Efficacy and Safety of S1P1 Receptor Modulator Drugs for Patients with Moderate-to-Severe Ulcerative Colitis
Abstract
:1. Introduction
2. Ozanimod
2.1. Mechanism of Action
2.2. Pharmacokinetics
2.3. Efficacy and Safety
3. Etrasimod
3.1. Mechanism of Action
3.2. Pharmacokinetics
3.3. Efficacy and Safety
4. VTX 002
4.1. Mechanism of Action
4.2. Pharmacokinetics
4.3. Efficacy and Safety
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.-F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Cohen, R.D.; Yu, A.P.; Wu, E.Q.; Xie, J.; Mulani, P.M.; Chao, J. Systematic review: The costs of ulcerative colitis in Western countries: Systematic review: Costs of ulcerative colitis. Aliment. Pharmacol. Ther. 2010, 31, 693–707. [Google Scholar] [CrossRef]
- Paschos, P.; Katsoula, A.; Salanti, G.; Giouleme, O.; Athanasiadou, E.; Tsapas, A. Systematic review with network meta-analysis: The impact of medical interventions for moderate-to-severe ulcerative colitis on health-related quality of life. Aliment. Pharmacol. Ther. 2018, 48, 1174–1185. [Google Scholar] [CrossRef]
- Silvio, D.; Claudio, F. Ulcerative Colitis. N. Engl. J. Med. 2011, 365, 25. [Google Scholar]
- Loftus, E.V., Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004, 126, 1504–1517. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandborn, W.J.; van Assche, G.; Reinisch, W.; Colombel, J.; D’haens, G.; Wolf, D.C.; Kron, M.; Tighe, M.B.; Lazar, A.; Thakkar, R.B. Adalimumab Induces and Maintains Clinical Remission in Patients With Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2012, 142, 257–265.e3. [Google Scholar] [CrossRef] [Green Version]
- Olivera, P.; Danese, S.; Pouillon, L.; Bonovas, S.; Peyrin-Biroulet, L. Effectiveness of golimumab in ulcerative colitis: A review of the real world evidence. Dig. Liver Dis. 2019, 51, 327–334. [Google Scholar] [CrossRef]
- Olivera, P.; Danese, S.; Peyrin-Biroulet, L. Next generation of small molecules in inflammatory bowel disease. Gut 2016, 66, 199–209. [Google Scholar] [CrossRef]
- Olivera, P.; Danese, S.; Peyrin-Biroulet, L. JAK inhibition in inflammatory bowel disease. Expert Rev. Clin. Immunol. 2017, 13, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.L.; Siffledeen, J.; Greenbloom, S.; Hébuterne, X.; D’Haens, G.; Nakase, H.; Panés, J.; et al. Upadacitinib as induction and maintenance therapy for moderately to severely active ulcerative colitis: Results from three phase 3, multicentre, double-blind, randomised trials. Lancet 2022, 399, 2113–2128. [Google Scholar] [CrossRef]
- Feagan, B.G.; Danese, S.; Loftus, E.V.; Vermeire, S.; Schreiber, S.; Ritter, T.; Fogel, R.; Mehta, R.; Nijhawan, S.; Kempiński, R.; et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): A phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet 2021, 397, 2372–2384. [Google Scholar] [CrossRef]
- Roda, G.; Jharap, B.; Neeraj, N.; Colombel, J.-F. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin. Transl. Gastroenterol. 2016, 7, e135. [Google Scholar] [CrossRef]
- Fine, S.; Papamichael, K.; Cheifetz, A.S. Etiology and Management of Lack or Loss of Response to Anti-Tumor Necrosis Factor Therapy in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2019, 15, 656–665. [Google Scholar]
- Parigi, T.L.; Roda, G.; Argollo, M.; Gilardi, D.; Danese, S.; Peyrin-Biroulet, L. Is there a role for therapeutic sphingolipids in inflammatory bowel disease? Expert Rev. Gastroenterol. Hepatol. 2020, 14, 47–54. [Google Scholar] [CrossRef]
- Scott, F.L.; Clemons, B.; Brooks, J.; Brahmachary, E.; Powell, R.; Dedman, H.; Desale, H.G.; Timony, G.A. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity: Ozanimod: A S1P 1,5 receptor agonist for autoimmune disease. Br. J. Pharmacol. 2016, 173, 1778–1792. [Google Scholar] [CrossRef] [Green Version]
