Complications after Prostate Cancer Treatment: Pathophysiology and Repair of Post-Radiation Urethral Stricture Disease
Abstract
:1. Introduction
2. Prevalence
3. Stricture Etiology/Physiology
4. Radiation-Induced Changes in Urologic Tissue
5. Pathways of Radiation-Induced Endothelial Cell Death
6. Cellular and Extracellular Components of Fibrosis
7. Radiation-Induced Histologic Changes
8. Pathogenesis of Radiation Strictures
9. Surgical Pitfalls and Options for Treating Radiation Strictures
10. Conservative Management
11. Endoscopic Management
12. Reconstructive Techniques—Excision and Primary Anastomosis (EPA)
13. Reconstructive Techniques—Buccal Mucosa Graft Urethroplasty
14. Robotic Techniques
15. Current Trends and Future Directions
16. Limitations of Study
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. US Cancer Statistics 2019. Available online: cdc.gov/USCS (accessed on 1 February 2023).
- Tang, C.; Hoffman, K.E.; Allen, P.K.; Gabel, M.; Schreiber, D.; Choi, S.; Chapin, B.F.; Nguyen, Q.; Davis, J.W.; Corn, P.; et al. Contemporary prostate cancer treatment choices in multidisciplinary clinics referenced to national trends. Cancer 2019, 126, 506–514. [Google Scholar] [CrossRef]
- Del Giudice, F.; Huang, J.; Li, S.; Sorensen, S.; Enemchukwu, E.; Maggi, M.; Salciccia, S.; Ferro, M.; Crocetto, F.; Pandolfo, S.D.; et al. Contemporary trends in the surgical management of urinary incontinence after radical prostatectomy in the United States. Prostate Cancer Prostatic Dis. 2022, 26, 367–373. [Google Scholar] [CrossRef]
- Boorjian, S.A.; Eastham, J.A.; Graefen, M.; Guillonneau, B.; Karnes, R.J.; Moul, J.W.; Schaeffer, E.M.; Stief, C.; Zorn, K.C. A Critical Analysis of the Long-Term Impact of Radical Prostatectomy on Cancer Control and Function Outcomes. Eur. Urol. 2012, 61, 664–675. [Google Scholar] [CrossRef]
- Elliott, S.P.; Meng, M.V.; Elkin, E.P.; McAninch, J.W.; Duchane, J.; Carroll, P.R.; CaPSURE Investigators. Incidence of urethral stricture after primary treatment for prostate cancer: Data from CaPSURE. J. Urol. 2007, 178, 529–534. [Google Scholar] [CrossRef]
- Sterling, J.; Policastro, C.; Nikolavsky, D. Pathophysiology of radiation-induced urethral strictures and therapeutic strategies optimizing outcomes of surgical repair. In Scientific Advances in Reconstructive Urology and Tissue Engineering; Academic Press: Cambridge, MA, USA, 2022; pp. 51–80. [Google Scholar]
- Liberman, D.; Mehus, B.; Elliott, S.P. Urinary adverse effects of pelvic radiotherapy. Transl. Androl. Urol. 2014, 3, 186–195. [Google Scholar]
- David, R.V.; Kahokehr, A.A.; Lee, J.; Watson, D.I.; Leung, J.; O’callaghan, M.E. Incidence of genitourinary complications following radiation therapy for localised prostate cancer. World J. Urol. 2022, 40, 2411–2422. [Google Scholar] [CrossRef]
- Muise, A.; Pan, M.M.; Rose, B.; Buckley, J.C. Functional outcomes after prostate cancer treatment: A comparison between single and multiple modalities. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 104.e1–104.e9. [Google Scholar] [CrossRef]
- Ma, J.L.; Hennessey, D.B.; Newell, B.P.; Bolton, D.M.; Lawrentschuk, N. Radiotherapy-related complications presenting to a urology department: A more common problem than previously thought? BJU Int. 2018, 121 (Suppl. S3), 28–32. [Google Scholar] [CrossRef] [Green Version]
- Hindson, B.R.; Millar, J.L.; Matheson, B. Urethral strictures following high-dose-rate brachytherapy for prostate cancer: Analysis of risk factors. Brachytherapy 2012, 12, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.A.; Gaither, T.W.; Osterberg, E.C.; Murphy, G.P.; Baradaran, N.; Breyer, B.N. Prostate cancer radiation and urethral strictures: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2018, 21, 168–174. [Google Scholar] [CrossRef]
- Sullivan, L.; Williams, S.G.; Tai, K.H.; Foroudi, F.; Cleeve, L.; Duchesne, G. Urethral stricture following high dose rate brachytherapy for prostate cancer. Radiother. Oncol. 2009, 91, 232–236. [Google Scholar] [CrossRef]
