Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Studies Selection
2.4. Data Extraction
2.5. Quality Assessment
3. Results
3.1. Studies Selection
3.2. Description of the Studies
- -
- -
- -
- -
- -
- -
- triple scan technique, used by one study [65].Internal fit was assessed by 9 studies using one of the following methods:
Author and Year of Publication | Type of Restoration and Materials | N Specimens Analysed | Points Measured per Specimen | Marginal Fit Values | Internal Fit Values |
---|---|---|---|---|---|
Lima et al., 2018 [44] | Onlay (2 design) RNC (Lava Ultimate) | 40 | 18 (x3) | DDI: from 60 ± 39 to 71 ± 64 micron IDI: from 42 ± 33 to 75 ± 47 micron | / |
Oz et al., 2018 [48] | MOD Inlay EC: IPS e.max CAD LU: RNC (Lava Ultimate) EL: IPS Empress CAD | 45 | 12 | EC: 33.54 ± 15.83 LU: 33.77 ± 17.35 EL: 34.23 ± 17.67 micron | / |
Gudugunta et al., 2019 [51] | MOD Onlay IPS e.max CAD | 15 | 60 | 41.46 ± 15.94 micron | / |
Hamid et al., 2019 [47] | MOD Onlay RNC (Lava Ultimate) | 12 | 10 | From 27.81 ± 12.62 to 93.79 ± 17.97 micron | / |
Neto et al., 2019 [46] | Onlay IPS e.max CAD | 40 | MF:16 (x3) IF:21 | CO: 55.26 ± 46.85 CB: 41.70 ± 40.83 micron | CO: 161.13 ± 87.86 CB: 167.47 ± 92.04 micron |
Qian et al., 2020 [50] | MOD Inlay EN: Vita Enamic LU: Lava Ultimate | 24 | 8 | Before TC: EN: 100.49 ± 32.03 micron LU: 91.19 ± 29.77 micron After 10.000 TC: EN: 105.79 ± 34.20 micron LU: 94.99 ± 32.78 micron | / |
Falanchai et al., 2020 [45] | Overlay (4 designs) ZLS (Vita Suprinity) | 40 | 20 (x3) | MF1: from 71.59 ± 14.60 to 91.66 ± 8.06 micron MF2: from 108.84 ± 13.68 to 128.31 ± 10.52 micron | / |
Alenezi et al., 2021 [49] | Onlay e. max CAD | 20 | 6 | From 59 to 84 micron | / |
Merrill et al., 2021 [60] | Inlay and onlay Feldspathic ceramic (Vita MkII) | 40 | n.d. | CO Inlay: 75.1 ± 7.1 micron CB Inlay: 116.2 ± 29.0 micron CO Onlay: da 104.1 ± 34.3 micron CB Onlay: 133.3 ± 38.5 micron | / |
Rippe et al., 2016/17 [57] | MOD Inlay -Re: RC (Lava Ultimate) -Dis: e.max CAD (Ivoclar Vivadent) | 30 | MF: 6 (x3) IF: 19 (x3) | LaRe: from 105.9 ± 40.3 to 130.9 ± 38.4 micron CeRe: from 116.7 ± 42.1 to 145.3 ± 106.5 micron CeDis: from 171.8 ± 56.6 to 177.8 ± 68.9 micron | LaRe: from 104.7 ± 13.9 to 233.8 ± 80.5 micron CeRe: from 76.7 ± 24.6 to 227.5 ± 94.2 micron CeDis: from 66.7 ± 19.9 to 207.2 ± 61.3 micron |
Sharma et al., 2020 [58] | MOD Inlay Zirconia (Cercon HT) | 30 | 7 (x2) | From 20.16 ± 1.55 to 40.43 ± 1.27 micron | / |
Lim et al., 2023 [59] | Inlay -LU: Lava Ultimate, 3M Espe -ZR: Zolid Fx multilayer -3D: Nextdent C&B | 39 | MF: 2 IF: 4 | LU: 118.54 ± 45.54 micron ZR: 58.35 ± 14.88 micron 3D: 53.77 ± 16.29 micron | LU: 168.81 ± 42.67 micron ZR: 95.69 ± 13.34 micron 3D: 82.02 ± 8.32 micron |
Negucioiu et al., 2019 [54] | Onlay HC (Vita Enamic) IPS Empress CAD | 12 | 4 | EN: from 88.10 ± 47.51 to 168.11 ± 79.71 micron IPS: from 72.70 ± 21.41 to 140.60 ± 142.53 micron | / |
Frankenberger et al., 2021 [56] | MOD Onlay EM: e.max CAD (Ivoclar Vivadent) CD: Celtra Duo (Dentsply Sirona) ZR: Cercon Ht (Dentsply Sirona) | 24 | / | EM: from 95 ± 7 to 100% CD: from 93 ± 9 to 100% ZI: from 76 ± 23 to 100% | / |
Soliman et al., 2022 [55] | Partial crown Celtra Duo (Dentsply sirona) | 48 | / | HV: from 267.71 ± 134.14 to 332.71 ± 175.16 micron LV: from 146.75 ± 71.73 to 165.98 ± 83.97 micron | / |
Daher et al., 2022 [53] | Onlay MCOMP: Tetric CAD EM: IPS E.max CAD 3D: VarseoSmile Crown Plus | 24 | / | MCOMP: from 75.9 to 68.5% EM: from 63.1 to 43.7% 3D: from 69.8 to 44.7% | / |
