Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karami, J.; Aslani, S.; Jamshidi, A.; Garshasbi, M.; Mahmoudi, M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 2019, 702, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Omair, M.A.; Erdogan, A.; Tietz, N.; Alten, R. Physical and Emotional Burden of Rheumatoid Arthritis in Saudi Arabia: An Exploratory Cross-Sectional Study. Open Access Rheumatol. Res. Rev. 2020, 12, 337–345. [Google Scholar] [CrossRef]
- El-Gabalawy, H.S.; Robinson, D.B.; Daha, N.A.; Oen, K.G.; Smolik, I.; Elias, B.; Hart, D.; Bernstein, C.N.; Sun, Y.; Lu, Y.; et al. Non-HLA genes modulate the risk of rheumatoid arthritis associated with HLA-DRB1 in a susceptible North American Native population. Genes Immun. 2011, 12, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Shi, C.; Bowes, J.; Eyre, S.; Orozco, G. Exploring the overlap between rheumatoid arthritis susceptibility loci and long non-coding RNA annotations. PLoS ONE 2020, 15, e0223939. [Google Scholar] [CrossRef] [Green Version]
- Viatte, S.; Barton, A. Genetics of rheumatoid arthritis susceptibility, severity, and treatment response. Semin. Immunopathol. 2017, 39, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Stahl, E.A.; Raychaudhuri, S.; Remmers, E.F.; Xie, G.; Eyre, S.; Thomson, B.P.; Li, Y.; Kurreeman, F.A.S.; Zhernakova, A.; Hinks, A.; et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 2010, 42, 508–514. [Google Scholar] [CrossRef]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014, 506, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Viatte, S.; Plant, D.; Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 2013, 9, 141–153. [Google Scholar] [CrossRef]
- Laufer, V.A.; Tiwari, H.K.; Reynolds, R.J.; Danila, M.I.; Wang, J.; Edberg, J.C.; Kimberly, R.; Kottyan, L.C.; Harley, J.B.; Mikuls, T.R.; et al. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum. Mol. Genet. 2019, 28, 858–874. [Google Scholar] [CrossRef]
- Yamamoto, K.; Okada, Y.; Suzuki, A.; Kochi, Y. Genetic studies of rheumatoid arthritis. Proc. Jpn. Acad. Ser. B 2015, 91, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Eyre, S.; Suzuki, A.; Kochi, Y.; Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 2018, 78, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Luan, M.; Shang, Z.; Duan, L.; Tang, G.; Shi, M.; Lv, W.; Zhu, H.; Li, J.; Lv, H.; et al. RADB: A database of rheumatoid arthritis-related polymorphisms. Database 2014, 2014, bau090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, I.-M.; Ketharnathan, S.; Thiruvengadam, M.; Rajakumar, G. Rheumatoid Arthritis: The Stride from Research to Clinical Practice. Int. J. Mol. Sci. 2016, 17, 900. [Google Scholar] [CrossRef] [PubMed]
- Kurkó, J.; Besenyei, T.; Laki, J.; Glant, T.T.; Mikecz, K.; Szekanecz, Z. Genetics of Rheumatoid Arthritis—A Comprehensive Review. Clin. Rev. Allergy Immunol. 2013, 45, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Diogo, D.; Kurreeman, F.; Stahl, E.A.; Liao, K.P.; Gupta, N.; Greenberg, J.D.; Rivas, M.A.; Hickey, B.; Flannick, J.; Thomson, B.; et al. Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological Candidate Genes from GWASs Contribute to Risk of Rheumatoid Arthritis. Am. J. Hum. Genet. 2012, 92, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Kochi, Y.; Suzuki, A.; Yamada, R.; Yamamoto, K. Genetics of rheumatoid arthritis: Underlying evidence of ethnic differences. J. Autoimmun. 2009, 32, 158–162. [Google Scholar] [CrossRef]
- Knevel, R.; de Rooy, D.P.C.; Zhernakova, A.; Gröndal, G.; Krabben, A.; Steinsson, K.; Wijmenga, C.; Cavet, G.; Toes, R.E.M.; Huizinga, T.W.J.; et al. Association of Variants in IL2RA With Progression of Joint Destruction in Rheumatoid Arthritis. Arthritis Rheum. 2013, 65, 1684–1693. [Google Scholar] [CrossRef]
- Toonen, E.J.; Barrera, P.; Fransen, J.; de Brouwer, A.P.; Eijsbouts, A.M.; Miossec, P.; Marotte, H.; Scheffer, H.; van Riel, P.L.; Franke, B.; et al. Meta-analysis identified the TNFA -308G > A promoter polymorphism as a risk factor for disease severity in patients with rheumatoid arthritis. Thromb. Haemost. 2012, 14, R264. [Google Scholar] [CrossRef] [Green Version]