- Hla, T.; Brinkmann, V. Sphingosine 1-phosphate (S1P): Physiology and the effects of S1P receptor modulation. Neurology 2011, 76, S3–S8. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Christopher, R.; Behan, D.; Lassen, C. Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmun. Rev. 2017, 16, 495–503. [Google Scholar] [CrossRef]
- Perez-Jeldres, T.; Tyler, C.J.; Boyer, J.D.; Karuppuchamy, T.; Bamias, G.; Dulai, P.S.; Boland, B.S.; Sandborn, W.J.; Patel, D.R.; Rivera-Nieves, J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm. Bowel Dis. 2019, 25, 270–282. [Google Scholar] [CrossRef]
- Rivera, J.; Proia, R.L.; Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 2008, 8, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Karuppuchamy, T.; Behrens, E.-H.; González-Cabrera, P.; Sarkisyan, G.; Gima, L.; Boyer, J.; Bamias, G.; Jedlicka, P.; Veny, M.; Clark, D.; et al. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease. Mucosal Immunol. 2017, 10, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Marsolais, D.; Rosen, H. Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat. Rev. Drug Discov. 2009, 8, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Proia, R.L.; Hla, T. Emerging biology of sphingosine-1-phosphate: Its role in pathogenesis and therapy. J. Clin. Investig. 2015, 125, 1379–1387. [Google Scholar] [CrossRef] [Green Version]
- Takabe, K.; Paugh, S.W.; Milstien, S.; Spiegel, S. “Inside-Out” Signaling of Sphingosine-1-Phosphate: Therapeutic Targets. Pharmacol. Rev. 2008, 60, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Petti, L.; Rizzo, G.; Rubbino, F.; Elangovan, S.; Colombo, P.; Restelli, S.; Piontini, A.; Arena, V.; Carvello, M.; Romano, B.; et al. Unveiling role of sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer. J. Exp. Clin. Cancer Res. 2020, 39, 253. [Google Scholar] [CrossRef]
- Siehler, S. Pathways of transduction engaged by sphingosine 1-phosphate through G protein-coupled receptors. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids 2002, 1582, 94–99. [Google Scholar] [CrossRef]
- EMA. Zeposia. European Medicines Agency. 2020. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zeposia (accessed on 2 May 2023).
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2021, 16, 2–17. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Isaacs, K.L.; Schneider, Y.; Siddique, S.M.; Falck-Ytter, Y.; Singh, S.; Chachu, K.; Day, L.; Lebwohl, B.; Muniraj, T.; et al. AGA Clinical Practice Guidelines on the Management of Moderate to Severe Ulcerative Colitis. Gastroenterology 2020, 158, 1450–1461. [Google Scholar] [CrossRef] [Green Version]
- Sandborn, W.J.; Peyrin-Biroulet, L.; Zhang, J.; Chiorean, M.; Vermeire, S.; Lee, S.D.; Kühbacher, T.; Yacyshyn, B.; Cabell, C.H.; Naik, S.U.; et al. Efficacy and Safety of Etrasimod in a Phase 2 Randomized Trial of Patients with Ulcerative Colitis. Gastroenterology 2020, 158, 550–561. [Google Scholar] [CrossRef] [Green Version]
- Sandborn, W.J.; Vermeire, S.; Peyrin-Biroulet, L.; Dubinsky, M.C.; Panes, J.; Yarur, A.; Ritter, T.; Baert, F.; Schreiber, S.; Sloan, S.; et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): Two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet 2023, 401, 1159–1171. [Google Scholar] [CrossRef]
- Luo, A.; Lester, R.; Schwab, R.; Ogilvie, K.; Huyghe, M.; Mohan, R.; Nuss, J.; Sandborn, W.J. Tu1852 pharmacokinetics and pharmacodynamics of opl-002, a highly selective s1p1r modulator, in healthy adult volunteers. Gastroenterology 2020, 158, S-1188. [Google Scholar] [CrossRef]
- Cyster, J.G.; Schwab, S.R. Sphingosine-1-Phosphate and Lymphocyte Egress from Lymphoid Organs. Annu. Rev. Immunol. 2012, 30, 69–94. [Google Scholar] [CrossRef]
- Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 2011, 11, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Bryant, R.V.; Travis, S. Interfering with leukocyte trafficking in Crohn’s disease. Best Pract. Res. Clin. Gastroenterol. 2019, 38–39, 101617. [Google Scholar] [CrossRef] [PubMed]
- Hemperly, D.A.; Sandborn, W.J.; Casteele, N.V. Clinical Pharmacology in Adult and Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 2527–2542. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Ozanimod: First Approval. Drugs 2020, 80, 841–848. [Google Scholar] [CrossRef]
- Juif, P.-E.; Kraehenbuehl, S.; Dingemanse, J. Clinical pharmacology, efficacy, and safety aspects of sphingosine-1-phosphate receptor modulators. Expert Opin. Drug Metab. Toxicol. 2016, 12, 879–895. [Google Scholar] [CrossRef]
- Tran, J.Q.; Hartung, J.P.; Peach, R.J.; Boehm, M.F.; Rosen, H.; Smith, H.; Brooks, J.L.; Timony, G.A.; Olson, A.D.; Gujrathi, S.; et al. Results From the First-in-Human Study With Ozanimod, a Novel, Selective Sphingosine-1-Phosphate Receptor Modulator. J. Clin. Pharmacol. 2017, 57, 988–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, J.Q.; Hartung, J.P.; Tompkins, C.-A.; Frohna, P.A. Effects of High- and Low-Fat Meals on the Pharmacokinetics of Ozanimod, a Novel Sphingosine-1-Phosphate Receptor Modulator. Clin. Pharmacol. Drug Dev. 2017, 7, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Tran, J.Q.; Hartung, J.P.; Olson, A.D.; Mendzelevski, B.; Timony, G.A.; Boehm, M.F.; Peach, R.J.; Gujrathi, S.; Frohna, P.A. Cardiac Safety of Ozanimod, a Novel Sphingosine-1-Phosphate Receptor Modulator: Results of a Thorough QT/QTc Study. Clin. Pharmacol. Drug Dev. 2017, 7, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Tatosian, D.; Shen, J.; Chen, L.; Lavigne, J.; Teuscher, N.; Harris, S.; Chitkara, D.; Tirucherai, G.; Marta, C. Population pharmacokinetics and pharmacodynamics of ozanimod in ulcerative colitis. Gastroenterology 2022, 162, S16. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Wolf, D.C.; D’haens, G.; Vermeire, S.; Hanauer, S.B.; Ghosh, S.; Smith, H.; Cravets, M.; Frohna, P.A.; et al. Ozanimod Induction and Maintenance Treatment for Ulcerative Colitis. N. Engl. J. Med. 2016, 374, 1754–1762. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Hanauer, S.; Vermeire, S.; Ghosh, S.; Liu, W.J.; Petersen, A.; Charles, L.; Huang, V.; Usiskin, K.; et al. Long-Term Efficacy and Safety of Ozanimod in Moderately to Severely Active Ulcerative Colitis: Results From the Open-Label Extension of the Randomized, Phase 2 TOUCHSTONE Study. J. Crohn’s Colitis 2021, 15, 1120–1129. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; D’haens, G.; Wolf, D.C.; Jovanovic, I.; Hanauer, S.B.; Ghosh, S.; Petersen, A.; Hua, S.Y.; Lee, J.H.; et al. Ozanimod as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2021, 385, 1280–1291. [Google Scholar] [CrossRef]
- Al-Shamma, H.; Lehmann-Bruinsma, K.; Carroll, C.; Solomon, M.; Komori, H.K.; Peyrin-Biroulet, L.; Adams, J. The Selective Sphingosine 1-Phosphate Receptor Modulator Etrasimod Regulates Lymphocyte Trafficking and Alleviates Experimental Colitis. Experiment 2019, 369, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.A.; Acevedo, L.; Oh, D.A.; Baweja, P. European Crohn’s and Colitis Organisation—ECCO—P396 Pharmacokinetics and Circulating Total Lymphocyte Count Pharmacodynamic Response from Single and Multiple Oral Doses of Etrasimod in Japanese and Caucasian Healthy Male Subjects. Available online: https://www.ecco-ibd.eu/publications/congress-abstracts/item/p396-pharmacokinetics-and-circulating-total-lymphocyte-count-pharmacodynamic-response-from-single-and-multiple-oral-doses-of-etrasimod-in-japanese-and-caucasian-healthy-male-subjects.html (accessed on 2 May 2023).