- Merrick, G.S.; Butler, W.M.; Wallner, K.E.; Galbreath, R.W.; Anderson, R.L.; Allen, Z.A.; Adamovich, E. Risk Factors for the Development of Prostate Brachytherapy Related Urethral Strictures. J. Urol. 2006, 175, 1376–1381. [Google Scholar] [CrossRef]
- Marks, L.B.; Carroll, P.R.; Dugan, T.C.; Anscher, M.S. The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int. J. Radiat. Oncol. 1995, 31, 1257–1280. [Google Scholar] [CrossRef]
- Sowerby, R.J.; Gani, J.; Yim, H.; Radomski, S.B.; Catton, C. Long-term complications in men who have early or late radio-therapy after radical prostatectomy. Can. Urol. Assoc. J. 2014, 8, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.G.; Yucel, S.; Deng, D.Y.; McANINCH, J.W.; Baskin, L.S. The Distribution of Neuronal and Inducible Nitric Oxide Synthase in Urethral Stricture Formation. J. Urol. 2004, 171, 1943–1947. [Google Scholar] [CrossRef] [Green Version]
- Simsek, A.; Aldamanhori, R.; Chapple, C.R.; MacNeil, S. Overcoming scarring in the urethra: Challenges for tissue engineering. Asian J. Urol. 2018, 5, 69–77. [Google Scholar] [CrossRef]
- Mundy, A.R.; Andrich, D.E. Urethral strictures. BJU Int. 2011, 107, 6–26. [Google Scholar] [CrossRef]
- Hofer, M.D.; Cheng, E.Y.; Bury, M.I.; Park, E.; Xu, W.; Hong, S.J.; Kaplan, W.E.; Sharma, A.K. Analysis of Primary Urethral Wound Healing in the Rat. Urology 2014, 84, 246.e1–246.e7. [Google Scholar] [CrossRef]
- Singh, M.; Blandy, J. The Pathology of Urethral Stricture. J. Urol. 1976, 115, 673–676. [Google Scholar] [CrossRef]
- Baskin, L.S.; Constantinescu, S.C.; Howard, P.S.; McAninch, J.W.; Ewalt, D.H.; Duckett, J.W.; Snyder, H.M.; Macarak, E.J. Biochemical Characterization and Quantitation of the Collagenous Components of Urethral Stricture Tissue. J. Urol. 1993, 150, 642–647. [Google Scholar] [CrossRef]
- Brock, G.; Nunes, L.; Padma-Nathan, H.; Boyd, S.; Lue, T.F. Nitric oxide synthase: A new diagnostic tool for neurogenic impotence. Urology 1993, 42, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Da-Silva, E.A.; Sampaio, F.J.; Dornas, M.C.; Damiao, R.; Cardoso, L.E. Extracellular matrix changes in urethral stricture disease. J. Urol. 2002, 168, 805–807. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, N.; Leslie, S.W. Histology, Male Urethra; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Rodemann, H.P.; Blaese, M.A. Responses of Normal Cells to Ionizing Radiation. Semin. Radiat. Oncol. 2007, 17, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, L.F. The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol. 2005, 44, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fajardo, L.F. Is the pathology of radiation injury different in small vs large blood vessels? Cardiovasc. Radiat. Med. 1999, 1, 108–110. [Google Scholar] [PubMed]
- Peña, L.A.; Fuks, Z.; Kolesnick, R.N. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: Protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000, 60, 321–327. [Google Scholar]
- Lin, T.; Genestier, L.; Pinkoski, M.J.; Castro, A.; Nicholas, S.; Mogil, R.; Paris, F.; Fuks, Z.; Schuchman, E.H.; Kolesnick, R.N.; et al. Role of Acidic Sphingomyelinase in Fas/CD95-mediated Cell Death. J. Biol. Chem. 2000, 275, 8657–8663. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.G.; Robayna, I.G.; Delgado, P.S.; González, I.H.; Aguiar, J.Q.; Rosas, F.E.; Fanjul, L.F.; de Galarreta, C.M.R. c-Jun Is a Downstream Target for Ceramide-activated Protein Phosphatase in A431 Cells. J. Biol. Chem. 1996, 271, 21375–21380. [Google Scholar] [CrossRef] [Green Version]
- Dressler, K.A.; Mathias, S.; Kolesnick, R.N. Tumor Necrosis Factor-α Activates the Sphingomyelin Signal Transduction Pathway in a Cell-Free System. Science 1992, 255, 1715–1718. [Google Scholar] [CrossRef]
- Müller, G.; Ayoub, M.; Storz, P.; Rennecke, J.; Fabbro, D.; Pfizenmaier, K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 1995, 14, 1961–1969. [Google Scholar] [CrossRef]