- Macgregor, A.J.; Bamber, S.; Carthy, D.; Vencovsky, J.; Mageed, R.A.; Ollier, W.E.R.; Silman, A.J. Heterogeneity of disease phenotype in monozygotic twins concordant for rheumatoid arthritis. Rheumatology 1995, 34, 215–220. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef]
- Van Riel, P.L.; Renskers, L. The Disease Activity Score (DAS) and the Disease Activity Score using 28 joint counts (DAS28) in the management of rheumatoid arthritis. Clin. Exp. Rheumatol. 2016, 34 (Suppl. S101), S40–S44. [Google Scholar] [PubMed]
- Plant, D.; Flynn, E.; Mbarek, H.; Dieudé, P.; Cornelis, F.; Ärlestig, L.; Dahlqvist, S.R.; Goulielmos, G.; Boumpas, D.T.; Sidiropoulos, P.; et al. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers. Ann. Rheum. Dis. 2010, 69, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- Al Barashdi, M.A.; Ali, A.; McMullin, M.F.; Mills, K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J. Clin. Pathol. 2021, 74, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, S.; BIRAC Consortium; Thomson, B.P.; Remmers, E.F.; Eyre, S.; Hinks, A.; Guiducci, C.; Catanese, J.J.; Xie, G.; Stahl, E.A.; et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 2009, 41, 1313–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, L.B.; Reynolds, R.J.; Brown, E.E.; Kelley, J.M.; Thomson, B.; Conn, D.L.; Jonas, B.L.; Westfall, A.O.; Padilla, M.A.; Callahan, L.F.; et al. Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans. Arthritis Rheum. 2010, 62, 3547–3553. [Google Scholar] [CrossRef] [Green Version]
- Hinks, A.; Cobb, J.; Sudman, M.; Eyre, S.; Martin, P.; Flynn, E.; Packham, J.; Childhood Arthritis Prospective Study (CAPS); UK RA Genetics (UKRAG) Consortium; British Society of Paediatric and Adolescent Rheumatology (BSPAR) Study Group; et al. Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap. Ann. Rheum. Dis. 2012, 71, 1117–1121. [Google Scholar] [CrossRef]
- Viatte, S.; Plant, D.; Bowes, J.; Lunt, M.; Eyre, S.; Barton, A.; Worthington, J. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 2012, 71, 1984–1990. [Google Scholar] [CrossRef]
- Cui, J.; Saevarsdottir, S.; Thomson, B.; Padyukov, L.; Mil, A.H.M.v.d.H.-V.; Nititham, J.; Hughes, L.B.; de Vries, N.; Raychaudhuri, S.; Alfredsson, L.; et al. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor alpha therapy. Arthritis Rheum. 2010, 62, 1849–1861. [Google Scholar] [CrossRef] [Green Version]
- Plant, D.; Prajapati, R.; Hyrich, K.L.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; Barton, A. Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate Replication of association of the PTPRC gene with response to anti-tumor necrosis factor therapy in a large UK cohort. Arthritis Rheum. 2012, 64, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.M.; John, P.; Fan, K.-H.; Bhatti, A.; Aziz, W.; Ahmed, B.; Feingold, E.; Demirci, F.Y.; Kamboh, M.I. Investigating the GWAS-Implicated Loci for Rheumatoid Arthritis in the Pakistani Population. Dis. Markers 2020, 2020, 1910215. [Google Scholar] [CrossRef]
- van der Helm-van Mil, A.H.; Toes, R.E.; Huizinga, T.W. Genetic variants in the prediction of rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 1694–1696. [Google Scholar] [CrossRef] [PubMed]
- Luterek-Puszyńska, K.; Malinowski, D.; Paradowska-Gorycka, A.; Safranow, K.; Pawlik, A. CD28, CTLA-4 and CCL5 gene polymorphisms in patients with rheumatoid arthritis. Clin. Rheumatol. 2017, 36, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Vernerova, L.; Spoutil, F.; Vlcek, M.; Krskova, K.; Penesova, A.; Meskova, M.; Marko, A.; Raslova, K.; Vohnout, B.; Rovensky, J.; et al. A Combination of CD28 (rs1980422) and IRF5 (rs10488631) Polymorphisms Is Associated with Seropositivity in Rheumatoid Arthritis: A Case Control Study. PLoS ONE 2016, 11, e0153316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Yang, Z.; Chen, Y.; Yang, H.; Wan, X.; Zhou, X.; Liu, R.; Zhang, Y. The Association Between CTLA-4, CD80/86, and CD28 Gene Polymorphisms and Rheumatoid Arthritis: An Original Study and Meta-Analysis. Front. Med. 2021, 8, 598076. [Google Scholar] [CrossRef] [PubMed]