- Schreiber, S.; Morgan, M.; Christopher, R.; Raether, B.; Lassen, C.; Sanchez-Kam, M.; Shanahan, W.; Panes, J. P-180 Etrasimod (APD334), a Potent, Selective, Oral S1P Receptor Modulator with Autoimmune Disease-Modifying Activity Exhibiting Favorable PK/PD Properties in Healthy Volunteers. Inflamm. Bowel Dis. 2017, 23, S61. [Google Scholar]
- Peyrin-Biroulet, L.; Morgan, M.; Christopher, R.; Raether, B.; Lassen, C.; Sanchez-Kam, M.; Shanahan, W. P-179 Safety, Pharmacokinetics and Pharmacodynamics of Etrasimod (APD334), an Oral Selective S1P Receptor Modulator, after Dose-Escalation, in Healthy Volunteers. Inflamm. Bowel Dis. 2017, 23, S60–S61. [Google Scholar]
- Lee, C.A.; Oh, D.A.; Tang, Y. PII-111 - disposition of [14C]etrasimod following oral administration to healthy male volunteers and role of cyp2c in formation of oxidative metabolites. In Proceedings of the ASCPT 2020 Annual Meeting, Huston, TX, USA, 18–21 March 2020. [Google Scholar]
- Vermeire, S.; Chiorean, M.; Panés, J.; Peyrin-Biroulet, L.; Zhang, J.; Sands, B.E.; Lazin, K.; Klassen, P.; Naik, S.U.; Cabell, C.H.; et al. Long-term Safety and Efficacy of Etrasimod for Ulcerative Colitis: Results from the Open-label Extension of the OASIS Study. J. Crohn’s Colitis 2021, 15, 950–959. [Google Scholar] [CrossRef]
- Pérez-Jeldres, T.; Tyler, C.J.; Boyer, J.D.; Karuppuchamy, T.; Yarur, A.; Giles, D.A.; Yeasmin, S.; Lundborg, L.; Sandborn, W.J.; Patel, D.R.; et al. Targeting Cytokine Signaling and Lymphocyte Traffic via Small Molecules in Inflammatory Bowel Disease: JAK Inhibitors and S1PR Agonists. Front. Pharmacol. 2019, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Sanna, M.G.; Vincent, K.P.; Repetto, E.; Nguyen, N.; Brown, S.J.; Abgaryan, L.; Riley, S.W.; Leaf, N.B.; Cahalan, S.M.; Kiosses, W.B.; et al. Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction. Mol. Pharmacol. 2015, 89, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Oppilan Pharma Ltd. A Pharmacokinetic Dose Proportionality Study of OPL-002 in Healthy Volunteers. Available online: https://clinicaltrials.gov/study/NCT04451811 (accessed on 2 May 2023).
- Study Record. Beta ClinicalTrials.gov. Available online: https://beta.clinicaltrials.gov/study/NCT05156125 (accessed on 2 May 2023).
