Association between Diabetic Peripheral Neuropathy as Measured Using a Point-of-Care Sural Nerve Conduction Device and Urinary Albumin Excretion in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Data Collection
2.3. Definition of Diabetic Peripheral Neuropathy
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinik, A.I.; Nevoret, M.L.; Casellini, C.; Parson, H. Diabetic neuropathy. Endocrinol. Metab. Clin. North Am. 2013, 42, 747–787. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, D.; Ka, R.D.; Khunti, K.; Davies, M.J.; Scott, A.R.; Walker, J.; Tesfaye, S. Diabetic peripheral neuropathy: Advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019, 7, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Prim. 2019, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfaye, S.; Boulton, A.J.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017, 93, 1296–1313. [Google Scholar] [CrossRef] [Green Version]
- Pelle, M.C.; Provenzano, M.; Busutti, M.; Porcu, C.V.; Zaffina, I.; Stanga, L.; Arturi, F. Up-Date on Diabetic Nephropathy. Life 2022, 12, 1202. [Google Scholar] [CrossRef]
- Tong, P.C.-Y.; Chan, S.C.-P.; Chan, W.-B.; Ho, K.K.-L.; Leung, G.T.-C.; Lo, S.H.-K.; Mak, G.Y.-K.; Tse, T.-S. Consensus Statements from the Diabetologists & Endocrinologists Alliance for the Management of People with Hypertension and Type 2 Diabetes Mellitus. J. Clin. Med. 2023, 12, 3403. [Google Scholar] [CrossRef]
- García-Carro, C.; Vergara, A.; Bermejo, S.; Azancot, M.A.; Sánchez-Fructuoso, A.I.; Sánchez de la Nieta, M.D.; Agraz, I.; Soler, M.J. How to Assess Diabetic Kidney Disease Progression? From Albuminuria to GFR. J. Clin. Med. 2021, 10, 2505. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Lu, J.; Lopes, N.; Jones, T.L.; BARI 2D Investigators. Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the BARI 2D cohort. J. Peripher. Nerv. Syst. 2009, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Perkins, B.A.; Ficociello, L.H.; Silva, K.H.; Finkelstein, D.M.; Warram, J.H.; Krolewski, A.S. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 2003, 348, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 2023, 24, 3554. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; Perkins, B.A. Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care 2002, 25, 2048–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, B.A.; Grewal, J.; Ng, E.; Ngo, M.; Bril, V. Validation of a novel point-of-care nerve conduction device for the detection of diabetic sensorimotor polyneuropathy. Diabetes Care 2006, 29, 2023–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, J.; Frank, B.; Marshall, A.; Khalil, R.S.; Ponirakis, G.; Petropoulos, I.N.; Cuthbertson, D.J.; Malik, R.A.; Alam, U. Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics 2021, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Himeno, T.; Kamiya, T.; Tani, H.; Nakayama, T.; Kojima, C.; Sugiura-Roth, Y.; Naito, E.; Kondo, M.; Tsunekawa, S.; et al. Validity and reliability of a point-of-care nerve conduction device in diabetes patients. J. Diabetes Investig. 2019, 10, 1291–1298. [Google Scholar] [CrossRef]
- Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Horio, M.; Imai, E.; Yasuda, Y.; Watanabe, T.; Matsuo, S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: Accuracy and use for population estimates. Am. J. Kidney Dis. 2010, 56, 32–38. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Hirayasu, K.; Sasaki, H.; Kishimoto, S.; Kurisu, S.; Noda, K.; Ogawa, K.; Tanaka, H.; Sakakibara, Y.; Matsuno, S.; Furuta, H.; et al. Difference in normal limit values of nerve conduction parameters between Westerners and Japanese people might need to be considered when diagnosing diabetic polyneuropathy using a Point-of-Care Sural Nerve Conduction Device (NC-stat®/DPNCheck™). J. Diabetes Investig. 2018, 9, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Himeno, T.; Kamiya, H.; Nakamura, J. Lumos for the long trail: Strategies for clinical diagnosis and severity staging for diabetic polyneuropathy and future directions. J. Diabetes Investig. 2020, 11, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matoba, K.; Takeda, Y.; Nagai, Y.; Kawanami, D.; Utsunomiya, K.; Nishimura, R. Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease. Int. J. Mol. Sci. 2019, 20, 3393. [Google Scholar] [CrossRef] [Green Version]
- Yamagishi, S.; Imaizumi, T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des. 2005, 11, 2279–2299. [Google Scholar] [CrossRef]
- Vlassara, H.; Uribarri, J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diabetes Rep. 2014, 14, 453. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, I.N.; Ponirakis, G.; Khan, A.; Almuhannadi, H.; Gad, H.; Malik, R.A. Diagnosing Diabetic Neuropathy: Something Old, Something New. Diabetes Metab. J. 2018, 42, 255–269. [Google Scholar] [CrossRef]
- Fernández-Torres, R.; Ruiz-Muñoz, M.; Pérez-Panero, A.J.; García-Romero, J.; Gónzalez-Sánchez, M. Instruments of Choice for Assessment and Monitoring Diabetic Foot: A Systematic Review. J. Clin. Med. 2020, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Dyck, P.J.; Overland, C.J.; Low, P.A.; Litchy, W.J.; Davies, J.L.; Dyck, P.J.; O’Brien, P.C. Cl vs. NPhys Trial Investigators; Albers, J.W.; Andersen, H.; et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve 2010, 42, 157–164. [Google Scholar] [CrossRef] [Green Version]
- England, J.D.; Gronseth, G.S.; Franklin, G.; Carter, G.T.; Kinsella, L.J.; Cohen, J.A.; Asbury, A.K.; Szigeti, K.; Lupski, J.R.; Latov, N.; et al. Practice Parameter: Evaluation of distal symmetric polyneuropathy: Role of laboratory and genetic testing (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 2009, 72, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Perkins, B.A.; Olaleye, D.; Zinman, B.; Bril, V. Simple screening tests for peripheral neuropathy in the diabetes clinic. Diabetes Care 2001, 24, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, R.A.; Tesfaye, S.; Newrick, P.G.; Walker, D.; Rajbhandari, S.M.; Siddique, I.; Sharma, A.K.; Boulton, A.J.; King, R.H.; Thomas, P.K.; et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 2005, 48, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Halpern, E.M.; Lovblom, L.E.; Yeung, E.; Bril, V.; Perkins, B.A. Reliability and validity of a point-of-care sural nerve conduction device for identification of diabetic neuropathy. PLoS ONE 2014, 9, e86515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kärvestedt, L.; Mårtensson, E.; Grill, V.; Elofsson, S.; von Wendt, G.; Hamsten, A.; Brismar, K. Peripheral sensory neuropathy associates with micro- or macroangiopathy: Results from a population-based study of type 2 diabetic patients in Sweden. Diabetes Care 2009, 32, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Fu, C.; Wang, W.; Xu, B. Prevalence of chronic complications of type 2 diabetes mellitus in outpatients—A cross-sectional hospital based survey in urban China. Health Qual. Life Outcomes 2010, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- De Ritter, R.; Sep, S.J.S.; van der Kallen, C.J.H.; van Greevenbroek, M.M.J.; de Jong, M.; Vos, R.C.; Bots, M.L.; Reulen, J.P.H.; Houben, A.J.H.M.; Webers, C.A.B.; et al. Sex differences in the association of prediabetes and type 2 diabetes with microvascular complications and function: The Maastricht Study. Cardiovasc. Diabetol. 2021, 20, 102. [Google Scholar] [CrossRef]