- Kelley, J.M.; Hughes, L.B.; Faggard, J.D.; Danila, M.I.; Crawford, M.H.; Edberg, Y.; Padilla, M.A.; Tiwari, H.K.; Westfall, A.O.; Alarcón, G.S.; et al. An African ancestry-specific allele of CTLA4 confers protection against rheumatoid arthritis in African Americans. PLoS Genet. 2009, 5, e1000424. [Google Scholar] [CrossRef] [PubMed]
- Karlson, E.W.; Chibnik, L.B.; Cui, J.; Plenge, R.M.; Glass, R.J.; Maher, N.E.; Parker, A.; Roubenoff, R.; Izmailova, E.; Coblyn, J.S.; et al. Associations between Human leukocyte antigen, PTPN22, CTLA4 genotypes and rheumatoid arthritis phenotypes of autoantibody status, age at diagnosis and erosions in a large cohort study. Ann. Rheum. Dis. 2007, 67, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Costenbader, K.H.; Chang, S.-C.; De Vivo, I.; Plenge, R.; Karlson, E.W. Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: Evidence of gene-environment interactions with heavy cigarette smoking. Thromb. Haemost. 2008, 10, R52. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Fan, G.; Dai, Y.; Zeng, T.; Xiao, F.; Chen, L.; Kong, W. Association between rs3087243 and rs231775 polymorphism within the cytotoxic T-lymphocyte antigen 4 gene and Graves’ disease: A case/control study combined with meta-analyses. Oncotarget 2017, 8, 110614–110624. [Google Scholar] [CrossRef] [Green Version]
- Hegab, M.M.; Abdelwahab, A.F.; Yousef, A.M.E.-S.; Salem, M.N.; El-Baz, W.; Abdelrhman, S.; Elshabacy, F.; Alhefny, A.; Abouraya, W.; Ibrahim, S.M.; et al. CD28 and PTPN22 are associated with susceptibility to rheumatoid arthritis in Egyptians. Hum. Immunol. 2016, 77, 522–526. [Google Scholar] [CrossRef]
- Pappas, D.A.; Oh, C.; Plenge, R.M.; Kremer, J.M.; Greenberg, J.D. Association of Rheumatoid Arthritis Risk Alleles with Response to Anti-TNF Biologics: Results from the CORRONA Registry and Meta-analysis. Inflammation 2013, 36, 279–284. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Leng, S.; Xu, Q.; Sheng, Z.; Zhang, Y.; Yu, J.; Feng, Q.; Hou, M.; Peng, J.; et al. Immune Checkpoint-Related Gene Polymorphisms Are Associated With Primary Immune Thrombocytopenia. Front. Immunol. 2021, 11, 615941. [Google Scholar] [CrossRef]
- Yasutomi, M.; Christiaansen, A.F.; Imai, N.; Martin-Orozco, N.; Forst, C.V.; Chen, G.; Ueno, H. CD226 and TIGIT Cooperate in the Differentiation and Maturation of Human Tfh Cells. Front. Immunol. 2022, 13, 840457. [Google Scholar] [CrossRef] [PubMed]
- Elghzaly, A.A.; Metwally, S.S.; El-Chennawi, F.A.; Elgayaar, M.A.; Mosaad, Y.M.; El-Toraby, E.E.; Hegab, M.M.; Ibrahim, S.M. IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta. Relat. Other Ethn. Groups Hum Immunol. 2015, 76, 525–531. [Google Scholar]
- Wang, M.J.; Yang, H.Y.; Zhang, H.; Zhou, X.; Liu, R.P.; Mi, Y.Y. TNFAIP3 gene rs10499194, rs13207033 polymorphisms decrease the risk of rheumatoid arthritis. Oncotarget 2016, 7, 82933–82942. [Google Scholar] [CrossRef] [Green Version]
- Patsopoulos, N.A.; A Ioannidis, J.P. Susceptibility variants for rheumatoid arthritis in the TRAF1-C5 and 6q23 loci: A meta-analysis. Ann. Rheum. Dis. 2010, 69, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Bae, S.-C.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between TNFAIP3 gene polymorphisms and rheumatoid arthritis: A meta-analysis. Inflamm. Res. 2012, 61, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Shimane, K.; Kochi, Y.; Horita, T.; Ikari, K.; Amano, H.; Hirakata, M.; Okamoto, A.; Yamada, R.; Myouzen, K.; Suzuki, A.; et al. The association of a non-synonymous SNP in the TNFAIP3 gene with systemic lupus erythematosus and rheumatoid arthritis in the Japanese population. Arthritis Rheum. 2010, 62, 574–579. [Google Scholar] [CrossRef]
- Plenge, R.M.; Cotsapas, C.; Davies, L.; Price, A.L.; Bakker, P.I.W.d.; Maller, J.; Pe’Er, I.; Burtt, N.P.; Blumenstiel, B.; DeFelice, M.; et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 2007, 39, 1477–1482. [Google Scholar] [CrossRef] [Green Version]
