ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Vignon, P.; Mekontso-Dessap, A.; Tran, S.; Prat, G.; Chew, M.; Balik, M.; Sanfilippo, F.; Banauch, G.; Clau-Terre, F.; et al. Echocardiography Findings in COVID-19 Patients Admitted to Intensive Care Units: A Multi-National Observational Study (the ECHO-COVID Study). Intensive Care Med. 2022, 48, 667–678. [Google Scholar] [CrossRef]
- Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation 2020, 142, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, Biochemical and Immune Biomarker Abnormalities Associated with Severe Illness and Mortality in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanfilippo, F.; Martucci, G.; La Via, L.; Cuttone, G.; Dimarco, G.; Pulizzi, C.; Arcadipane, A.; Astuto, M. Hemoperfusion and Blood Purification Strategies in Patients with COVID-19: A Systematic Review. Artif. Organs 2021, 45, 1466–1476. [Google Scholar] [CrossRef]
- Whittaker, A.; Anson, M.; Harky, A. Neurological Manifestations of COVID-19: A Systematic Review and Current Update. Acta Neurol. Scand. 2020, 142, 14–22. [Google Scholar] [CrossRef]
- Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J. Med. Virol. 2020, 92, 699–702. [Google Scholar] [CrossRef]
- Klimkiewicz, J.; Pankowski, D.; Wytrychiewicz-Pankowska, K.; Klimkiewicz, A.; Siwik, P.; Klimczuk, J.; Lubas, A. Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital-Preliminary Report. Nutrients 2022, 14, 1580. [Google Scholar] [CrossRef]
- Pei, G.; Zhang, Z.; Peng, J.; Liu, L.; Zhang, C.; Yu, C.; Ma, Z.; Huang, Y.; Liu, W.; Yao, Y.; et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. J. Am. Soc. Nephrol. 2020, 31, 1157–1165. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Der Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 0-89042-575-2. [Google Scholar] [CrossRef]
- Ely, E.W.; Margolin, R.; Francis, J.; May, L.; Truman, B.; Dittus, R.; Speroff, T.; Gautam, S.; Bernard, G.R.; Inouye, S.K. Evaluation of Delirium in Critically Ill Patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit. Care Med. 2001, 29, 1370–1379. [Google Scholar] [CrossRef]
- Maclullich, A.M.J.; Ferguson, K.J.; Miller, T.; de Rooij, S.E.J.A.; Cunningham, C. Unravelling the Pathophysiology of Delirium: A Focus on the Role of Aberrant Stress Responses. J. Psychosom. Res. 2008, 65, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Figiel, G.S.; Krishnan, K.R.; Doraiswamy, P.M. Subcortical Structural Changes in ECT-Induced Delirium. J. Geriatr. Psychiatry Neurol. 1990, 3, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Swartz, R.H.; Sahlas, D.J.; Black, S.E. Strategic Involvement of Cholinergic Pathways and Executive Dysfunction: Does Location of White Matter Signal Hyperintensities Matter? J. Stroke Cerebrovasc. Dis. 2003, 12, 29–36. [Google Scholar] [CrossRef]
- Girard, T.D.; Pandharipande, P.P.; Ely, E.W. Delirium in the Intensive Care Unit. Crit. Care 2008, 12 (Suppl. S3), S3. [Google Scholar] [CrossRef] [Green Version]
- Kotfis, K.; Williams Roberson, S.; Wilson, J.E.; Dabrowski, W.; Pun, B.T.; Ely, E.W. COVID-19: ICU Delirium Management during SARS-CoV-2 Pandemic. Crit. Care 2020, 24, 176. [Google Scholar] [CrossRef] [PubMed]
- Uchikado, H.; Akiyama, H.; Kondo, H.; Ikeda, K.; Tsuchiya, K.; Kato, M.; Oda, T.; Togo, T.; Iseki, E.; Kosaka, K. Activation of Vascular Endothelial Cells and Perivascular Cells by Systemic Inflammation-an Immunohistochemical Study of Postmortem Human Brain Tissues. Acta Neuropathol. 2004, 107, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Mooradian, A.D. Potential Mechanisms of the Age-Related Changes in the Blood-Brain Barrier. Neurobiol. Aging 1994, 15, 751–755, discussion 761. [Google Scholar] [CrossRef]
- Starr, J.M.; Wardlaw, J.; Ferguson, K.; MacLullich, A.; Deary, I.J.; Marshall, I. Increased Blood-Brain Barrier Permeability in Type II Diabetes Demonstrated by Gadolinium Magnetic Resonance Imaging. J. Neurol. Neurosurg. Psychiatry 2003, 74, 70–76. [Google Scholar] [CrossRef]