Bayrak et al., 2021 [61] | Onlay Feldspathic ceramic (Vita Enamic) | 33 | MF: 4 IF: 7 | CE: from 48.8 ± 0.07 to 272.2 ± 0.11 micron Ka: from 76.0 ± 0.10 to 192.4 ± 0.13 micron Pl: from 90.2 ± 0 to 138.1 ± 0.11 micron | CE: from 77.0 ± 0.04 to 248.1 ± 0.07 micron Ka: from 63.2 ± 0.11 to 232.4 ± 0.10 micron Pl: from 72. 0 ± 0.02 to 278.4 ± 0.15 micron |
Ekici et al., 2021 [62] | Inlay Feldspathic ceramic (CEREC Blocs) | 36 | MF: 2 IF: 5 | CO: from 120.37 ± 84.82 to 121.51 ± 61.10 micron CB: from 16.05 ± 33.27 to 84.47 ± 30.04 micron CI: from 73.93 ± 112,20 to 83.77 ± 16.49 micron | CO: from 91.45 ± 44.93 to 184.33 ± 74.23 micron CB: from 23.36 ± 43.54 to 138.57 ± 52.29 micron CI: from 33.37 ± 53.21 to 179.71 ± 87.75 micron |
Zimmermann et al., 2018 [64] | Inlay ZLS Celtra Duo (Dentsply Sirona) | 30 | MF: 1 ROI (region of interest) IF:2 ROI 20.000 points per surface | Group 12: 120.4 ± 12.9 micron Group 12 two step: 110.3 ± 22.2 micron Group 12s: 144.6 ± 144 micron | Group 12: from 96.9 ± 12.0 to 215.8 ± 14.4 micron Group 12 two step: from 90.5 ± 20.1 to 155.0 ± 40.1 micron Group 12s: from 122.8 ± 12.2 to 222.8 ± 35.6 micron |
Yang et al., 2019 [63] | MOD Onlay (2 design) Ceramic reinforced composite resin (Hyramic, Upcera) | 30 | MF: 40 IF: 60 | CP: from 47.1 ± 1.0 to 49.7 ± 1.4 micron SP: from 133.4 ± 1.1 to 135.8 ± 2.2 micron | CP: 51.8 ± 0.6 micron SP: 141.5 ± 8.1 micron |
Kassis et al., 2021 [65] | MOD Overlay HT-14L: nano ceramic (Cerasmart) ZLS14 (Vita Suprinity) | 30 | MF: 5 IF: 6 | HT-14L: 100.02 ± 19.60 micron ZLS14: 114.49 ± 21.50 micron | HT-14L: from 110.70 ± 13.91 to 118.68 ± 9.03 micron ZLS14: from 114.33 ± 18.14 to 137.00 ± 8.61 micron |
Qian et al., 2022 [52] | 22 | MF: 8 IF: 2 ROI (region of interest) | 3D Analysis group IDI: 119.32 ± 44.35 micron group DDI: 75.41 ± 8.66 micron 2D Analysis Before TC group IDI: 111.45 ± 33.97 micron group DDI: 74.43 ± 8.25 micron After TC group IDI: 124.77 ± 34.47 micron group DDI: 84.07 ± 7.31 micron | 3D Analysis group IDI: 100.96 ± 22.53 micron group DDI: 72.05 ± 8.16 micron |
3.3. Quality Assessment
4. Discussion
5. Conclusions
- -
- direct view method is the most common technique used for fit evaluation on partial crown, but 2D analysis does not allow a properly evaluation of the whole specimen;
- -
- for in vivo analysis, silicone replica technique and indirect view with SEM can be applied;
- -
- methods that are available for 3D analysis, such as silicone replica technique and triple scan protocol, permit to obtain more consistent data;
- -
- triple scan technique represents a new full digital protocol for 3D analysis of fit in partial crowns, with promising characteristics that makes it suitable for clinical evaluation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dejak, B.; Młotkowski, A. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication. Dent. Mater. 2015, 31, e77–e87. [Google Scholar] [CrossRef]
- Deliperi, S.; Bardwell, D.N. An alternative method to reduce polymerization shrinkage in direct posterior composite restorations. J. Am. Dent. Assoc. 2002, 133, 1387–1398. [Google Scholar] [CrossRef]
- Edelhoff, D.; Sorensen, J.A. Tooth structure removal associated with various preparation designs for posterior teeth. Int. J. Periodontics Restor. Dent. 2002, 22, 241–249. [Google Scholar]
- Ferraris, F. Posterior indirect adhesive restorations (PIAR): Preparation designs and adhesthetics clinical protocol. Int. J. Esthet. Dent. 2017, 12, 482–502. [Google Scholar]
- Arnetzl, G.V.; Arnetzl, G. Reliability of nonretentive all-ceramic CAD/CAM overlays. Int. J. Comput. Dent. 2012, 15, 185–197. [Google Scholar]