- Perdigones, N.; Lamas, J.R.; Vigo, A.G.; de la Concha, E.G.; Jover, J.A.; Urcelay, E.; Gutierrez, B.F.; Martinez, A. 6q23 polymorphisms in rheumatoid arthritis Spanish patients. Rheumatology 2009, 48, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Scherer, H.U.; van der Linden, M.P.M.; Kurreeman, F.A.S.; Stoeken-Rijsbergen, G.; le Cessie, S.; Huizinga, T.W.J.; Mil, A.H.v.d.H.-V.; Toes, R.E.M. Association of the 6q23 region with the rate of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 567–570. [Google Scholar] [CrossRef]
- Stark, K.; Rovensky, J.; Blazickova, S.; Grosse-Wilde, H.; Ferencik, S.; Hengstenberg, C.; Straub, R.H. Association of common polymorphisms in known susceptibility genes with rheumatoid arthritis in a Slovak population using osteoarthritis patients as controls. Arthritis Res. Ther. 2009, 11, R70. [Google Scholar] [CrossRef] [Green Version]
- Orozco, G.; Hinks, A.; Eyre, S.; Ke, X.; Gibbons, L.J.; Bowes, J.; Flynn, E.; Martin, P.; Wellcome Trust Case Control Consortium; YEAR consortium; et al. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum. Mol. Genet. 2009, 18, 2693–2699. [Google Scholar] [CrossRef] [Green Version]
- Prahalad, S.; Hansen, S.; Whiting, A.; Guthery, S.L.; Clifford, B.; McNally, B.; Zeft, A.S.; Bohnsack, J.F.; Jorde, L.B. Variants in TNFAIP3, STAT4, and C12orf30 loci associated with multiple autoimmune diseases are also associated with juvenile idiopathic arthritis. Arthritis Rheum. 2009, 60, 2124–2130. [Google Scholar] [CrossRef] [Green Version]
- Prahalad, S.; Conneely, K.N.; Jiang, Y.; Sudman, M.; Wallace, C.A.; Brown, M.R.; Ponder, L.A.; Rohani-Pichavant, M.; Zwick, M.E.; Cutler, D.J.; et al. Brief Report: Susceptibility to Childhood-Onset Rheumatoid Arthritis: Investigation of a Weighted Genetic Risk Score That Integrates Cumulative Effects of Variants at Five Genetic Loci. Arthritis Rheum. 2013, 65, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Plenge, R.M. Recent progress in rheumatoid arthritis genetics: One step towards improved patient care. Curr. Opin. Rheumatol. 2009, 21, 262–271. [Google Scholar] [CrossRef]
- Elliott, M.; Maini, R.; Feldmann, M.; Kalden, J.; Antoni, C.; Smolen, J.; Leeb, B.; Breedveld, F.; Macfarlane, J.; Bijl, J.; et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 1994, 344, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, W.; Zhang, X.; Zhao, L.; Zhang, X.; Jiang, L.; Guo, Y.; Zhang, J.; Liang, Z.; Wang, X. Single nucleotide polymorphisms in TNFAIP3 were associated with the risks of rheumatoid arthritis in northern Chinese Han population. BMC Med. Genet. 2014, 15, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, E.; Cao, H.; Lin, L.; Liu, H. rs10499194 polymorphism in the tumor necrosis factor-α inducible protein 3 (TNFAIP3) gene is associated with type-1 autoimmune hepatitis risk in Chinese Han population. PLoS ONE 2017, 12, e0176471. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, X.; Wu, M.; Ma, Y.; Zhang, X.; Chen, M.; Yuan, Y.; Han, R.; Liu, R.; Guan, S.; et al. TNFAIP3 genetic polymorphisms reduce ankylosing spondylitis risk in Eastern Chinese Han population. Sci. Rep. 2019, 9, 10209. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ma, S.; Shao, L.; Ma, C.; Gao, C.; Zhang, X.-H.; Hou, M.; Peng, J. Inflammation-Related Gene Polymorphisms Associated With Primary Immune Thrombocytopenia. Front. Immunol. 2017, 8, 744. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, Q.; Hou, S.; Du, L.; Zhou, Q.; Zhou, Y.; Kijlstra, A.; Li, Z.; Yang, P. TNFAIP3 gene polymorphisms confer risk for Behcet’s disease in a Chinese Han population. Hum. Genet. 2013, 132, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Mungall, A.J.; Palmer, S.A.; Sims, S.K.; Edwards, C.A.; Ashurst, J.L.; Wilming, L.; Jones, M.C.; Horton, R.; Hunt, S.E.; Scott, C.E.; et al. Faculty Opinions recommendation of The DNA sequence and analysis of human chromosome 6. Nature 2003, 425, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Tamehiro, N.; Nishida, K.; Yanobu-Takanashi, R.; Goto, M.; Okamura, T.; Suzuki, H. T-cell activation RhoGTPase-activating protein plays an important role in TH17-cell differentiation. Immunol. Cell Biol. 2017, 95, 729–735. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, S.; Bowes, J.; Diogo, D.; Lee, A.; Barton, A.; Martin, P.; Zhernakova, A.; Stahl, E.; Viatte, S.; McAllister, K.; et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012, 44, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Askling, J.; Saevarsdottir, S.; Padyukov, L.; Alfredsson, L.; Viatte, S.; Frisell, T. A genetic risk score composed of rheumatoid arthritis risk alleles, HLA-DRB1 haplotypes, and response to TNFi therapy—Results from a Swedish cohort study. Thromb. Haemost. 2016, 18, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, M.; Bhatti, A.; John, P. Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS ONE 2018, 13, e0188143. [Google Scholar] [CrossRef] [Green Version]
- Remmers, E.F.; Plenge, R.M.; Lee, A.T.; Graham, R.R.; Hom, G.; Behrens, T.W.; de Bakker, P.I.; Le, J.M.; Lee, H.-S.; Batliwalla, F.; et al. STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus. New Engl. J. Med. 2007, 357, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korczowska, I. Rheumatoid arthritis susceptibility genes: An overview. World J. Orthop. 2014, 5, 544–549. [Google Scholar] [CrossRef]
- Chatzikyriakidou, A.; Voulgari, P.V.; Lambropoulos, A.; Drosos, A.A. Genetics in rheumatoid arthritis beyond HLA genes: What meta-analyses have shown? Semin. Arthritis Rheum. 2013, 43, 29–38. [Google Scholar] [CrossRef]
- Raychaudhuri, S.; Remmers, E.F.; Lee, A.T.; Hackett, R.; Guiducci, C.; Burtt, N.P.; Gianniny, L.; Korman, B.D.; Padyukov, L.; Kurreeman, F.A.S.; et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 2008, 40, 1216–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, M.N.; Mabrouk, M.S.; Eldeib, A.M.; Shaker, O.G. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis. J. Adv. Res. 2015, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SNP | Chromosome/Position | Gene | Mutation | Minor Allele | Location | |
---|---|---|---|---|---|---|
1 | rs11586238 | 1:116720516 | None | [C>G] | G | - |
2 | rs1188934 | 1:90839539 | LINC02609 | [A>G] A>C | G | ntron_variant, genic_upstream transcript_variant |
3 | rs2240340 | 1:17336144 | PADI4 | C>T | T | (intron variant) |
4 | rs2476601 | 1:113834946 | PTPN22 AP4B1-AS1; | [A>T] G | A | Missence variant Intron variant |
5 | rs10919563 | 1:198731313 | PTPRC | [A>G] | A | Intron variant |
6 | rs3766379 | 1:160837925 | CD244 | [C/T] | T | Intron variant |
7 | rs3890745 | 1:2622185 | MMEL1 | [A>G] T/C | C | Intron variant |
8 | rs13031237 | 2:60908994 | REL | [G>T] | T | Intron variant |
9 | rs3087243 | 2:203874196 | CTLA4 | [A/G] G>A | A | 500B Downstream variant |
10 | rs1980422 | 2:203745673 | None | C>A/C>T | C | |
11 | rs7574865 | 2:191099907 | STAT4 | [T>A/T>G] | T | Intron variant |
12 | rs13315591 | 3:58571114 | FAM107A LOC107984079 | T>C | C | Intron variant Non-coding transcript variant |
13 | rs874040 | 4:26106575 | None | G>C | C | None |
14 | rs6859219 | 5:56142753 | ANKRD55 | [A/C] C>A | A | Intron variant |
15 | rs10499194 | 6:137681500 | None | C>T | T | None |
16 | rs3093023 | 6:167120802 | CCR6; LOC105378122 | [G>A] G>T, G>C | A | Intronic variant Non_coding transcript variant |
17 | rs394581 | 6:159061489 | LOC105378083 v: LOC1122679683 | [C/T] | C | Intronic variant prime_UTR variant |
18 | rs5029937 | 6:137874014 | TNFAIP3 | [G/T] | T | Intronic variant |
19 | rs548234 | 6:106120159 | None | [C/T] | C | |
20 | rs629326 | 6:159075681 | LOC112267968 | [G/T] | G | Intronic variant |
21 | rs10488631 | 7:128954129 | TNPO3 | T>C | C | Downstream transcript variant |
22 | rs10739580 | 9:120933004 | None | C>T | C | - |
23 | rs2812378 | 9:34710263 | CCL21 | G>A, T>G C>T | G | Upstream variant |
24 | rs3761847 | 9:120927961 | TRAF1 | [A/G] G G>A,C | G | Intron variant |
25 | rs4750316 | 10:6351298 | LINC02656 | [C>G] | C | Non_coding_transcript_variant |
26 | rs706778 | 10:6056986 | IL2RA | [A/G] C>T | T | Intron variant |
27 | rs2104286 | 10:6057082 | IL2RA | A/G T/C | C | Intron variant |
28 | rs540386 | 11:36503743 | TRAF6 | [C>G] C>/T | T | Intron variants |
29 | rs10683701 | 12:57698305 | OS9 | [-/ACTT] DEL C>CACTT | -/ | Intron variant |