- Cai, Y.; Liu, Y.; Wu, Z.; Wang, J.; Zhang, X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023, 15, 2743. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Jansen, V.L.; Gerdes, V.E.; Middeldorp, S.; van Mens, T.E. Gut microbiota and their metabolites in cardiovascular disease. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101492. [Google Scholar] [CrossRef] [PubMed]
- Uffelman, C.N.; Chan, N.I.; Davis, E.M.; Wang, Y.; McGowan, B.S.; Campbell, W.W. An Assessment of Mushroom Consumption on Cardiometabolic Disease Risk Factors and Morbidities in Humans: A Systematic Review. Nutrients 2023, 15, 1079. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Khan, A.A.; Tzora, A.; Voidarou, C.; Skoufos, I. Dietary Implications of the Bidirectional Relationship between the Gut Microflora and Inflammatory Diseases with Special Emphasis on Irritable Bowel Disease: Current and Future Perspective. Nutrients 2023, 15, 2956. [Google Scholar] [CrossRef]
- Mostafa, H.; Meroño, T.; Miñarro, A.; Sánchez-Pla, A.; Lanuza, F.; Zamora-Ros, R.; Rostgaard-Hansen, A.L.; Estanyol-Torres, N.; Cubedo-Culleré, M.; Tjønneland, A.; et al. Dietary Sources of Anthocyanins and Their Association with Metabolome Biomarkers and Cardiometabolic Risk Factors in an Observational Study. Nutrients 2023, 15, 1208. [Google Scholar] [CrossRef]
- Sugihara, N.; Okada, Y.; Tomioka, A.; Ito, S.; Tanemoto, R.; Nishii, S.; Mizoguchi, A.; Inaba, K.; Hanawa, Y.; Horiuchi, K.; et al. Probiotic Yeast from Miso Ameliorates Stress-Induced Visceral Hypersensitivity by Modulating the Gut Microbiota in a Rat Model of Irritable Bowel Syndrome. Gut Liver 2023. [CrossRef]
- Verstockt, B.; Vetrano, S.; Salas, A.; Nayeri, S.; Duijvestein, M.; Casteele, N.V.; Danese, S.; D’haens, G.; Eckmann, L.; Faubion, W.A.; et al. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 351–366. [Google Scholar] [CrossRef]
- Cohen, J.A.; Comi, G.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.-P.; Montalban, X.; Havrdová, E.K.; Cree, B.A.C.; et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019, 18, 1021–1033. [Google Scholar] [CrossRef]
- Comi, G.; Kappos, L.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.-P.; Montalban, X.; Havrdová, E.K.; Cree, B.A.C.; et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019, 18, 1009–1020. [Google Scholar] [CrossRef]
- Kleuser, B.; Bäumer, W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int. J. Mol. Sci. 2023, 24, 1456. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Ji, M.; Fu, R.; Wang, M.; Xue, N.; Xiao, Q.; Hu, J.; Wang, X.; Lai, F.; Yin, D.; et al. Sphingosine-1-Phosphate Receptor Subtype 1 (S1P1) Modulator IMMH001 Regulates Adjuvant- and Collagen-Induced Arthritis. Front. Pharmacol. 2019, 10, 1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Kondo, K.; Ichibori, A.; Yanai, Y.; Susuta, Y.; Inoue, S.; Takeuchi, T. Amiselimod, a sphingosine 1-phosphate receptor-1 modulator, for systemic lupus erythematosus: A multicenter, open-label exploratory study. Lupus 2020, 29, 1902–1913. [Google Scholar] [CrossRef]
- EMA. Gilenya. European Medicines Agency. 2018. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/gilenya (accessed on 20 July 2023).
- EMA. Mayzent. European Medicines Agency. 2019. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/mayzent (accessed on 20 July 2023).
- EMA. Ponvory. European Medicines Agency. 2021. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/ponvory (accessed on 20 July 2023).
- Vaclavkova, A.; Chimenti, S.; Arenberger, P.; Holló, P.; Sator, P.-G.; Burcklen, M.; Stefani, M.; D’Ambrosio, D. Oral ponesimod in patients with chronic plaque psoriasis: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet 2014, 384, 2036–2045. [Google Scholar] [CrossRef]
- Efficacy and Safety of Four Doses of Cenerimod Compared to Placebo in Adult Subjects with Active Systemic Lupus Erythematosus—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03742037 (accessed on 20 July 2023).