- Haimovitz-Friedman, A.; Kan, C.C.; Ehleiter, D.; Persaud, R.S.; McLoughlin, M.; Fuks, Z.; Kolesnick, R.N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 1994, 180, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Haimovitz-Friedman, A.; Balaban, N.; McLoughlin, M.; Ehleiter, D.; Michaeli, J.; Vlodavsky, I.; Fuks, Z. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res. 1994, 54, 2591–2597. [Google Scholar]
- Verheij, M.; Bose, R.; Lin, X.H.; Yao, B.; Jarvis, W.D.; Grant, S.; Birrer, M.J.; Szabo, E.; Zon, L.I.; Kyriakis, J.M.; et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996, 380, 75–79. [Google Scholar] [CrossRef]
- Basu, S.; Bayoumy, S.; Zhang, Y.; Lozano, J.; Kolesnick, R. BAD Enables Ceramide to Signal Apoptosis via Ras and Raf-1. J. Biol. Chem. 1998, 273, 30419–30426. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, X.; Bhalla, K.; Kim, C.N.; Ibrado, A.M.; Cai, J.; Peng, T.-I.; Jones, D.P.; Wang, X. Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science 1997, 275, 1129–1132. [Google Scholar] [CrossRef]
- Belka, C.; Budach, W. Anti-apoptotic Bcl-2 proteins: Structure, function and relevance for radiation biology. Int. J. Radiat. Biol. 2002, 78, 643–658. [Google Scholar] [CrossRef]
- Stroh, C.; Schulze-Osthoff, K. Death by a thousand cuts: An ever increasing list of caspase substrates. Cell Death Differ. 1998, 5, 997–1000. [Google Scholar] [CrossRef] [Green Version]
- Canman, C.E.; Kastan, M.B. Role of p53 in Apoptosis. Adv. Pharmacol. 1997, 41, 429–460. [Google Scholar]
- Herr, I.; Debatin, K.-M. Cellular stress response and apoptosis in cancer therapy. Blood 2001, 98, 2603–2614. [Google Scholar] [CrossRef]
- Tan, J.; Geng, L.; Yazlovitskaya, E.M.; Hallahan, D.E. Protein kinase B/Akt-dependent phosphorylation of glycogen synthase kinase-3beta in irradiated vascular endothelium. Cancer Res. 2006, 66, 2320–2327. [Google Scholar] [CrossRef] [Green Version]
- Toulany, M.; Kasten-Pisula, U.; Brammer, I.; Wang, S.; Chen, J.; Dittmann, K.; Baumann, M.; Dikomey, E.; Rodemann, H.P. Blockage of Epidermal Growth Factor Receptor-Phosphatidylinositol 3-Kinase-AKT Signaling Increases Radiosensitivity of K-RAS Mutated Human Tumor Cells In vitro by Affecting DNA Repair. Clin. Cancer Res. 2006, 12, 4119–4126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayreuther, K.; Francz, P.; Rodemann, H. Fibroblasts in normal and pathological terminal differentiation, aging, apoptosis and transformation. Arch. Gerontol. Geriatr. 1992, 15, 47–74. [Google Scholar] [CrossRef] [PubMed]
- Rodemann, H.P.; Binder, A.; Burger, A.; Güven, N.; Löffler, H.; Bamberg, M. The underlying cellular mechanism of fibrosis. Kidney Int. Suppl. 1996, 54, S32–S36. [Google Scholar] [PubMed]
- Burger, A.; Löffler, H.; Bamberg, M.; Rodemann, H.P. Molecular and cellular basis of radiation fibrosis. Int. J. Radiat. Biol. 1998, 73, 401–408. [Google Scholar] [CrossRef]
- Rodemann, H.; Bamberg, M. Cellular basis of radiation-induced fibrosis. Radiother. Oncol. 1995, 35, 83–90. [Google Scholar] [CrossRef]
- Paun, A.; Kunwar, A.; Haston, C.K. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice. Radiat. Oncol. 2015, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Takigawa, N.; Segawa, Y.; Saeki, T.; Kataoka, M.; Ida, M.; Kishino, D.; Fujiwara, K.; Ohsumi, S.; Eguchi, K.; Takashima, S. Bronchiolitis obliterans organizing pneumonia syndrome in breast-conserving therapy for early breast cancer: Radiation-induced lung toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 751–755. [Google Scholar] [CrossRef]
- Bessout, R.; Demarquay, C.; Moussa, L.; René, A.; Doix, B.; Benderitter, M.; Sémont, A.; Mathieu, N. TH17 predominant T-cell responses in radiation-induced bowel disease are modulated by treatment with adipose-derived mesenchymal stromal cells. J. Pathol. 2015, 237, 435–446. [Google Scholar] [CrossRef]
- Garrido-Mesa, N.; Algieri, F.; Rodriguez Nogales, A.; Galvez, J. Functional plasticity of Th17 cells: Implications in gastrointestinal tract function. Int. Rev. Immunol. 2013, 32, 493–510. [Google Scholar] [CrossRef]