30 | rs1678542 | 12:57574932 | KIF5A | [C/G] | G | Intron variant |
31 | rs763361 | 18:69864406 | CD226 | T>[A/C/G] A/T A | C | Missence variant (coding variant) |
32 | rs4810485 | 20:46119308 | CD40 | T>A/G G/T---T | T | Intron variant |
33 | rs3218253 | 22:37148770 | IL2RB | [C/T] G>A | A | Intron variant |
SNP ID | Forward Primer Sequence | Reverse Primer Sequence | Extended Primer Sequence | |
---|---|---|---|---|
1 | rs11586238 | ACGTTGGATGGCCTGCTTGAACCTCTTTTG | ACGTTGGATGGGCCCAGATCATGAACAGAC | CCATTGCCTTCAGCATA |
2 | rs1188934 | ACGTTGGATGAAACAGATGGCTCAGCAAAC | ACGTTGGATGATCAGGCCCTGACCACTATC | atgaCAAGATTCCTTTTTCTCAGA |
3 | rs2240340 | ACGTTGGATGGGACCCTCACCAACCTCTC | ACGTTGGATGTGGTTGGCTTCACTTTGCCG | ACCAACCTCTCCTCTTAC |
4 | rs2476601 | ACGTTGGATGACTGAACTGTACTCACCAGC | ACGTTGGATGAGATGATGAAATCCCCCCTC | CCCTCCACTTCCTGTA |
5 | rs10919563 | ACGTTGGATGGCATGTTTACAGTATTTCAC | ACGTTGGATGATCCCAGACCAAACATCACC | TTATAGTAATTGCTATAAAATGCATATA |
6 | rs3766379 | ACGTTGGATGTTGGATGACAGGCAGAGTTG | ACGTTGGATGACTAGAGAGAGTAACCAGCC | ttagAAGCCCACCAGCCTGAGT |
7 | rs3890745 | ACGTTGGATGCCACCTGAGCATTTTGTGAC | ACGTTGGATGTCACCTGGGGAAATTGTTAC | ccttGGGAAATTGTTACAAATCCAGAC |
8 | rs13031237 | ACGTTGGATGAAAGCCTTTCCTTACAACTG | ACGTTGGATGGCTTCGAAAACTCTGACTGC | TTTGAAAAAATGGCTCATGT |
9 | rs3087243 | ACGTTGGATGTTTCTTCACCACTATTTGGG | ACGTTGGATGCCTGTGTTAAACAGCATGCC | aTTCACCACTATTTGGGATATAAC |
10 | rs1980422 | ACGTTGGATGATATCCGCAAGCTATTTTGG | ACGTTGGATGGTCCTCAATTTTCCCAAGTC | aCAAGTCTTTTCATAATACCTGTTTC |
11 | rs7574865 | ACGTTGGATGGAGTGTGTATGCAGTAAAAG | ACGTTGGATGAATCCCCTGAAATTCCACTG | gTCCACTGAAATAAGATAACCACTATT |
12 | rs13315591 | ACGTTGGATGTGGATGAACAGGGATGTGTG | ACGTTGGATGATCACCTTGCAACGTGCACC | ttctCTGAAAGTGGCAAACAGCTTA |
13 | rs874040 | ACGTTGGATGTCCTGATTGTGGCTCGGATG | ACGTTGGATGCCACAGAATCTCCCATAAAC | TGCAAAAGCTGCGTG |
14 | rs6859219_ | ACGTTGGATGTACAGTGGTGACCCCTGAC | ACGTTGGATGGTATCTAATCACCTGCCCTG | TCGCTGCCAGTCTCT |
15 | rs10499194 | ACGTTGGATGAGCTATCAGTTTCATTACC | ACGTTGGATGCAGACCACACAGTTTCTAGG | aaagGACTACTTTTTGAACAAAAGGGTT |
16 | rs3093023 | ACGTTGGATGTTCCTCGCCTTTTATGCACC | ACGTTGGATGGATCCTCTTAGATCTCACTC | tccCTTCCTCAAATTTAAAATCACA |
17 | rs394581 | ACGTTGGATGTCCAGCCAGATTTCAGGCTC | ACGTTGGATGAGTCAGAGAGTTCGCCGTAG | ggggCGGCCAAGCAGATAGATAA |
18 | rs5029937 | ACGTTGGATGCTTGCCAAAGGAGATTAAGG | ACGTTGGATGACTCACAATTCAATGGGCTG | CCCAAAATATTTATCGTTTGGGG |
19 | rs548234 | ACGTTGGATGGGAAATTAGCTGGGCTCTTC | ACGTTGGATGCTCAATCTCTTGCGCTCTTC | ccGCAATTTTTGTCTTCTCTCAC |
20 | rs629326 | ACGTTGGATGTTTGTTTCTGACCCACAGCG | ACGTTGGATGACAGAGCAGGACTCCCATCA | ggggAAAGGAACTGCTGTTCT |
21 | rs10488631 | ACGTTGGATGGTCTATCAGGTACCAAAGGC | ACGTTGGATGATTCACTGCCTTGTAGCTCG | ctTAGCTCGGAAATGGTTC |
22 | rs10739580 | ACGTTGGATGGTGCCTGTTTACAGGTTTT | ACGTTGGATGGATACAGCTTTACTTTCATGG | CTACCACAGAATTATGAATACA |
23 | rs2812378 | ACGTTGGATGAAAGCTGGATTTGCTGGCAC | ACGTTGGATGCAGGCCCAGACATATTCAAC | GCAGCTGAGGACTGTCCA |
24 | rs3761847_ | ACGTTGGATGATCTGTGGGTCCCTTCTCTC | ACGTTGGATGTTGATGTCCGTGGGAATGAG | tagcGGGTGGTATTGAGGC |
25 | rs4750316 | ACGTTGGATGTACGGAAGAGCTGATAAGGG | ACGTTGGATGCCCTCATTGTCACCTAATGG | CACCTAATGGTGGTACT |
26 | rs706778 | ACGTTGGATGAGGAGCACAGTGGACCACCT | ACGTTGGATGCCCTGAGGGACTGGTAAATT | gggagGGGACTGGTAAATTTCCATCA |
27 | rs2104286 | ACGTTGGATGCCATGCTCAGTAGATCTTAC | ACGTTGGATGGTCATAAGTTGGTGAGGAGG | agcTATAGTCATGGTAACACAAGTC |
28 | rs540386 | ACGTTGGATGAGCAGAACTAGTCACTACAG | ACGTTGGATGCCCTAGTGTAGCATAACAGC | GGGCCCTATACCGTATTTTAC |
29 | rs10683701 | ACGTTGGATGCCACACACGTATATAATCCG | ACGTTGGATGTCTTGGCCTACTGAAGATAC | AACGAATAACTAGAATACAATGAAGT |
30 | rs1678542 | ACGTTGGATGGCAGGCGGAGGAATTTAATG | ACGTTGGATGCATACGCAGGGACTCAAATG | ACCTTTAGCAGCTCTCTATCA |
31 | rs763361 | ACGTTGGATGGAGAAGGTTGGATAGTTGAC | ACGTTGGATGGTTTGTCTTTCTAGGCACCC | TAGAAGTCCCATCTCTACC |
32 | rs4810485 | ACGTTGGATGAAGTACCTGGCTCCTTCATC | ACGTTGGATGATACCATGGGTCATTCCTGC | GAGGGCTGTAGATTCC |
33 | rs3218253 | ACGTTGGATGTGAGGAGACTAAGAAACGGG | ACGTTGGATGAACTGCACCTGACCAGGTTC | ttttcCAACCTCTCACCCAG |
Demographic and Clinical Characteristics of RA Patients | Mean ± SD or (%) | |
---|---|---|
Males: Females n (%) | 14.1: 85.9 | |