- Danese, S.; Abreu, M.T.; Wolf, D.C.; Canavan, J.B.; Jain, A.; Wu, H.; Petersen, A.; Charles, L.; Panaccione, R.; Afzali, A. European Crohn’s and Colitis Organisation—ECCO—DOP37 Efficacy and Safety of 3 Years of Continuous Ozanimod Treatment: An Interim Analysis of the True North Open-Label Extension Study. Available online: https://www.ecco-ibd.eu/publications/congress-abstracts/item/dop37-efficacy-and-safety-of-3-years-of-continuous-ozanimod-treatment-an-interim-analysis-of-the-true-north-open-label-extension-study.html (accessed on 2 May 2023).
- Dubinsky, M.C.; Betts, K.A.; LaPensee, K.; Eren, D.; Kim-Romo, D.; Yin, L.; Tang, W.; Gupte-Singh, K. S694 Comparative Efficacy and Safety of Ozanimod vs Adalimumab and Vedolizumab in Patients with Moderately to Severely Active Ulcerative Colitis. Am. J. Gastroenterol. 2021, 116, S314. [Google Scholar] [CrossRef]
- Torres, J.; Chaparro, M.; Julsgaard, M.; Katsanos, K.; Zelinkova, Z.; Agrawal, M.; Ardizzone, S.; Campmans-Kuijpers, M.; Dragoni, G.; Ferrante, M.; et al. European Crohn’s and Colitis Guidelines on Sexuality, Fertility, Pregnancy, and Lactation. J. Crohns Colitis 2023, 17, 1–27. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; Danese, S.; Wolf, D.C.; Liu, W.J.; Hua, S.Y.; Minton, N.; Olson, A.; D’Haens, G. Ozanimod induction therapy for patients with moderate to severe Crohn’s disease: A single-arm, phase 2, prospective observer-blinded endpoint study. Lancet Gastroenterol. Hepatol. 2020, 5, 819–828. [Google Scholar] [CrossRef]
- Argollo, M.; Fiorino, G.; Hindryckx, P.; Peyrin-Biroulet, L.; Danese, S. Novel therapeutic targets for inflammatory bowel disease. J. Autoimmun. 2017, 85, 103–116. [Google Scholar] [CrossRef]
- A Placebo-Controlled Study of Oral Ozanimod as Maintenance Therapy for Moderately to Severely Active Crohn’s Disease—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03464097 (accessed on 2 May 2023).
- Induction Study #2 of Oral Ozanimod as Induction Therapy for Moderately to Severely Active Crohn’s Disease—Full Text View—ClinicalTrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03440385 (accessed on 2 May 2023).
- Induction Study #1 of Oral Ozanimod as Induction Therapy for Moderately to Severely Active Crohn’s Disease—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03440372 (accessed on 2 May 2023).
- Vermeire, S.; Peyrin-Biroulet, L.; Panés, J.; Regueiro, M.; Kotze, P.G.; Charabaty, A.; Goetsch, M.; Shan, K.; Wu, J.; McDonnell, A.; et al. European Crohn’s and Colitis Organisation—ECCO—P490 Etrasimod for the Treatment of Ulcerative Colitis: Up to 2.5 Years of Pooled Safety Data from Global Clinical Trials. Available online: https://www.ecco-ibd.eu/publications/congress-abstracts/item/p490-etrasimod-for-the-treatment-of-ulcerative-colitis-up-to-2-5-years-of-pooled-safety-data-from-global-clinical-trials.html (accessed on 2 May 2023).