- Bowman, G.L.; Kaye, J.A.; Moore, M.; Waichunas, D.; Carlson, N.E.; Quinn, J.F. Blood-Brain Barrier Impairment in Alzheimer Disease: Stability and Functional Significance. Neurology 2007, 68, 1809–1814. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, K.J.; Yue, J.; Robinson, T.N.; Inouye, S.K.; Needham, D.M. Antipsychotic Medication for Prevention and Treatment of Delirium in Hospitalized Adults: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2016, 64, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Burry, L.; Hutton, B.; Williamson, D.R.; Mehta, S.; Adhikari, N.K.J.; Cheng, W.; Wes Ely, E.; Egerod, I.; Fergusson, D.A.; Rose, L. Pharmacological Interventions for the Treatment of Delirium in Critically Ill Adults. Cochrane Database Syst. Rev. 2019, 2019, CD011749. [Google Scholar] [CrossRef]
- Aiello, G.; Cuocina, M.; La Via, L.; Messina, S.; Attaguile, G.A.; Cantarella, G.; Sanfilippo, F.; Bernardini, R. Melatonin or Ramelteon for Delirium Prevention in the Intensive Care Unit: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 435. [Google Scholar] [CrossRef]
- Mart, M.F.; Williams Roberson, S.; Salas, B.; Pandharipande, P.P.; Ely, E.W. Prevention and Management of Delirium in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2021, 42, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Barnes-Daly, M.A.; Phillips, G.; Ely, E.W. Improving Hospital Survival and Reducing Brain Dysfunction at Seven California Community Hospitals. Crit. Care Med. 2017, 45, 171–178. [Google Scholar] [CrossRef]
- Pun, B.T.; Balas, M.C.; Barnes-Daly, M.A.; Thompson, J.L.; Aldrich, J.M.; Barr, J.; Byrum, D.; Carson, S.S.; Devlin, J.W.; Engel, H.J.; et al. Caring for Critically Ill Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15,000 Adults. Crit. Care Med. 2019, 47, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Aung Thein, M.Z.; Pereira, J.V.; Nitchingham, A.; Caplan, G.A. A Call to Action for Delirium Research: Meta-Analysis and Regression of Delirium Associated Mortality. BMC Geriatr. 2020, 20, 325. [Google Scholar] [CrossRef] [PubMed]
- Ely, E.W.; Shintani, A.; Truman, B.; Speroff, T.; Gordon, S.M.; Harrell, F.E.; Inouye, S.K.; Bernard, G.R.; Dittus, R.S. Delirium as a Predictor of Mortality in Mechanically Ventilated Patients in the Intensive Care Unit. J. Am. Med. Assoc. 2004, 291, 1753–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salluh, J.I.F.; Wang, H.; Schneider, E.B.; Nagaraja, N.; Yenokyan, G.; Damluji, A.; Serafim, R.B.; Stevens, R.D. Outcome of Delirium in Critically Ill Patients: Systematic Review and Meta-Analysis. BMJ 2015, 350, h2538. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, N.; House, A.O.; Holmes, J.D. Occurrence and outcome of delirium in medical in-patients: A systematic literature review. Age Ageing 2006, 35, 350–364. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; He, L.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; et al. Organ Distribution of Severe Acute Respiratory Syndrome (SARS) Associated Coronavirus (SARS-CoV) in SARS Patients: Implications for Pathogenesis and Virus Transmission Pathways. J. Pathol. 2004, 203, 622–630. [Google Scholar] [CrossRef]
- Gu, J.; Gong, E.; Zhang, B.; Zheng, J.; Gao, Z.; Zhong, Y.; Zou, W.; Zhan, J.; Wang, S.; Xie, Z.; et al. Multiple Organ Infection and the Pathogenesis of SARS. J. Exp. Med. 2005, 202, 415–424. [Google Scholar] [CrossRef]
- Li, Y.-C.; Bai, W.-Z.; Hirano, N.; Hayashida, T.; Taniguchi, T.; Sugita, Y.; Tohyama, K.; Hashikawa, T. Neurotropic Virus Tracing Suggests a Membranous-Coating-Mediated Mechanism for Transsynaptic Communication. J. Comp. Neurol. 2013, 521, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Bai, W.-Z.; Hashikawa, T. The Neuroinvasive Potential of SARS-CoV2 May Play a Role in the Respiratory Failure of COVID-19 Patients. J. Med. Virol. 2020, 92, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Glass, W.G.; Subbarao, K.; Murphy, B.; Murphy, P.M. Mechanisms of Host Defense Following Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) Pulmonary Infection of Mice. J. Immunol. 2004, 173, 4030–4039. [Google Scholar] [CrossRef] [Green Version]