Age (±SD) (years) | 47 ± 14.49 | |
Mean disease duration (±SD) (Years) | 7.4 ± 5.26 | |
Seropositive n (%) | 80.8 | |
Mean ESR (±SD) | 44.48 ± 30.87 | |
Mean DAS-28 (±SD) | 4.34 ± 1.29 | |
Medications | Prednisolone n (%) | 2.6 |
csDMARDs n (%) | 30.8 | |
Biologics± csDMARDs n (%) | 60.3 | |
Drug-free remission n (%) | 7.7 |
No. | SNP | Minor Allele | MAF Control | MAF RA | OR | 95% CI | χ2 | p-Value |
---|---|---|---|---|---|---|---|---|
1 | rs11586238 | G | 49 (22.48) | 42 (18.1) | 0.762 | 0.481–1.209 | 1.33 | 0.248 |
2 | rs1188934 | [C/G/T] A/G---G | 91 (42.92) | 66 (28.95) | 0.542 | 0.365–0.804 | 9.35 | 002 |
3 | rs2240340 | [A/G] C/T---T | 105 (48.61) | 114 (49.56) | 1.039 | 0.717–1.506 | 0.04 | 0.840 (P) |
4 | rs2476601 | [A/G] G/A----A | 6 (2.75) | 8 (3.23) | 1.178 | 0.402–3.449 | 0.09 | 0.765 (P) |
5 | rs10919563 | [A/G]---A | 62 (31.96) | 46 (21.9) | 0.597 | 0.383–0.932 | 5.2 | 0.023 |
6 | rs3766379 | [C/T] T | 80 (38.46) | 87 (37.83) | 0.973 | 0.662–1.432 | 0.02 | 0.891 (P) |
7 | rs3890745 | [A/G] T/C---C | 70 (33.02) | 67 (28.88) | 0.824 | 0.550–1.233 | 0.89 | 0.346 (P) |
8 | rs13031237 | [G/T]—T | 37 (17.96) | 49 (20.76) | 1.197 | 0.744–1.924 | 0.55 | 0.458 |
9 | rs3087243 | [G/A] G | 87 (41.04) | 129 (55.6) | 1.799 | 1.235–2.623 | 9.41 | p = 0.0021 (P) |
10 | rs1980422 | [A/C/T] T/C---C | 56 (30.43) | 142 (59.6) | 1.545 | 1.03–2.32 | 4.41 | 0.036 |
11 | rs7574865 | [G/T] T | 60 (30) | 58 (24.37) | 0.752 | 0.492–1.148 | 1.75 | 0.186 (P) |
12 | rs13315591 | [C/T] T | 20 (9.35) | 22 (9.65) | 1.036 | 0.548–1.958 | 0.01 | 0.913 (P) |
13 | rs874040 | [C/G] C | 60 (28.3) | 70 (29.91) | 1.081 | 0.718–1.628 | 0.14 | 0.708 (P) |
14 | rs6859219 | [A/C] A | 58 (26.61) | 57 (23.75) | 0.859 | 0.563–1.311 | 0.50 | 0.482 (P) |
15 | rs10499194 | C/T—T | 77 (37.02) | 54 (25.71) | 0.589 | 0.338–0.895 | 6.21 | 0.013 |
16 | rs3093023 | [A/G] A | 82 (40.59) | 93 (39.41) | 0.952 | 0.649–1.397 | 0.06 | 0.800 (P) |
17 | rs394581 | [C/T] C | 91 (42.52) | 105 (49.07) | 1.302 | 0.889–1.906 | 1.84 | 0.174 (P) |
18 | rs5029937 | [G/T] T | 22 (11.96) | 25 (10.59) | 0.872 | 0.475–1.603 | 0.19 | 0.660 (P) |
19 | rs548234 | [C/T] C | 52 (25.74) | 53 (24.09) | 0.915 | 0.589–1.424 | 0.15 | 0.695 (P) |
20 | rs629326 | [G/T] G | 88 (44.44) | 50 (33.33) | 0.625 | 0.402–0.971 | 4.40 | 0.0359 (P) |
21 | rs10488631 | C/T T/C---C | 33 (14.86) | 29 (12.83) | 0.843 | 0.493–1.443 | 0.39 | 0.533 |
22 | rs10739580 | [A/C/G/T] T/C | 50 (27.17) | 52 (33.33) | 1.34 | 0.842–2.133 | 1.53 | 0.217 |
23 | rs2812378 | [C/G/T] A/G---G | 53 (24.54) | 58 (24.17) | 0.980 | 0.639–1.504 | 0.01 | 0.927 (P) |
24 | rs3761847 | [A/G] G | 90 (45) | 70 (40.7) | 0.839 | 0.555–1.267 | 0.70 | 0.403 (P) |
25 | rs4750316 | [C/G/T] C/G—C | 47 (22.38) | 46 (19.01) | 0.814 | 0.516–1.285 | 0.78 | 0.376 (P) |
26 | rs706778 | [A/G] C/T---T | 95 (45.67) | 107 (49.08) | 1.147 | 0.784–1.678 | 0.50 | 0.481 (P) |
27 | rs2104286 | A/G T/C—C | 38 (17.75) | 43 (18.85) | 1.077 | 0.664–1.744 | 0.09 | 0.765 |
28 | rs540386 | [C/G/T] C/T---T | 56 (25.93) | 69 (29.24) | 1.180 | 0.780–1.786 | 0.62 | 0.432 (P) |
29 | rs10683701 | [-/ACTT] DEL | 81 (37.5) | 72 (31.58) | 0.936 | 0.636–1.377 | 0.11 | 0.737 (P) |
30 | rs1678542 | [C/G] G | 67 (31.6) | 74 (31.36) | 0.989 | 0.663–1.474 | 0.00 | 0.955 |
31 | rs763361 | [A/C/T] A/T | 4 (4.26) | 5 (4.72) | 1.114 | 0.290–4.276 | 0.02 | 1.000 (F) |
32 | rs4810485 | [A/G/T] G/T---T | 51 (25) | 39 (19.7) | 0.987 | 0.628–1.551 | 0 | 0.953 (P) |
33 | rs3218253 | [C/T] G>A | 61 (28.77) | 68 (29.06) | 1.014 | 0.673–1.528 | 0.00 | 0.947 (P) |
SNPs rs1188934 | Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-Value |
AA | 35 (33.02) | 60 (52.6) | 2.857 | 1.248–6.541 | 6.42 | 0.011 | |
GG | 20 (18.9) | 12 (10.5) | 0.035 | 0.153–0.801 | 6.42 | 0.011 | |
AG | 51 (48.11) | 42 (36.8) | 0.480 | 0.268–0.861 | 6.13 | 0.013 | |
Allele Frequency | |||||||
A | 121 (57.08) | 162 (71.05) | 1.846 | 1.244–2.740 | 9.35 | 0.002 | |
G | 91 (42.92) | 66 (28.95) | 0.542 | 0.365–0.804 | 9.35 | 0.002 | |
Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value | |