- Danese, S.; Vuitton, L.; Peyrin-Biroulet, L. Biologic agents for IBD: Practical insights. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 537–545. [Google Scholar] [CrossRef]
Trial | Intervention | Primary Endpoint | Secondary Endpoints | Adverse Events | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Touchstone Phase 2 (n = 197) randomized, double-blind, placebo-controlled phase 2 trial | Clinical remission | Clinical response | Mucosal healing | Histologic remission | Total adverse events n (%) | Serious adverse events n (%) | ||||||||
Induction (at 8 weeks) n (%) | Mantainance (at 32 weeks) n (%) | Induction (at 8 weeks) n (%) | Mantainance (at 32 weeks) n (%) | Induction (at 8 weeks) n (%) | Mantainance (at 32 weeks) n (%) | Induction (at 8 weeks) n (%) | Mantainance (at 32 weeks) n (%) | |||||||
Ozanimod 0.5 mg once daily (n = 65) | 9 (14) p = 0.14 | 17 (21) p = 0.002 | 35 (54) p = 0.06 | 23 (35) p = 0.06 | 18 (28) p = 0.03 | 21 (32) p = 0.006 | 9 (14) p = 0.63 | 15 (23) p = 0.02 | 26 (40) | 1 (2) | ||||
Ozanimod 1 mg once daily (n= 67) | 11 (16) p = 0.048 | 14 (26) p = 0.01 | 38 (57) p = 0.02 | 34 (51) p < 0.001 | 23 (34) p = 0.002 | 22 (33) p = 0.005 | 15 (22) p = 0.07 | 21 (31) p < 0.001 | 26 (39) | 3 (4) | ||||
Placebo (n = 65) | 4 (6) | 6 (6) | 24 (37) | 13 (20) | 8 (12) | 8 (12) | 7 (11) | 5 (8) | 26 (40) | 6 (9) | ||||
True North Phase 3 (n = 1012) multicenter, randomized, double-blind, placebo-controlled phase 3 trial | Clinical remission n (%) | Clinical response n (%) | Endoscopic improvement n (%) | Mucosa healing n (%) | Durable Remission n (%) | Glucocorticoid-free Remission n (%) | Maintenance of Remission n (%) | Total adverse events n (%) | Serious adverse events n (%) | |||||
Induction (10 weeks) Cohort 1 n = 645 (double-blind manner) | Ozanimod 1 mg once daily (n = 429) | 79 (18.4) p < 0.001 | 205 (47.8) p < 0.001 | 117 (27.3) p < 0.001 | 54 (12.6) p < 0.001 | 172 (40.1) | 17 (4) | |||||||
Placebo (n = 216) | 13 (6) | 56 (25.9) | 25 (11.6) | 8 (3.7) | 82 (38) | 7 (3.2) | ||||||||
Cohort 2 n = 367 (open-label) | 146 (39.8) | 23 (6.3) | ||||||||||||
Mantainance (52 weeks) n = 457 patients (responsible to ozanimod during the induction) | Ozanimod 1 mg once daily (n = 230) | 85 (37) p < 0.001 | 138 (60) p < 0.001 | 105 (45.7) p < 0.001 | 68 (29.6) p < 0.001 | 41 (17.8) p = 0.003 | 73 (31.7) p < 0.001 | 41 (52) p = 0.002 | 113 (49.1) | 12 (5.2) | ||||
Placebo (n = 227) | 42 (18.5) | 93 (41) | 60 (26.4) | 32 (14.1) | 22 (9.7) | 38 (16.7) | 22 (29) | 83 (36.6) | 18 (7.9) |
Trial | Intervention | Primary Endpoint | Secondary Endpoints | Adverse Events | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Elevate 52 Phase III (n = 433) Randomized, double-blind | Clinical remission n (%) | Clinical remission n (%) | Endoscopic improvement n (%) | Symptomatic remission n (%) | Endoscopic improvement-histological remission n (%) | TOTAL AEs n (%) | SAEs leading to discontinuation n (%) | ||||
Week 12 | Week 52 | Week 12 | Week 52 | Week 12 | Week 52 | Week 12 | Week 52 | ||||