- Belli, R.; Petschelt, A.; Hofner, B.; Hajtó, J.; Scherrer, S.S.; Lohbauer, U. Fracture Rates and Lifetime Estimations of CAD/CAM All-ceramic Restorations. J. Dent. Res. 2016, 95, 67–73. [Google Scholar] [CrossRef] [Green Version]
- McGrath, C.E.; Bonsor, S.J. Survival of direct resin composite onlays and indirect tooth-coloured adhesive onlays in posterior teeth: A systematic review. Br. Dent. J. 2022; online ahead of print. [Google Scholar]
- da Veiga, A.M.A.; Cunha, A.C.; Ferreira, D.M.T.P.; Fidalgo, T.; Chianca, T.K.; Reis, K.R.; Maia, L.C. Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and meta-analysis. J. Dent. 2016, 54, 1–12. [Google Scholar] [CrossRef]
- Davidowitz, G.; Kotick, P.G. The use of CAD/CAM in dentistry. Dent. Clin. N. Am. 2011, 55, 559–570. [Google Scholar] [CrossRef]
- Mörmann, W.H. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137, 7S–13S. [Google Scholar] [CrossRef]
- Berrendero, S.; Salido, M.P.; Valverde, A.; Ferreiroa, A.; Pradíes, G. Influence of conventional and digital intraoral impressions on the fit of CAD/CAM-fabricated all-ceramic crowns. Clin. Oral Investig. 2016, 20, 2403–2410. [Google Scholar] [CrossRef]
- Tigmeanu, C.V.; Ardelean, L.C.; Rusu, L.C.; Negrutiu, M.L. Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers 2022, 14, 3658. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.J.; Jeong, I.D.; Kim, W.C.; Kim, J.H. A comparative study of additive and subtractive manufacturing for dental restorations. J. Prosthet. Dent. 2017, 118, 187–193. [Google Scholar] [CrossRef]
- Yuzbasioglu, E.; Kurt, H.; Turunc, R.; Bilir, H. Comparison of digital and conventional impression techniques: Evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health 2014, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Vagropoulou, G.I.; Klifopoulou, G.L.; Vlahou, S.G.; Hirayama, H.; Michalakis, K. Complications and survival rates of inlays and onlays vs complete coverage restorations: A systematic review and analysis of studies. J. Oral Rehabil. 2018, 45, 903–920. [Google Scholar] [CrossRef]
- Naik, V.B.; Jain, A.K.; Rao, R.D.; Naik, B.D. Comparative evaluation of clinical performance of ceramic and resin inlays, onlays, and overlays: A systematic review and meta analysis. J. Conserv. Dent. 2022, 25, 347–355. [Google Scholar] [CrossRef]
- Nawafleh, N.A.; Mack, F.; Evans, J.; Mackay, J.; Hatamleh, M.M. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: A literature review. J. Prosthodont. 2013, 22, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2019, 121, 590–597. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; McKenzie, J.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J. Prosthet. Dent. 2022; online ahead of print. [Google Scholar]
- Rozan, S.; Takahashi, R.; Nikaido, T.; Tichy, A.; Tagami, J. CAD/CAM-fabricated inlay restorations: Can the resin-coating technique improve bond strength and internal adaptation? Dent. Mater. J. 2020, 39, 941–949. [Google Scholar] [CrossRef]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2018, 119, 384–389. [Google Scholar] [CrossRef]
- Ahlholm, P.; Sipilä, K.; Vallittu, P.; Kotiranta, U.; Lappalainen, R. Accuracy of inlay and onlay restorations based on 3D printing or milling technique—A pilot study. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 56–64. [Google Scholar]
- Son, K.; Cho, H.; Kim, H.; Lee, W.; Cho, M.; Jeong, H.; Kim, K.H.; Lee, D.-H.; Kim, S.-Y.; Lee, K.-B.; et al. Dental diagnosis for inlay restoration using an intraoral optical coherence tomography system: A case report. J. Prosthodont. Res. 2023, 67, 305–310. [Google Scholar] [CrossRef]