- Arbour, N.; Day, R.; Newcombe, J.; Talbot, P.J. Neuroinvasion by Human Respiratory Coronaviruses. J. Virol. 2000, 74, 8913–8921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, H.; Fan, R.; Wen, B.; Zhang, J.; Cao, X.; Wang, C.; Song, Z.; Li, S.; Li, X.; et al. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology 2016, 59, 163–169. [Google Scholar] [CrossRef]
- Wiesmann, M.; Kiliaan, A.J.; Claassen, J.A.H.R. Vascular Aspects of Cognitive Impairment and Dementia. J. Cereb. Blood Flow Metab. 2013, 33, 1696–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.C.; Tayler, H.M.; Love, S. Endothelin-Converting Enzyme-1 Activity, Endothelin-1 Production, and Free Radical-Dependent Vasoconstriction in Alzheimer’s Disease. J. Alzheimer’s Dis. 2013, 36, 577–587. [Google Scholar] [CrossRef]
- Martire, S.; Mosca, L.; d’Erme, M. PARP-1 Involvement in Neurodegeneration: A Focus on Alzheimer’s and Parkinson’s Diseases. Mech. Ageing Dev. 2015, 146–148, 53–64. [Google Scholar] [CrossRef]
- Iacono, K.T.; Kazi, L.; Weiss, S.R. Both Spike and Background Genes Contribute to Murine Coronavirus Neurovirulence. J. Virol. 2006, 80, 6834–6843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Stohlman, S.A.; Hinton, D.R.; Marten, N.W. Neutrophils Promote Mononuclear Cell Infiltration during Viral-Induced Encephalitis. J. Immunol. 2003, 170, 3331–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Templeton, S.P.; Kim, T.S.; O’Malley, K.; Perlman, S. Maturation and Localization of Macrophages and Microglia during Infection with a Neurotropic Murine Coronavirus. Brain Pathol. 2008, 18, 40–51. [Google Scholar] [CrossRef]
- Beghi, E.; Giussani, G.; Westenberg, E.; Allegri, R.; Garcia-Azorin, D.; Guekht, A.; Frontera, J.; Kivipelto, M.; Mangialasche, F.; Mukaetova-Ladinska, E.B.; et al. Acute and post-acute neurological manifestations of COVID-19: Present findings, critical appraisal, and future directions. J. Neurol. 2021, 269, 2265–2274. [Google Scholar] [CrossRef]
- Akbarialiabad, H.; Taghrir, M.H.; Abdollahi, A.; Ghahramani, N.; Kumar, M.; Paydar, S.; Razani, B.; Mwangi, J.; Asadi-Pooya, A.A.; Malekmakan, L.; et al. Long COVID, a comprehensive systematic scoping review. Infection 2021, 49, 1163–1186. [Google Scholar] [CrossRef]
- Tauber, S.C.; Djukic, M.; Gossner, J.; Eiffert, H.; Brück, W.; Nau, R. Sepsis-associated encephalopathy and septic encephalitis: An update. Expert Rev. Anti-Infect. Ther. 2020, 19, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Gofton, T.E.; Bryan Young, G. Sepsis-Associated Encephalopathy. Nat. Rev. Neurol. 2012, 8, 557–566. [Google Scholar] [CrossRef]
- Pan, S.; Lv, Z.; Wang, R.; Shu, H.; Yuan, S.; Yu, Y.; Shang, Y. Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. Oxidative Med. Cell. Longev. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Rebora, P.; Rozzini, R.; Bianchetti, A.; Blangiardo, P.; Marchegiani, A.; Piazzoli, A.; Mazzeo, F.; Cesaroni, G.; Chizzoli, A.; Guerini, F.; et al. Delirium in Patients with SARS-CoV-2 Infection: A Multicenter Study. J. Am. Geriatr. Soc. 2021, 69, 293–299. [Google Scholar] [CrossRef]
- Kotfis, K.; Witkiewicz, W.; Szylińska, A.; Witkiewicz, K.; Nalewajska, M.; Feret, W.; Wojczyński, Ł.; Duda, Ł.; Ely, E.W. Delirium Severely Worsens Outcome in Patients with COVID-19-A Retrospective Cohort Study from Temporary Critical Care Hospitals. J. Clin. Med. 2021, 10, 2974. [Google Scholar] [CrossRef]
