu, H.; Jiao, F.; Li, B.; Zhang, L.; Shen, S.G.; Wang, X. Endoscope-assisted conservative condylectomy combined with orthognathic surgery in the treatment of mandibular condylar osteochondroma. J. Craniofacial Surg. 2014, 25, 1379–1382. [Google Scholar] [CrossRef]
- Brouwer de Koning, S.G.; Ter Braak, T.P.; Geldof, F.; van Veen, R.L.P.; van Alphen, M.J.A.; Karssemakers, L.H.E.; Schreuder, W.H.; Karakullukcu, M.B. Evaluating the accuracy of resection planes in mandibular surgery using a preoperative, intraoperative, and postoperative approach. Int. J. Oral Maxillofac. Surg. 2021, 50, 287–293. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Malysa, A.; Mikulewicz, M. Comparison of the compression and tensile modulus of two chosen resins used in dentistry for 3d printing. Materials 2022, 15, 8956. [Google Scholar] [CrossRef]
- Alhroob, K.H.; Alsabbagh, M.M.; Alsabbagh, A.Y. Effect of the use of a surgical guide on heat generation during implant placement: A comparative in vitro study. Dent. Med. Probl. 2021, 58, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Kunz, M.; Gammon, B.; Ellis, R.E.; Pichora, D.R. A laboratory comparison of computer navigation and individualized guides for distal radius osteotomy. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 713–724. [Google Scholar] [CrossRef] [PubMed]
Patient Number | Group | Age | Sex | Affected Side | Surgery * |
---|---|---|---|---|---|
1 | Cutting guide group | 23 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO |
2 | Cutting guide group | 22 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO + Genioplasty |
3 | Cutting guide group | 31 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO |
4 | Cutting guide group | 24 | Female | Right | Right condylectomy |
5 | Cutting guide group | 26 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO + Genioplasty |
6 | Cutting guide group | 34 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO |
7 | Cutting guide group | 22 | Female | Left | Lefort I osteotomy + Left condylectomy+ Right SSRO |
8 | Cutting guide group | 23 | Female | Left | Lefort I osteotomy + Left condylectomy+ Right SSRO + Genioplasty |
9 | Cutting guide group | 30 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO |
10 | Cutting guide group | 28 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO + Genioplasty |
11 | Navigation group | 30 | Female | Left | Left condylectomy |
12 | Navigation group | 27 | Male | Left | Lefort I osteotomy + Left condylectomy+ Right SSRO |
13 | Navigation group | 18 | Male | Right | Lefort I osteotomy+ Right condylectomy + Left SSRO + Genioplasty |
14 | Navigation group | 23 | Male | Right | Lefort I osteotomy+ Right condylectomy + Left SSRO |
15 | Navigation group | 25 | Female | Right | Lefort I osteotomy+ Right condylectomy + Left SSRO |
16 | Navigation group | 24 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO |
17 | Navigation group | 22 | Female | Left | Lefort I osteotomy+ Left condylectomy + Right SSRO |
18 | Navigation group | 22 | Female | Left | Lefort I osteotomy + Left condylectomy+ Right SSRO + Genioplasty |
19 | Navigation group | 20 | Female | Right | Lefort I osteotomy + Right condylectomy+ Left SSRO |
20 | Navigation group | 18 | Female | Left | Lefort I osteotomy+ Left condylectomy + Right SSRO |
21 | Navigation group | 21 | Female | Right | Lefort I osteotomy+ Right condylectomy + Left SSRO |
Chin Deviation | Chin Rotation | AI of Go | AI of MF | AI of Sg | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cutting Guide Group | Navigation Group | Significance | Cutting Guide Group | Navigation Group | Significance | Cutting Guide Group | Navigation Group | Significance | Cutting Guide Group | Navigation Group | Significance | Cutting Guide Group | Navigation Group | Significance | |
Pre-operation | 8.61 ± 4.21 | 8.54 ± 4.77 | NS | 8.823 ± 2.67 | 8.98 ± 2.28 | NS | 17.64 ± 4.83 | 16.37 ± 3.77 | NS | 18.82 ± 4.69 | 19.31 ± 6.28 | NS | 11.83 ± 3.14 | 10.86 ± 4.43 | NS |
Post-operation | 3.26 ± 2.62 | 3.03 ± 2.83 | NS | 4.28 ± 1.78 | 3.81 ± 1.82 | NS | 9.21 ± 2.76 | 7.13 ± 2.28 | NS | 8.83 ± 3.31 | 8.01 ± 3.48 | NS | 7.36 ± 2.79 | 6.69 ± 2.51 | NS |
Significance | p = 0.0058 | p = 0.0034 | p = 0.0004 | p = 0.0001 | p = 0.0012 | p = 0.0005 | p < 0.0001 | p < 0.0001 | p = 0.0391 | p = 0.0438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, J.; Zhang, C.; Tian, M.; Jiang, T.; Zhang, L.; Yu, H.; Shi, J.; Wang, X. Intraoral Condylectomy with 3D-Printed Cutting Guide versus with Surgical Navigation: An Accuracy and Effectiveness Comparison. J. Clin. Med. 2023, 12, 3816. https://doi.org/10.3390/jcm12113816
Si J, Zhang C, Tian M, Jiang T, Zhang L, Yu H, Shi J, Wang X. Intraoral Condylectomy with 3D-Printed Cutting Guide versus with Surgical Navigation: An Accuracy and Effectiveness Comparison. Journal of Clinical Medicine. 2023; 12(11):3816. https://doi.org/10.3390/jcm12113816
Chicago/Turabian StyleSi, Jiawen, Chenglong Zhang, Ming Tian, Tengfei Jiang, Lei Zhang, Hongbo Yu, Jun Shi, and Xudong Wang. 2023. "Intraoral Condylectomy with 3D-Printed Cutting Guide versus with Surgical Navigation: An Accuracy and Effectiveness Comparison" Journal of Clinical Medicine 12, no. 11: 3816. https://doi.org/10.3390/jcm12113816
APA StyleSi, J., Zhang, C., Tian, M., Jiang, T., Zhang, L., Yu, H., Shi, J., & Wang, X. (2023). Intraoral Condylectomy with 3D-Printed Cutting Guide versus with Surgical Navigation: An Accuracy and Effectiveness Comparison. Journal of Clinical Medicine, 12(11), 3816. https://doi.org/10.3390/jcm12113816