- Patel, T.; Nathwani, N.; Fine, P.; Leung, A. A Scoping Review of Marginal and Internal Fit Accuracy of Lithium Disilicate Restorations. Dent. J. 2022, 10, 236. [Google Scholar] [CrossRef]
- Bastos, N.A.; Bitencourt, S.B.; Carneiro, R.F.; Ferrairo, B.M.; Strelhow, S.S.F.; dos Santos, D.M.; Bombonatti, J.F.S. Marginal and internal adaptation of lithium disilicate partial restorations: A systematic review and meta-analysis. J. Indian. Prosthodont. Soc. 2020, 20, 338–344. [Google Scholar] [CrossRef]
- Aslan, Y.U.; Coskun, E.; Ozkan, Y.; Dard, M. Clinical Evaluation of Three Types of CAD/CAM Inlay/Onlay Materials After 1-Year Clinical Follow Up. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 131–140. [Google Scholar]
- Müller, V.; Friedl, K.H.; Friedl, K.; Hahnel, S.; Handel, G.; Lang, R. Influence of proximal box elevation technique on marginal integrity of adhesively luted Cerec inlays. Clin. Oral Investig. 2017, 21, 607–612. [Google Scholar] [CrossRef]
- Sener-Yamaner, I.D.; Sertgöz, A.; Toz-Akalın, T.; Özcan, M. Effect of material and fabrication technique on marginal fit and fracture resistance of adhesively luted inlays made of CAD/CAM ceramics and hybrid materials. J. Adhes. Sci. Technol. 2016, 31, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Alajaji, N.K.; Bardwell, D.; Finkelman, M.; Ali, A. Micro-CT Evaluation of Ceramic Inlays: Comparison of the Marginal and Internal Fit of Five and Three Axis CAM Systems with a Heat Press Technique. J. Esthet. Restor. Dent. 2017, 29, 49–58. [Google Scholar] [CrossRef]
- Uzgur, R.; Ercan, E.; Uzgur, Z.; Çolak, H.; Yalçın, M.; Özcan, M. Cement Thickness of Inlay Restorations Made of Lithium Disilicate, Polymer-Infiltrated Ceramic and Nano-Ceramic CAD/CAM Materials Evaluated Using 3D X-ray Micro-Computed Tomography. J. Prosthodont. 2018, 27, 456–460. [Google Scholar] [CrossRef] [Green Version]
- Ashy, L.M.; Marghalani, H.; Silikas, N. In Vitro Evaluation of Marginal and Internal Adaptations of Ceramic Inlay Restorations Associated with Immediate vs Delayed Dentin Sealing Techniques. Int. J. Prosthodont. 2020, 33, 48–55. [Google Scholar] [CrossRef]
- Han, S.H.; Shimada, Y.; Sadr, A.; Tagami, J.; Kum, K.Y.; Park, S.H. Effect of Pretreatment and Activation Mode on the Interfacial Adaptation of Nanoceramic Resin Inlay and Self-Adhesive Resin Cement. Dent. Mater. 2020, 36, 1170–1182. [Google Scholar] [CrossRef]
- Revilla-León, M.; Olea-Vielba, M.; Esteso-Saiz, A.; Martínez-Klemm, I.; Özcan, M. Marginal and Internal Gap of Handmade, Milled and 3D Printed Additive Manufactured Patterns for Pressed Lithium Disilicate Onlay Restorations. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 31–38. [Google Scholar]
- Türk, A.G.; Sabuncu, M.; Ünal, S.; Önal, B.; Ulusoy, M. Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography. J. Appl. Oral Sci. 2016, 24, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Baciu, S.; Berece, C.; Florea, A.; Burde, A.V.; Negrutiu, M.L.; Szuhanek, C.; Sinescu, C.; Duma, V.; Manole, M. A Comparative Three- and Bi-dimensional Research of the Marginal Fit of Pressed Lithium Disilicate Inlays. Rev. Chim. 2017, 68, 1316–1319. [Google Scholar] [CrossRef]
- Homsy, F.R.; Özcan, M.; Khoury, M.; Majzoub, Z.A.K. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J. Prosthet. Dent. 2018, 119, 783–790. [Google Scholar] [CrossRef]