Etrasimod 2 gr (n = 274) | 74 (27%) p < 0.0001 | 88 (32%) p < 0.0001 | 96 [35%] p < 0.0001 | 94 (33%) p < 0.0001 | 126 [46%] p < 0.0001 | 113 (39%) p < 0.0001 | 58 [21%] p < 0.0001 | 127 (44%) p < 0.0001 | 260 (71) | 20 (7) | |
Placebo (n = 135) | 10 (7%) | 9 (7%) | 19 [14%] | 11 (8%) | 29 [21%] | 19 (13%) | 6 [4%] | 28 (19%) | 81 (56) | 9 (6) | |
Elevate 12 phase III (n = 354) Randomized, double-blind | Clinical remission week 12 n (%) | Endoscopic improvement n (%) | Symptomatic remission n (%) | Endoscopic improvement-histological remission n (%) | Total AEs n (%) | SAEs leading to discontinuation n (%) | |||||
Etrasimod 2 gr (n = 222) | 55 (25%) p = 0.026 | 68 [31%] p = 0.0092 | 104 [47%] p = 0.0013 | 36 [16%] p = 0.036 | 112 (47) | 6 (3) | |||||
Placebo (n = 112) | 17 (15%) p = 0.026 | 21 [19%] | 33 [29%] | 10 [9%] | 54 (47) | 2 (2) | |||||
OASIS Phase II (n = 156) Randomized, double-blind | Improvement from baseline in the modified MCS at week 12 LSM (SE) | Endoscopic improvement (%) | Improvement in the 2-component MCS LSM (SE) | Improvement in Total MSC LSM (SE) | Total AEs n (%) | SAEs leading to discontinuation n (%) | |||||
Etrasimod 1 gr (n = 50) | 1.94 (0.31) p = 0.146 | 22.5 p = 0.306 | 1.30 (0.22) p = 0.086 | 2.69 (0.41) p = 0.128 | 31 (59.6) | 3 (5.8) | |||||
Etrasimod 2 gr (n = 52) | 2.49 (0.31) p = 0.009 | 41.8 p = 0.003 | 1.75 (0.22) p = 0.002 | 3.35 (0.41) p = 0.010 | 28 (56.0) | 4 (8.0) | |||||
Placebo (n =54) | 1.50 (0.30) | 17.8 | 0.92 (0.21) | 2.08 (0.39) | 27 (50.0) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencardino, S.; D’Amico, F.; Faggiani, I.; Bernardi, F.; Allocca, M.; Furfaro, F.; Parigi, T.L.; Zilli, A.; Fiorino, G.; Peyrin-Biroulet, L.; et al. Efficacy and Safety of S1P1 Receptor Modulator Drugs for Patients with Moderate-to-Severe Ulcerative Colitis. J. Clin. Med. 2023, 12, 5014. https://doi.org/10.3390/jcm12155014
Bencardino S, D’Amico F, Faggiani I, Bernardi F, Allocca M, Furfaro F, Parigi TL, Zilli A, Fiorino G, Peyrin-Biroulet L, et al. Efficacy and Safety of S1P1 Receptor Modulator Drugs for Patients with Moderate-to-Severe Ulcerative Colitis. Journal of Clinical Medicine. 2023; 12(15):5014. https://doi.org/10.3390/jcm12155014
Chicago/Turabian StyleBencardino, Sarah, Ferdinando D’Amico, Ilaria Faggiani, Francesca Bernardi, Mariangela Allocca, Federica Furfaro, Tommaso Lorenzo Parigi, Alessandra Zilli, Gionata Fiorino, Laurent Peyrin-Biroulet, and et al. 2023. "Efficacy and Safety of S1P1 Receptor Modulator Drugs for Patients with Moderate-to-Severe Ulcerative Colitis" Journal of Clinical Medicine 12, no. 15: 5014. https://doi.org/10.3390/jcm12155014
APA StyleBencardino, S., D’Amico, F., Faggiani, I., Bernardi, F., Allocca, M., Furfaro, F., Parigi, T. L., Zilli, A., Fiorino, G., Peyrin-Biroulet, L., & Danese, S. (2023). Efficacy and Safety of S1P1 Receptor Modulator Drugs for Patients with Moderate-to-Severe Ulcerative Colitis. Journal of Clinical Medicine, 12(15), 5014. https://doi.org/10.3390/jcm12155014