- Mesquita, D., Jr.; Cruvinel, W.D.M.; Câmara, N.O.S.; Kállas, E.G.; Andrade, L.E.C. Autoimmune diseases in the TH17 era. Braz. J. Med. Biol. Res. 2009, 42, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Barron, L.; Wynn, T.A. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am. J. Physiol. Liver Physiol. 2011, 300, G723–G728. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Lefaix, J.; Delanian, S. TGF-beta1 and radiation fibrosis: A master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 277–290. [Google Scholar] [CrossRef]
- Mayer, M. Biochemical and biological aspects of the plasminogen activation system. Clin. Biochem. 1990, 23, 197–211. [Google Scholar] [CrossRef]
- Hageman, J.; Eggen, B.J.; Rozema, T.; Damman, K.; Kampinga, H.H.; Coppes, R.P. Radiation and transforming growth factor-beta cooperate in transcriptional activation of the profibrotic plasminogen activator inhibitor-1 gene. Clin. Cancer Res. 2005, 11, 5956–5964. [Google Scholar] [CrossRef] [Green Version]
- Gallet, P.; Phulpin, B.; Merlin, J.L.; Leroux, A.; Bravetti, P.; Mecellem, H.; Tran, N.; Dolivet, G. Long-term alterations of cy-tokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS ONE 2011, 6, e29399. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.R. Pathology of radiation effects on healthy tissues in the pelvis. In Radiation Therapy for Pelvic Malignancy and Its Consequences; Ehrenpreis, E.D., Marsh, R.D.W., Small, W., Jr., Eds.; Springer: New York, NY, USA, 2015; pp. 79–86. [Google Scholar]
- Fajardo, L.F.; Berthrong, M. Radiation injury in surgical pathology. Am. J. Surg. Pathol. 1978, 2, 159–200. [Google Scholar] [CrossRef]
- Antonakopoulos, G.N.; Hicks, R.M.; Hamilton, E.; Berry, R.J. Early and late morphological changes (including carcinoma of the urothelium) induced by irradiation of the rat urinary bladder. Br. J. Cancer 1982, 46, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Zuppone, S.; Bresolin, A.; Spinelli, A.E.; Fallara, G.; Lucianò, R.; Scarfò, F.; Benigni, F.; Di Muzio, N.; Fiorino, C.; Briganti, A.; et al. Pre-clinical Research on Bladder Toxicity After Radiotherapy for Pelvic Cancers: State-of-the Art and Challenges. Front. Oncol. 2020, 10, 527121. [Google Scholar] [CrossRef]
- Jaal, J.; Brüchner, K.; Hoinkis, C.; Dörr, W.; Doerr, W. Radiation-induced variations in urothelial expression of intercellular adhesion molecule 1 (ICAM-1): Association with changes in urinary bladder function. Int. J. Radiat. Biol. 2004, 80, 65–72. [Google Scholar] [CrossRef]
- Kraft, M.; Oussoren, Y.; Stewart, F.A.; Dörr, W.; Schultz-Hector, S. Radiation-induced changes in transforming growth factor beta and collagen expression in the murine bladder wall and its correlation with bladder function. Radiat. Res. 1996, 146, 619–627. [Google Scholar] [CrossRef]
- Carrier, S.; Hricak, H.; Lee, S.S.; Baba, K.; Morgan, D.M.; Nunes, L.; Ross, G.Y.; Phillips, T.L.; Lue, T.F. Radiation-induced decrease in nitric oxide synthase--containing nerves in the rat penis. Radiology 1995, 195, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wielen, G.J.; Vermeij, M.; De Jong, B.W.; Schuit, M.; Marijnissen, J.; Kok, D.J.; Van Weerden, W.M.; Incrocci, L. Changes in the Penile Arteries of the Rat after Fractionated Irradiation of the Prostate: A Pilot Study. J. Sex. Med. 2009, 6, 1908–1913. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Caza, T.; Li, G.; Daugherty, M.; Blakley, S.; Nikolavsky, D. Histologic characterization of the post-radiation urethral stenosis in men treated for prostate cancer. World J. Urol. 2019, 38, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- Hanin, L.; Zaider, M. A mechanistic description of radiation-induced damage to normal tissue and its healing kinetics. Phys. Med. Biol. 2013, 58, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.M.; Richardson, M.; Siva, S.; Cardoso, M.; Handmer, M.; Sidhom, M. Mechanisms, mitigation, and management of urinary toxicity from prostate radiotherapy. Lancet Oncol. 2022, 23, e534–e543. [Google Scholar] [CrossRef]