- Eftekhar Ashtiani, R.; Nasiri Khanlar, L.; Mahshid, M.; Moshaverinia, A. Comparison of dimensional accuracy of conventionally and digitally manufactured intracoronal restorations. J. Prosthet. Dent. 2018, 119, 233–238. [Google Scholar] [CrossRef]
- Naumova, E.A.; Schiml, F.; Arnold, W.H.; Piwowarczyk, A. Marginal quality of ceramic inlays after three different instrumental cavity preparation methods of the proximal boxes. Clin. Oral Investig. 2019, 23, 793–803. [Google Scholar] [CrossRef]
- Ayse Gozde, T.; Metin, S.; Mubin, U. Evaluation of adaptation of ceramic inlays using optical coherence tomography and replica technique. Braz. Oral Res. 2018, 32, e005. [Google Scholar] [CrossRef]
- Monaco, C.; Bortolotto, T.; Arena, A.; Krejci, I. Restoring Nonvital Premolars with Composite Resin Onlays: Effect of Different Fiber-reinforced Composite Layers on Marginal Adaptation and Fracture Load. J. Adhes. Dent. 2015, 17, 567–574. [Google Scholar]
- Lima, F.F.; Neto, C.F.; Rubo, J.H.; Santos, G.C., Jr.; Moraes Coelho Santos, M.J. Marginal adaptation of CAD-CAM onlays: Influence of preparation design and impression technique. J. Prosthet. Dent. 2018, 120, 396–402. [Google Scholar] [CrossRef]
- Falahchai, M.; Babaee Hemmati, Y.; Neshandar Asli, H.; Neshandar Asli, M. Marginal adaptation of zirconia-reinforced lithium silicate overlays with different preparation designs. J. Esthet. Restor. Dent. 2020, 32, 823–830. [Google Scholar] [CrossRef]
- Neto, C.F.; Santos, G.C.; Santos, M. Influence of the Fabrication Technique on the Marginal and Internal Adaptation of Ceramic Onlays. Oper. Dent. 2020, 45, 163–172. [Google Scholar] [CrossRef]
- Abdul Hamid, N.F.; Wan Bakar, W.Z.; Ariffin, Z. Marginal Gap Evaluation of Metal Onlays and Resin Nanoceramic Computer-Aided Design and Computer-Aided Manufacturing Blocks Onlays. Eur. J. Dent. 2019, 13, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Oz, F.D.; Bolay, S. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique. Int. J. Dent. 2018, 2018, 5152703. [Google Scholar] [CrossRef] [Green Version]
- Alenezi, A.; Yehya, M. Evaluating the Accuracy of Dental Restorations Manufactured by Two CAD/CAM Milling Systems and Their Prototypes Fabricated by 3D Printing Methods: An In Vitro Study. Int. J. Prosthodont. 2021, 36, 293–300. [Google Scholar] [CrossRef]
- Qian, K.; Yang, X.; Feng, H.; Liu, Y. Marginal adaptation of different hybrid ceramic inlays after thermal cycling. Adv. Appl. Ceram. 2020, 119, 284–290. [Google Scholar] [CrossRef]
- Gudugunta, L.; Mynampati, P.; Jeevan, M.B.; Kumar, S.M.; Akkaloori, A.; Tejavath, S.K. The marginal discrepancy of lithium disilicate onlays: Computer-aided design versus press. J. Conserv. Dent. 2019, 22, 336–339. [Google Scholar] [CrossRef]
- Qian, K.; Li, B.; Pu, T.; Bai, T.; Liu, Y. Fitness of self-glazed zirconia onlays using conventional and digital impressions. Adv. Appl. Ceram. 2022, 121, 93–100. [Google Scholar] [CrossRef]
- Daher, R.; Ardu, S.; di Bella, E.; Krejci, I.; Duc, O. Efficiency of 3D-printed composite resin restorations compared with subtractive materials: Evaluation of fatigue behavior, cost, and time of production. J. Prosthet. Dent. 2022; online ahead of print. [Google Scholar]
- Negucioiu, M.; Popa, D.; Condor, D.; Culcitchi, C.; Prodan, D.; Moldovan, M.; Buduru, S. Multivariate Assessment of Marginal Fit Concerning Two Types of Dental Inlays Obtained Through Two CAD-CAM Technology Scanning Methods—An in vitro Follow-up Study. Rev. Chim. 2019, 70, 3136–3141. [Google Scholar] [CrossRef]