- Seghieri, G.; Franconi, F.; Campesi, I. Why We Need Sex-Gender Medicine: The Striking Example of Type 2 Diabetes. Diabetology 2022, 3, 460–469. [Google Scholar] [CrossRef]
- Sempere-Bigorra, M.; Julián-Rochina, I.; Cauli, O. Differences and Similarities in Neuropathy in Type 1 and 2 Diabetes: A Systematic Review. J. Pers. Med. 2021, 11, 230. [Google Scholar] [CrossRef]
- Wartling, O.; Yang, Y.; Clase, C.M.; Fu, E.L.; Hecking, M.; Hödlmoser, S.; Trolle-Lagerros, Y.; Evans, M.; Carrero, J.J. Sex Differences in the Recognition, Monitoring, and Management of CKD in Health Care: An Observational Cohort Study. J. Am. Soc. Nephrol. 2022, 33, 1903–1914. [Google Scholar] [CrossRef]
Patients without DPN-Check®-Determined DPN | Patients with DPN-Check®-Determined DPN | p Value | |
---|---|---|---|
n = 165 | n = 158 | ||
Clinical characteristics at baseline | |||
Age, y | 66.3 ± 11.9 | 66.0 ± 14.1 | 0.849 |
Male sex | 119 (72) | 113 (72) | 0.904 |
Body mass index, kg/m2 | 24.3 ± 3.5 | 25.7 ± 4.9 | 0.002 |
Current smoker | 29 (18) | 37 (23) | 0.904 |
Duration of diabetes | 10.8 ± 8.9 | 14.6 ± 12.2 | 0.193 |
Comorbidities, n (%) | |||
CVD | 19 (12) | 44 (28) | <0.001 |
SDR | 13 (8) | 32 (20) | 0.001 |
PDR | 11 (7) | 35 (22) | 0.001 |
Baseline medications, n (%) | |||
Insulin | 37 (22) | 73 (46) | <0.001 |
Sulfonylureas | 9 (5) | 12 (8) | 0.502 |
Metformins | 106 (64) | 84 (53) | 0.043 |
Alpha-Gis | 10 (6) | 13 (8) | 0.449 |
Glinides | 18 (11) | 16 (10) | 0.858 |
TZDs | 1 (1) | 8 (5) | 0.015 |
DPP4 inhibitors | 66 (40) | 59 (37) | 0.624 |
SGLT2 inhibitors | 80 (48) | 78 (49) | 0.874 |
GLP1-Ras | 42 (25) | 46 (29) | 0.460 |
Imeglimin | 0 (0) | 5 (3) | 0.027 |
ARBs | 65 (39) | 74 (47) | 0.177 |
CCBs | 51 (31) | 55 (35) | 0.455 |
Alpha blockers | 1 (1) | 2 (1) | 0.537 |
Beta blockers | 15 (9) | 28 (18) | 0.032 |
Diuretics | 11 (7) | 19 (12) | 0.125 |
Statins | 95 (58) | 94 (59) | 0.811 |
Fibrates | 5 (3) | 13 (8) | 0.052 |
Ezetimib | 22 (13) | 29 (18) | 0.226 |
EPAs | 8 (5) | 8 (5) | 0.929 |
UA lowering agents | 19 (12) | 16 (10) | 0.688 |
Anti-platelet agents | 22 (13) | 44 (28) | 0.001 |
Laboratory parameters at admission | |||
HbA1c (%) | 7.2 (6.7–8.1) | 7.4 (6.8–8.6) | 0.982 |
Triglycerides (mg/dL) | 138 (89–194) | 129 (93–210) | 0.888 |
HDL cholesterol (mg/dL) | 53 (43–65) | 48 (41–60) | 0.042 |
LDL cholesterol (mg/dL) | 100 (78–120) | 97 (74–115) | 0.197 |
AST (IU/L) | 20 (17–27) | 20 (16–26) | 0.761 |
ALT (IU/L) | 20 (14–29) | 18 (13–28) | 0.255 |
Gamma-GTP (IU/L) | 24 (14–45) | 18 (13–28) | 0.906 |
UA (mg/dL) | 5.0 (4.4–6.0) | 5.5 (4.5–6.4) | 0.113 |
ACR (mg/g) (median) | 15.7 (6.9–52.8) | 34.9 (11.0–153.0) | <0.001 |
ACR (mg/g) (mean) | 99.2 ± 390.9 | 339.2 ± 1034.3 | 0.006 |
Microalbuminuria (%) | 47 (28) | 52 (33) | 0.384 |
Microalbuminuria (%) | 11 (7) | 32 (20) | <0.001 |
eGFR (mL/min/1.73 m2) | 71 (60–80) | 68 (50–80) | 0.175 |
G1 | 13 (8) | 15 (9) | 0.616 |
G2 | 111 (67) | 89 (56) | 0.429 |
G3a | 27 (16) | 21 (13) | 0.433 |
G3b | 9 (5) | 23 (15) | 0.006 |
G4 | 5 (3) | 10 (6) | 0.159 |
Physiological testing | |||
SBP (mmHg) | 128 ± 16 | 131 ± 22 | 0.142 |
DBP (mmHg) | 73 ± 11 | 75 ± 15 | 0.161 |
CV (m/s) | 54.5 (51.5–57.5) | 29.5 (22.6–48.5) | <0.001 |
AMP (µV) | 10.0 (7.0–13.0) | 3.5 (2.0–5.3) | <0.001 |
CVR-R (%) | 1.9 (1.4–3.0) | 1.8 (1.1–2.7) | 0.042 |
baPWV (cm/s) | 1632 (1429–1932) | 1628 (1427–1946) | 0.948 |
Simplified diagnostic criteria-determined DPN | 73 (44) | 85 (54) | 0.164 |