- Rodda, S.; Tyldesley, S.; Morris, W.J.; Keyes, M.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. 2017, 98, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Herschorn, S.; Elliott, S.; Coburn, M.; Wessells, H.; Zinman, L. SIU/ICUD Consultation on Urethral Strictures: Posterior Urethral Stenosis After Treatment of Prostate Cancer. Urology 2014, 83, S59–S70. [Google Scholar] [CrossRef]
- Merrick, G.S.; Butler, W.M.; Wallner, K.E.; Galbreath, R.W.; Lief, J.H. Long-term urinary quality of life after permanent prostate brachytherapy. Int. J. Radiat. Oncol. 2003, 56, 454–461. [Google Scholar] [CrossRef]
- Allen, Z.A.; Merrick, G.S.; Butler, W.M.; Wallner, K.E.; Kurko, B.; Anderson, R.L.; Murray, B.C.; Galbreath, R.W. Detailed urethral dosimetry in the evaluation of prostate brachytherapy-related urinary morbidity. Int. J. Radiat. Oncol. 2005, 62, 981–987. [Google Scholar] [CrossRef]
- Zaffuto, E.; Gandaglia, G.; Fossati, N.; Dell’Oglio, P.; Moschini, M.; Cucchiara, V.; Suardi, N.; Mirone, V.; Bandini, M.; Shariat, S.F.; et al. Early Postoperative radiotherapy is assocciated with worse functional outcomes in patients with prostate cancer. J. Urol. 2017, 197, 669–675. [Google Scholar] [CrossRef]
- Tibbs, M.K. Wound healing following radiation therapy: A review. Radiother. Oncol. 1997, 42, 99–106. [Google Scholar] [CrossRef]
- Campos-Juanatey, F.; Martín, J.P.; Illanes, R.G.; Ramos, L.V. Nontraumatic posterior urethral stenosis. Actas Urol. Esp. 2017, 41, 1–10. [Google Scholar] [CrossRef]
- Samarska, I.V.; Dani, H.; Bivalacqua, T.J.; Burnett, A.L.; Matoso, A. Histopathologic and clinical comparison of recurrent and non-recurrent urethral stricture disease treated by reconstructive surgery. Transl. Androl. Urol. 2021, 10, 3714–3722. [Google Scholar] [CrossRef]
- Barry, J.M. Visual urethrotomy in the management of the obliterated membranous urethra. Urol. Clin. N. Am. 1989, 16, 319–324. [Google Scholar] [CrossRef]
- Stein, D.M.; Santucci, R.A. Pro: Endoscopic realignment for pelvic fracture urethral injuries. Transl. Androl. Urol. 2015, 4, 72–78. [Google Scholar]
- Yasuda, K.; Yamanishi, T.; Isaka, S.; Okano, T.; Masai, M.; Shimazaki, J. Endoscopic Re-Establishment of Membranous Urethral Disruption. J. Urol. 1991, 145, 977–979. [Google Scholar] [CrossRef]
- Rozanski, A.T.; Moynihan, M.J.; Zhang, L.T.; Muise, A.C.; Holst, D.D.; Copacino, S.A.; Zinman, L.N.; Buckley, J.C.; Vanni, A.J. The Efficacy and Safety of a Conservative Management Approach to Radiation-Induced Male Urethral Strictures in Elderly Patients With Comorbidities. Société Int. d’Urologie J. 2022, 3, 14–20. [Google Scholar] [CrossRef]
- Ravier, E.; Fassi-Fehri, H.; Crouzet, S.; Gelet, A.; Abid, N.; Martin, X. Complications after artificial urinary sphincter implantation in patients with or without prior radiotherapy. BJU Int. 2014, 115, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Blakely, S.; Caza, T.; Landas, S.; Nikolavsky, D. Dorsal Onlay Urethroplasty for Membranous Urethral Strictures: Urinary and Erectile Functional Outcomes. J. Urol. 2015, 195, 1501–1507. [Google Scholar] [CrossRef]
- Pfalzgraf, D.; Worst, T.; Kranz, J.; Steffens, J.; Salomon, G.; Fisch, M.; Reiß, C.P.; Vetterlein, M.W.; Rosenbaum, C.M. Vesico-urethral anastomotic stenosis following radical prostatectomy: A multi-institutional outcome analysis with a focus on en-doscopic approach, surgical sequence, and the impact of radiation therapy. World J. Urol. 2021, 39, 89–95. [Google Scholar] [CrossRef]