rs10919563 | AA | 22 (22.68) | 8 (7.62) | 0.309 | 0.128–0.748 | 7.24 | 0.007 |
GG | 57 (58.76) | 67 (63.81) | 3.232 | 1.337–7.816 | 7.24 | 0.007 | |
AG | 18 (18.56) | 30 (28.57) | 1.418 | 0.716–2.807 | 1.01 | 0.315 | |
Allele Frequency | |||||||
A | 62 (31.96) | 46 (21.9) | 0.597 | 0.383–0.932 | 5.2 | 0.023 | |
G | 132 (68.04) | 164 (78.1) | 1.675 | 1.073–2.613 | 5.2 | 0.023 | |
rs3087243 | Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value |
AA | 34 (32.08) | 23 (19.83) | 0.282 | 0.126–0.628 | 9.93 | 0.002 | |
GG | 15 (14.15) | 36 (31.03) | 3.548 | 1.591–7.910 | 9.93 | 0.002 | |
GA | 57 (53.77) | 57 (49.14) | 1.478 | 0.776–2.815 | 1.42 | 0.233 | |
Allele Frequency | |||||||
A | 125 (58.96) | 103 (44.40) | 0.556 | 0.381–0.810 | 9.41 | p = 0.002 | |
G | 87 (41.04) | 129 (55.6) | 1.799 | 1.235–2.623 | 9.41 | p = 0.002 | |
rs1980422 | Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value |
CC* | 12 (13.4) | 22 (18.48) | 1.956 | 0.868–4.407 | 2.66 | 0.103 | |
TT | 48 (52.17) | 45 (37.81) | 0.511 | 0.227–1.152 | 2.66 | 0.103 | |
TC | 32 (34.78) | 52 (43.69) | 1.733 | 0.952–3.157 | 3.26 | 0.071 | |
Allele Frequency | |||||||
T | 130 (70.65) | 96 (40.33) | 0.647 | 0.431–0.972 | 4.41 | 0.036 | |
C | 56 (30.43) | 142 (59.66) | 1.545 | 1.029–2.322 | 4.41 | 0.036 | |
Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value | |
rs10499194 | TT | 22 (21.15) | 10 (9.52) | 0.365 | 0.158–0.843 | 5.81 | 0.016 |
CC | 49 (47.12) | 61 (58.1) | 2.739 | 1.186–6.323 | 5.81 | 0.016 | |
TC | 33 (31.73) | 34 (32.38) | 0.828 | 0.450–1.522 | 0.37 | 0.542 | |
Allele Frequency | |||||||
T | 77 (37.02) | 54 (25.71) | 0.589 | 0.338–0.895 | 6.21 | 0.013 | |
C | 131 (62.98) | 156 (74.29) | 1.698 | 1.118–2.58) | 6.21 | 0.013 | |
Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value | |
rs629326 | GG | 21 (21.21) | 21 (28) | 0.696 | 0.327–1.479 | 0.89 | 0.345 |
TT | 32 (32.32) | 46 (61.33) | 1.438 | 0.676–3.057 | 0.89 | 0.345 | |
GT | 46 (46.46) | 8 (10.67) | 0.121 | 0.050–0.290 | 25.74 | <0.0000 | |
Allele Frequency | |||||||
G | 88 (44.44) | 50 (33.33) | 0.625 | 0.402–0.971 | 4.40 | 0.0359 | |
T | 110 (55.56) | 100 (66.67) | 1.600 | 1.030–2.485 | 4.40 | 0.0359 | |
Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value | |
rs6859219 | AA | 9 (8.26) | 15 (12.5) | 1.282 | 0.525–3.129 | 0.30 | 0.585 |
CC | 60 (55.05) | 78 (65) | 0.780 | 0.320–1.904 | 0.30 | 0.585 | |
CA | 40 (36.7) | 27 (22.5) | 0.519 | 0.287–0.939 | 4.75 | 0.029 | |
Allele Frequency | |||||||
A | 58 (26.61) | 57 (23.75) | 0.859 | 0.563–1.311 | 0.50 | 0.482 (P) | |
C | 160 (73.39) | 183 (76.25) | 1.164 | 0.763–1.776 | 0.50 | 0.482 (P) | |
rs11586238 | Variations | Control No. (%) | Case No. (%) | OR | CI | χ2 | p-value |
CC | 66 (60.6) | 83 (71.6) | 0.838 | 0.284–2.48 | 0.1 | 0.749 | |
GG | 6 (5.5) | 9 (7.8) | 1.193 | 0.404–3.521 | 0.1 | 0.749 | |
CG | 37 (33.9) | 24 (20.9) | 0.516 | 0.281–0.946 | 4.64 | 0.031 | |
Allele Frequency | |||||||
C | 169 (77.25) | 190 (81.9) | 1.312 | 0.827–2.08 | 1.33 | 0.248 | |
G | 49 (22.48) | 42 (18.1) | 0.762 | 0.481–1.209 | 1.33 | 0.248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daghestani, M.; Othman, N.; Omair, M.A.; Alenzi, F.; Omair, M.A.; Alqurtas, E.; Amin, S.; Warsy, A. Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients. J. Clin. Med. 2023, 12, 4944. https://doi.org/10.3390/jcm12154944
Daghestani M, Othman N, Omair MA, Alenzi F, Omair MA, Alqurtas E, Amin S, Warsy A. Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients. Journal of Clinical Medicine. 2023; 12(15):4944. https://doi.org/10.3390/jcm12154944
Chicago/Turabian StyleDaghestani, Maha, Nashwa Othman, Mohammed A. Omair, Fahidah Alenzi, Maha A. Omair, Eman Alqurtas, Shireen Amin, and Arjumand Warsy. 2023. "Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients" Journal of Clinical Medicine 12, no. 15: 4944. https://doi.org/10.3390/jcm12154944
APA StyleDaghestani, M., Othman, N., Omair, M. A., Alenzi, F., Omair, M. A., Alqurtas, E., Amin, S., & Warsy, A. (2023). Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients. Journal of Clinical Medicine, 12(15), 4944. https://doi.org/10.3390/jcm12154944