- Soliman, S.; Casel, C.; Krug, R.; Krastl, G.; Hahn, B. Influence of filler geometry and viscosity of composite luting materials on marginal adhesive gap width and occlusal surface height of all-ceramic partial crowns. Dent. Mater. 2022, 38, 601–612. [Google Scholar] [CrossRef]
- Frankenberger, R.; Winter, J.; Dudek, M.C.; Naumann, M.; Amend, S.; Braun, A.; Krämer, N.; Roggendorf, M.J. Post-Fatigue Fracture and Marginal Behavior of Endodontically Treated Teeth: Partial Crown vs. Full Crown vs. Endocrown vs. Fiber-Reinforced Resin Composite. Materials 2021, 14, 7733. [Google Scholar] [CrossRef]
- Rippe, M.P.; Monaco, C.; Volpe, L.; Bottino, M.A.; Scotti, R.; Valandro, L.F. Different Methods for Inlay Production: Effect on Internal and Marginal Adaptation, Adjustment Time, and Contact Point. Oper. Dent. 2017, 42, 436–444. [Google Scholar] [CrossRef]
- Sharma, A.; Abraham, D.; Gupita, A.; Singh, A.; Sharma, N. Comparative Evaluation of the Marginal Fit of Inlays Fabricated by Conventional and Digital Impression Techniques: A Stereomicroscopic Study. Contemp. Clin. Dent. 2020, 11, 237–244. [Google Scholar] [CrossRef]
- Lim, Y.A.; Kim, J.M.; Choi, Y.; Park, S. Evaluation of Fitness and Accuracy of Milled and Three-Dimensionally Printed Inlays. Eur. J. Dent. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Merrill, T.C.; Mackey, T.; Luc, R.; Lung, D.; Naseem, A.; Abduo, J. Effect of Chairside CAD/CAM Restoration Type on Marginal Fit Accuracy: A Comparison of Crown, Inlay and Onlay Restorations. Eur. J. Prosthodont. Restor. Dent. 2021, 29, 119–127. [Google Scholar]
- Bayrak, A.; Akat, B.; Ocak, M.; Kιlιçarslan, M.A.; Özcan, M. Micro-Computed Tomography Analysis of Fit of Ceramic Inlays Produced with Different CAD Software Programs. Eur. J. Prosthodont. Restor. Dent. 2021, 29. [Google Scholar] [CrossRef]
- Ekici, Z.; Kılıçarslan, M.A.; Bilecenoğlu, B.; Ocak, M. Micro-CT Evaluation of the Marginal and Internal Fit of Crown and Inlay Restorations Fabricated Via Different Digital Scanners belonging to the Same CAD-CAM System. Int. J. Prosthodont. 2021, 34, 381–389. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Z.; Zhou, J.; Chen, L.; Tan, J. Effect of tooth preparation design on marginal adaptation of composite resin CAD-CAM onlays. J. Prosthet. Dent. 2020, 124, 88–93. [Google Scholar] [CrossRef]
- Zimmermann, M.; Valcanaia, A.; Neiva, G.; Mehl, A.; Fasbinder, D. Influence of Different CAM Strategies on the Fit of Partial Crown Restorations: A Digital Three-dimensional Evaluation. Oper. Dent. 2018, 43, 530–538. [Google Scholar] [CrossRef]
- Kassis, C.; Mehanna, C.; Khoury, P.; Tohme, H.; Cuevas-Suárez, C.E.; Bourgi, R.; Lukomska-Szymanska, M.; Hardan, L. Triple scan evaluation of internal and marginal adaptation of overlays using different restorative materials. J. Esthet. Restor. Dent. 2023, 35, 493–500. [Google Scholar] [CrossRef]
- Holst, S.; Karl, M.; Wichmann, M.; Matta, R.E. A new triple-scan protocol for 3D fit assessment of dental restorations. Quintessence Int. 2011, 42, 651–657. [Google Scholar]
- Groten, M.; Axmann, D.; Pröbster, L.; Weber, H. Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. J. Prosthet. Dent. 2000, 83, 40–49. [Google Scholar] [CrossRef]
- McLean, J.W.; von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef]
- Park, J.M.; Hämmerle, C.H.F.; Benic, G.I. Digital technique for in vivo assessment of internal and marginal fit of fixed dental prostheses. J. Prosthet. Dent. 2017, 118, 452–454. [Google Scholar] [CrossRef] [Green Version]