- Eltahawy, E.; Gur, U.; Virasoro, R.; Schlossberg, S.M.; Jordan, G.H. Management of recurrent anastomotic stenosis following radical prostatectomy using holmium laser and steroid injection. BJU Int. 2008, 102, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Kravchick, S.; Lobik, L.; Peled, R.; Cytron, S. Transrectal Ultrasonography-Guided Injection of Long-Acting Steroids in the Treatment of Recurrent/Resistant Anastomotic Stenosis After Radical Prostatectomy. J. Endourol. 2013, 27, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Redshaw, J.D.; Broghammer, J.A.; Smith, T.G., 3rd; Voelzke, B.B.; Erickson, B.A.; McClung, C.D.; Elliott, S.P.; Alsikafi, N.F.; Presson, A.P.; Aberger, M.E.; et al. Intralesional injection of mitomycin-C at transurethral incision of bladder neck contracture may offer limited benefit: TURNS Study Group. J. Urol. 2015, 193, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozanski, A.T.; Zhang, L.T.; Holst, D.D.; Copacino, S.A.; Vanni, A.J.; Buckley, J.C. The Effect of Radiation Therapy on the Efficacy of Internal Urethrotomy With Intralesional Mitomycin C for Recurrent Vesicourethral Anastomotic Stenoses and Bladder Neck Contractures: A Multi-Institutional Experience. Urology 2020, 147, 294–298. [Google Scholar] [CrossRef]
- Vanni, A.J.; Zinman, L.N.; Buckley, J.C. Radial Urethrotomy and Intralesional Mitomycin C for the Management of Recurrent Bladder Neck Contractures. J. Urol. 2011, 186, 156–160. [Google Scholar] [CrossRef]
- Meeks, J.J.; Brandes, S.B.; Morey, A.F.; Thom, M.; Mehdiratta, N.; Valadez, C.; Granieri, M.A.; Gonzalez, C.M. Urethroplasty for Radiotherapy Induced Bulbomembranous Strictures: A Multi-Institutional Experience. J. Urol. 2011, 185, 1761–1765. [Google Scholar] [CrossRef]
- Hofer, M.D.; Zhao, L.C.; Morey, A.F.; Scott, J.F.; Chang, A.J.; Brandes, S.B.; Gonzalez, C.M. Outcomes after Urethroplasty for Radiotherapy Induced Bulbomembranous Urethral Stricture Disease. J. Urol. 2014, 191, 1307–1312. [Google Scholar] [CrossRef]
- Rourke, K.; Kinnaird, A.; Zorn, J. Observations and outcomes of urethroplasty for bulbomembranous stenosis after radiation therapy for prostate cancer. World J. Urol. 2015, 34, 377–382. [Google Scholar] [CrossRef]
- Fuchs, J.S.; Hofer, M.D.; Sheth, K.R.; Cordon, B.H.; Scott, J.M.; Morey, A.F. Improving Outcomes of Bulbomembranous Urethroplasty for Radiation-induced Urethral Strictures in Post-Urolume Era. Urology 2016, 99, 240–245. [Google Scholar] [CrossRef]
- Glass, A.S.; McAninch, J.W.; Zaid, U.B.; Cinman, N.M.; Breyer, B.N. Urethroplasty After Radiation Therapy for Prostate Cancer. Urology 2012, 79, 1402–1406. [Google Scholar] [CrossRef] [Green Version]
- Voelzke, B.B.; Leddy, L.S.; Myers, J.B.; Breyer, B.N.; Alsikafi, N.F.; Broghammer, J.A.; Elliott, S.P.; Vanni, A.J.; Erickson, B.A.; Buckley, J.C.; et al. Multi-institutional outcomes and associations after excision and primary anastomosis for radiotherapy-associated bulbomembranous urethral stenoses following prostate cancer treatment. Urology 2021, 152, 117–122. [Google Scholar] [CrossRef]
- Chung, P.H.; Esposito, P.; Wessells, H.; Voelzke, B.B. Incidence of Stress Urinary Incontinence After Posterior Urethroplasty for Radiation-induced Urethral Strictures. Urology 2018, 114, 188–192. [Google Scholar] [CrossRef]
- Ahyai, S.A.; Schmid, M.; Kuhl, M.; Kluth, L.A.; Soave, A.; Riechardt, S.; Chun, F.K.-H.; Engel, O.; Fisch, M.; Dahlem, R. Outcomes of Ventral Onlay Buccal Mucosa Graft Urethroplasty in Patients after Radiotherapy. J. Urol. 2015, 194, 441–446. [Google Scholar] [CrossRef]
- Policastro, C.G.; Simhan, J.; Martins, F.E.; Lumen, N.; Venkatesan, K.; Angulo, J.C.; Gupta, S.; Rusilko, P.; Pérez, E.A.R.; Redger, K.; et al. A multi-institutional critical assessment of dorsal onlay urethroplasty for post-radiation urethral stenosis. World J. Urol. 2020, 39, 2669–2675. [Google Scholar] [CrossRef]
- Virasoro, R.; Zuckerman, J.M.; McCammon, K.A.; Delong, J.M.; Tonkin, J.B.; Capiel, L.; Rovegno, A.R.; Favre, G.; Giudice, C.R.; Eltahawy, E.A.; et al. International multi-institutional experience with the vessel-sparing technique to reconstruct the proximal bulbar urethra: Mid-term results. World J. Urol. 2015, 33, 2153–2157. [Google Scholar] [CrossRef]
- Vetterlein, M.W.; Kluth, L.A.; Zumstein, V.; Meyer, C.P.; Ludwig, T.A.; Soave, A.; Riechardt, S.; Engel, O.; Dahlem, R.; Fisch, M.; et al. Buccal mucosal graft urethroplasty for radiation-induced urethral strictures: An evaluation using the extended Urethral Stricture Surgery Patient-Reported Outcome Measure (USS PROM). World J. Urol. 2020, 38, 2863–2872. [Google Scholar] [CrossRef] [Green Version]