Symptom of DPN | 62 (38) | 95 (60) | 0.259 |
Diminished Achilles tendon reflexes | 86 (52) | 72 (46) | 0.163 |
Diminished vibratory sensation | 84 (51) | 74 (47) | <0.001 |
Total Patients (n = 323) | Male (n = 232) | Female (n = 91) | ||||
---|---|---|---|---|---|---|
Standardized β | p Value | Standardized β | p Value | Standardized β | p Value | |
Univariate model | (Adjusted R2 = 0.055) | (Adjusted R2 = 0.046) | (Adjusted R2 = 0.089) | |||
DPN-Check®-determined DPN | 0.235 | <0.001 | 0.215 | 0.001 | 0.299 | 0.004 |
Age and Gender adjusted model | (Adjusted R2 = 0.063) | (Adjusted R2 = 0.047) | (Adjusted R2 = 0.026) | |||
DPN-Check®-determined DPN | 0.236 | <0.001 | 0.215 | 0.001 | 0.332 | 0.001 |
Age | 0.078 | 0.149 | 0.004 | 0.780 | 0.281 | 0.005 |
Male sex | 0.038 | 0.481 | NA | NA | ||
Multivariate model | (Adjusted R2 = 0.338) | (Adjusted R2 = 0.347) | (Adjusted R2 = 0.438) | |||
DPN-Check®-determined DPN | 0.123 | 0.012 | 0.085 | 0.145 | 0.214 | 0.010 |
eGFR | −0.319 | <0.001 | −0.332 | <0.001 | NA | |
TG | 0.209 | <0.001 | 0.235 | <0.001 | NA | |
PDR | 0.127 | 0.010 | 0.136 | 0.020 | NA | |
SBP | 0.155 | 0.001 | 0.157 | 0.005 | NA | |
Statins | 0.100 | 0.033 | NA | NA | NA | |
GLP1-Ras | 0.116 | 0.015 | 0.142 | 0.012 | NA | |
UA-lowering agents | NA | NA | 0.269 | 0.001 | ||
Insulin use | 0.143 | 0.004 | 0.125 | 0.034 | ||
Beta blockers | NA | NA | 0.166 | 0.053 | ||
CVR-R | NA | NA | −0.141 | 0.049 | ||
Duration of diabetes | NA | NA | 0.380 | <0.001 |
Total Patients (n = 323) | ||
---|---|---|
Standardized β | p Value | |
Univariate model | (Adjusted R2 = 0.056) | |
Abnormal CV | 0.162 | 0.018 |
Abnormal AMP | 0.101 | 0.139 |
Age- and Gender-adjusted model | (Adjusted R2 = 0.063) | |
Abnormal CV | 0.150 | 0.029 |
Abnormal AMP | 0.113 | 0.100 |
Age | 0.069 | 0.403 |
Male sex | 0.046 | 0.403 |
Multivariate model | (Adjusted R2 = 0.346) | |
Abnormal CV | 0.128 | 0.022 |
Abnormal AMP | 0.023 | 0.670 |
eGFR | −0.310 | <0.001 |
TG | 0.202 | <0.001 |
PDR | 0.129 | 0.008 |
SBP | 0.154 | <0.001 |
Statins | 0.095 | 0.044 |
GLP1-Ras | 0.110 | 0.021 |
Insulin use | 0.137 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuda, T.; Fujii, A.; Akihisa, T.; Otsubo, N.; Murakami, M.; Yamada, T.; Maki, C. Association between Diabetic Peripheral Neuropathy as Measured Using a Point-of-Care Sural Nerve Conduction Device and Urinary Albumin Excretion in Patients with Type 2 Diabetes. J. Clin. Med. 2023, 12, 4089. https://doi.org/10.3390/jcm12124089
Fukuda T, Fujii A, Akihisa T, Otsubo N, Murakami M, Yamada T, Maki C. Association between Diabetic Peripheral Neuropathy as Measured Using a Point-of-Care Sural Nerve Conduction Device and Urinary Albumin Excretion in Patients with Type 2 Diabetes. Journal of Clinical Medicine. 2023; 12(12):4089. https://doi.org/10.3390/jcm12124089
Chicago/Turabian StyleFukuda, Tatsuya, Akiko Fujii, Taro Akihisa, Naoya Otsubo, Masanori Murakami, Tetsuya Yamada, and Chisato Maki. 2023. "Association between Diabetic Peripheral Neuropathy as Measured Using a Point-of-Care Sural Nerve Conduction Device and Urinary Albumin Excretion in Patients with Type 2 Diabetes" Journal of Clinical Medicine 12, no. 12: 4089. https://doi.org/10.3390/jcm12124089
APA StyleFukuda, T., Fujii, A., Akihisa, T., Otsubo, N., Murakami, M., Yamada, T., & Maki, C. (2023). Association between Diabetic Peripheral Neuropathy as Measured Using a Point-of-Care Sural Nerve Conduction Device and Urinary Albumin Excretion in Patients with Type 2 Diabetes. Journal of Clinical Medicine, 12(12), 4089. https://doi.org/10.3390/jcm12124089