Clearly Stated Aims/Objectives | Detailed Explanation of Sample Size Calculation | Detailed Explanation of Sampling Technique | Details of Comparison Group | Detailed of Methodology | Ope Rtor Details | Randomization | Method of Measurement of Outcome | Outcome Assessor Details | Blinding | Statistical Analysis | Presentation of Results | SCORE | BIAS EVALUATION (Score x 100/2 x Number of Criteria Applicable) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lima et al. [44] | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 12 | 50.0% Medium risk |
Oz et al. [48] | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 1 | 0 | 2 | 2 | 17 | 70.8% Low risk |
Gudugunta et al. [51] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 14 | 58.3% Medium risk |
Hamid et al. [47] | 2 | 0 | 1 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 14 | 58.3% Medium risk |
Neto et al. [46] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 13 | 54.2% Medium risk |
Qian et al., 2020 [50] | 2 | 0 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 15 | 62.5% Medium risk |
Falanchai et al. [45] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.7% Moderate risk |
Alenezi et al. [49] | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 12 | 50.0% Medium risk |
Merrill et al. [60] | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 14 | 58.3% Medium risk |
Rippe et al. [57] | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 18 | 75.0% Low risk |
Sharma et al. [58] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 17 | 70.8% Low risk |
Lim et al. [59] | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 12 | 50.0% Medium risk |
Negucioiu et al. [54] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 11 | 45.8% High risk |
Frankenberger et al. [56] | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 19 | 79.2% Low risk |
Soliman et al. [55] | 2 | 0 | 1 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 13 | 54.2% Medium risk |
Daher et al. [53] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 13 | 54.2% Medium risk |
Bayrak et al. [61] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 13 | 54.2% Medium risk |
Ekici et al. [62] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 15 | 62.5% Medium risk |
Zimmermann et al. [64] | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 12 | 50.0% Medium risk |
Yang et al. [63] | 2 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 14 | 58.3% Medium risk |
Kassis et al. [65] | 2 | 2 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 17 | 70.8% Low risk |
Qian et al., 2022 [52] | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 12 | 50.0% Medium risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fiore, A.; Zuccon, A.; Carraro, F.; Basilicata, M.; Bollero, P.; Bruno, G.; Stellini, E. Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review. J. Clin. Med. 2023, 12, 5048. https://doi.org/10.3390/jcm12155048
Di Fiore A, Zuccon A, Carraro F, Basilicata M, Bollero P, Bruno G, Stellini E. Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review. Journal of Clinical Medicine. 2023; 12(15):5048. https://doi.org/10.3390/jcm12155048
Chicago/Turabian StyleDi Fiore, Adolfo, Andrea Zuccon, Filippo Carraro, Michele Basilicata, Patrizio Bollero, Giovanni Bruno, and Edoardo Stellini. 2023. "Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review" Journal of Clinical Medicine 12, no. 15: 5048. https://doi.org/10.3390/jcm12155048
APA StyleDi Fiore, A., Zuccon, A., Carraro, F., Basilicata, M., Bollero, P., Bruno, G., & Stellini, E. (2023). Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review. Journal of Clinical Medicine, 12(15), 5048. https://doi.org/10.3390/jcm12155048