- Elbakry, A.A.; Pan, M.M.; Buckley, J.C. Frontiers in post-radiation urologic reconstruction; robotic surgery and near-infrared fluorescence imaging: A Narrative Review. AME Med. J. 2022, 7, 7. [Google Scholar] [CrossRef]
- Toia, B.; Seth, J.; Ecclestone, H.; Pakzad, M.; Hamid, R.; Greenwell, T.; Ockrim, J. Outcomes of reconstructive urinary tract surgery after pelvic radiotherapy. Scand. J. Urol. 2019, 53, 156–160. [Google Scholar] [CrossRef]
- Flamiatos, J.F.; Chen, Y.; Lambert, W.E.; Martinez Acevedo, A.; Becker, T.M.; Bash, J.C.; Amling, C.L. Open versus robot-assisted radical cystectomy: 30-day perioperative comparison and predictors for cost-to patient, complication, and read-mission. J. Robot. Surg. 2019, 13, 129–140. [Google Scholar] [CrossRef]
- Khalil, M.I.; Tourchi, A.; Langford, B.T.; Bhandari, N.R.; Payakachat, N.; Davis, R.; Safaan, A.; Raheem, O.A.; Kamel, M.H. Early Postoperative Morbidity of Robotic Versus Open Radical Cystectomy in Obese Patients. J. Endourol. 2020, 34, 461–468. [Google Scholar] [CrossRef]
- Kim, S.; Buckley, J.C. Robotic Lower Urinary Tract Reconstruction. Urol. Clin. N. Am. 2020, 48, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Unterberg, S.H.; Patel, S.H.; Fuller, T.W.; Buckley, J.C. Robotic assisted proximal perineal urethroplasty: Improving visualization and ergonomics. Urology 2019, 125, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Bearrick, E.N.; Findlay, B.L.; Maciejko, L.A.; Hebert, K.J.; Anderson, K.T.; Viers, B.R. Robotic urethral reconstruction out-comes in men with posterior urethral stenosis. Urology 2022, 161, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Kirshenbaum, E.J.; Zhao, L.C.; Myers, J.B.; Elliott, S.P.; Vanni, A.J.; Baradaran, N.; Erickson, B.A.; Buckley, J.C.; Voelzke, B.B.; Granieri, M.A.; et al. Patency and Incontinence Rates After Robotic Bladder Neck Reconstruction for Vesicourethral Anastomotic Stenosis and Recalcitrant Bladder Neck Contractures: The Trauma and Urologic Reconstructive Network of Surgeons Experience. Urology 2018, 118, 227–233. [Google Scholar] [CrossRef]
- Lavollé, A.; de la Taille, A.; Chahwan, C.; Champy, C.M.; Grinholtz, D.; Hoznek, A.; Yiou, R.; Vordos, D.; Ingels, A. Extra-peritoneal robot-assisted vesicourethral reconstruction to manage anastomotic stricture following radical prostatectomy. Urology 2019, 133, 129–134. [Google Scholar] [CrossRef]
- Larjava, H.; Wiebe, C.; Gallant-Behm, C.; Hart, D.A.; Heino, J.; Häkkinen, L. Exploring scarless healing of oral soft tissues. J. Can. Dent. Assoc. 2011, 77, b18. [Google Scholar]
- Chatterjee, A.; Kosmacek, E.A.; Oberley-Deegan, R.E. MnTE-2-PyP treatment, or NOX4 inhibition, protects against radiation-induced damage in mouse primary prostate fibroblasts by inhibiting the TGF-Beta 1 signaling pathway. Radiat. Res. 2017, 187, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Affandi, T.; Ohm, A.M.; Gaillard, D.; Haas, A.; Reyland, M.E. Tyrosine kinase inhibitors protect the salivary gland from radiation damage by increasing DNA double-strand break repair. J. Biol. Chem. 2021, 296, 100401. [Google Scholar] [CrossRef]
- Borab, Z.; Mirmanesh, M.D.; Gantz, M.; Cusano, A.; Pu, L.L. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 529–538. [Google Scholar] [CrossRef]
- Ni, X.; Sun, W.; Sun, S.; Yu, J.; Wang, J.; Nie, B.; Sun, Z.; Ni, X.; Cai, L.; Cao, X. Therapeutic Potential of Adipose Stem Cells in Tissue Repair of Irradiated Skeletal Muscle in a Rabbit Model. Cell. Reprogram. 2014, 16, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, M.R.; Deleon, N.M.D.; Adem, S.; Patel, R.A.; Mascharak, S.; Shen, A.H.; Irizarry, D.; Nguyen, D.; Momeni, A.; Longaker, M.T.; et al. Fat grafting rescues radiation-induced joint contracture. Stem Cells 2019, 38, 382–389. [Google Scholar] [CrossRef]
- Lee, J.; Jang, H.; Park, S.; Myung, H.; Kim, K.; Kim, H.; Jang, W.-S.; Lee, S.-J.; Myung, J.K.; Shim, S. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J. Transl. Med. 2019, 17, 295. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Shim, S.; Jang, H.; Myung, H.; Lee, J.; Bae, C.H.; Myung, J.K.; Kim, M.J.; Lee, S.B.; Jang, W.S.; et al. Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radia-tion-wound healing of mice. Cytotherapy 2017, 19, 1048–1059. [Google Scholar] [CrossRef]
- Liu, B.; Ding, F.-X.; Liu, Y.; Xiong, G.; Lin, T.; He, D.-W.; Zhang, Y.-Y.; Zhang, D.-Y.; Wei, G.-H. Human umbilical cord-derived mesenchymal stem cells conditioned medium attenuate interstitial fibrosis and stimulate the repair of tubular epithelial cells in an irreversible model of unilateral ureteral obstruction. Nephrology 2018, 23, 728–736. [Google Scholar] [CrossRef]
- Sapienza, L.G.; Ning, M.S.; Carvalho, E.D.F.; Spratt, D.; Calsavara, V.F.; McLaughlin, P.W.; Gomes, M.J.L.; Baiocchi, G.; Abu-Isa, E. Efficacy and Incontinence Rates After Urethroplasty for Radiation-induced Urethral Stenosis: A Systematic Review and Meta-analysis. Urology 2021, 152, 109–116. [Google Scholar] [CrossRef]
- Meeks, J.J.; Erickson, B.; Granieri, M.A.; Gonzalez, C.M. Stricture Recurrence After Urethroplasty: A Systematic Review. J. Urol. 2009, 182, 1266–1270. [Google Scholar] [CrossRef]
Score | Grade 0 | Grade 1 | Grade 2 | Grade 3 | |
---|---|---|---|---|---|
Inflammation Score | Skin | No inflammatory infiltrate <2 mast cells | Some inflammatory elements and mast cells | Frequent inflammatory infiltrates | Ubiquitary inflammatory infiltrates |
Muscle | No inflammatory elements | Some inflammatory elements | Frequent inflammatory infiltrates and mast cells | Ubiquitary inflammatory infiltrates | |
Fibrosis Score | Skin | Normal structure | Minor fibrosis with preserved structure | Moderate fibrosis, modification of structure | Major fibrosis, destructuration |
Muscle | Normal structure | Fibrosis equal or <10% of the slide | Fibrosis, equal or <20% of the slide | Fibrosis, >20% of the slide | |
Vascular Score | Vessels | Normal number and aspect of vessels | Diminution of number of vessels and/or moderate vascular damage | Rare vessels and/or moderate vascular damage | No vessels or major alterations (thrombosis, endothelial damage, or diffuse + staining pattern) |
Cellular Alterations Score | Skin | Normal epithelium, presence of fibroblasts and hair cells | Minor thickening of epithelium, rarefaction of fibroblasts, myofibroblasts, some dystrophic nuclei | Moderate thickening of epithelium, necrosis of epithelial cells, rarefaction of fibroblasts, myofibroblasts, frequent dystrophic nuclei | Important thickening of epithelium, frequent necrosis of epithelial cells, rarefaction of fibroblasts, myofibroblasts, dystrophic nuclei |
Muscle | Normal | Some dystrophic nuclei | Dystrophic nuclei, rare aspects of fibrosis | Dystrophic nuclei, fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sterling, J.; Rahman, S.N.; Varghese, A.; Angulo, J.C.; Nikolavsky, D. Complications after Prostate Cancer Treatment: Pathophysiology and Repair of Post-Radiation Urethral Stricture Disease. J. Clin. Med. 2023, 12, 3950. https://doi.org/10.3390/jcm12123950
Sterling J, Rahman SN, Varghese A, Angulo JC, Nikolavsky D. Complications after Prostate Cancer Treatment: Pathophysiology and Repair of Post-Radiation Urethral Stricture Disease. Journal of Clinical Medicine. 2023; 12(12):3950. https://doi.org/10.3390/jcm12123950
Chicago/Turabian StyleSterling, Joshua, Syed N. Rahman, Ajin Varghese, Javier C. Angulo, and Dmitriy Nikolavsky. 2023. "Complications after Prostate Cancer Treatment: Pathophysiology and Repair of Post-Radiation Urethral Stricture Disease" Journal of Clinical Medicine 12, no. 12: 3950. https://doi.org/10.3390/jcm12123950
APA StyleSterling, J., Rahman, S. N., Varghese, A., Angulo, J. C., & Nikolavsky, D. (2023). Complications after Prostate Cancer Treatment: Pathophysiology and Repair of Post-Radiation Urethral Stricture Disease. Journal of Clinical Medicine, 12(12), 3950. https://doi.org/10.3390/jcm12123950