- Saini, A.; Oh, T.H.; Ghanem, D.A.; Castro, M.; Butler, M.; Sin Fai Lam, C.C.; Posporelis, S.; Lewis, G.; David, A.S.; Rogers, J.P. Inflammatory and Blood Gas Markers of COVID-19 Delirium Compared to Non-COVID-19 Delirium: A Cross-Sectional Study. Aging Ment. Health 2022, 26, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Herrmann, F.R.; Périvier, S.; Gold, G.; Graf, C.E.; Zekry, D. Delirium in Older Patients With COVID-19: Prevalence, Risk Factors, and Clinical Relevance. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, e142–e146. [Google Scholar] [CrossRef]
- Wilke, V.; Sulyok, M.; Stefanou, M.-I.; Richter, V.; Bender, B.; Ernemann, U.; Ziemann, U.; Malek, N.; Kienzle, K.; Klein, C.; et al. Delirium in Hospitalized COVID-19 Patients: Predictors and Implications for Patient Outcome. PLoS ONE 2022, 17, e0278214. [Google Scholar] [CrossRef] [PubMed]
- A Geerse, D.; Bindels, A.J.; A Kuiper, M.; Roos, A.N.; E Spronk, P.; Schultz, M.J. Treatment of hypophosphatemia in the intensive care unit: A review. Crit. Care 2010, 14, R147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef]
- Barak, V.; Schwartz, A.; Kalickman, I.; Nisman, B.; Gurman, G.; Shoenfeld, Y. Prevalence of Hypophosphatemia in Sepsis and Infection: The Role of Cytokines. Am. J. Med. 1998, 104, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Shor, R.; Halabe, A.; Rishver, S.; Tilis, Y.; Matas, Z.; Fux, A.; Boaz, M.; Weinstein, J. Severe hypophosphatemia in sepsis as a mortality predictor. Ann. Clin. Lab. Sci. 2006, 36, 67–72. [Google Scholar]
- Wang, H.; Zhang, L.; Liao, W.; Huang, J.; Xu, J.; Yang, J.; Chen, C.; He, Z. Hyperphosphatemia rather than hypophosphatemia indicates a poor prognosis in patients with sepsis. Clin. Biochem. 2021, 91, 9–15. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines 2. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 27 July 2023).
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Executive Summary: Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, 1532–1548. [Google Scholar] [CrossRef]
- Anekar, A.A.; Hendrix, J.M.; Cascella, M. WHO Analgesic Ladder. J. R. Coll. Physicians Edinb. 2023, 38, 284. [Google Scholar] [CrossRef]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Majewski, P.; Rotter, I.; Kotfis, K. COVID-19: Pain Management in Patients with SARS-CoV-2 Infection-Molecular Mechanisms, Challenges, and Perspectives. Brain Sci. 2020, 10, 465. [Google Scholar] [CrossRef] [PubMed]
- Chanques, G.; Constantin, J.-M.; Devlin, J.W.; Ely, E.W.; Fraser, G.L.; Gélinas, C.; Girard, T.D.; Guérin, C.; Jabaudon, M.; Jaber, S.; et al. Analgesia and Sedation in Patients with ARDS. Intensive Care Med. 2020, 46, 2342–2356. [Google Scholar] [CrossRef]
- Duprey, M.S.; Dijkstra-Kersten, S.M.A.; Zaal, I.J.; Briesacher, B.A.; Saczynski, J.S.; Griffith, J.L.; Devlin, J.W.; Slooter, A.J.C. Opioid Use Increases the Risk of Delirium in Critically Ill Adults Independently of Pain. Am. J. Respir. Crit. Care Med. 2021, 204, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Cascella, M. ICU Delirium. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559280/ (accessed on 27 July 2023).
Variable | n | % | |
---|---|---|---|
Status | Deceased | 118 | 35.2 |
Moved to non-COVID-19 ward | 73 | 21.8 | |
Discharged | 114 | 34,0 | |
Gender | Female | 141 | 42.1 |
Male | 194 | 57.9 | |
Ward type | Intensive care unit | 71 | 21.2 |
High-dependency unit | 264 | 78.8 | |
Obesity | 69 | 20.6 | |
Malignancy | 44 | 13.1 | |
Hypertension | 192 | 57.3 | |
Chronic kidney disease | 43 | 12.8 | |
Diabetes | 85 | 25.4 | |
Coronary heart disease | 54 | 16.1 | |
Heart failure | 37 | 11.0 | |
History of myocardial Infarction | 24 | 7.2 | |
Chronic atrial fibrillation | 51 | 15.2 | |
Tobacco smoker | 27 | 8.1 | |
Asthma | 18 | 5.4 | |
Chronic obstructive pulmonary disease | 17 | 5.1 | |
Dementia | 15 | 4.5 | |
Delirium onset | 72 | 21.5 |
Variable | Delirium | Non-Delirium | Significance p | ||
---|---|---|---|---|---|
(n = 72) | (n = 263) | ||||
N | % | n | % | ||
Deceased | 43 | 59.7% | 75 | 28.5% | <0.001 |
Gender (female) | 42 | 58.3% | 99 | 37.6% | 0.002 |
Ward (HDU) | 64 | 88.9% | 200 | 76.0% | 0.022 |
Obesity | 11 | 15.3% | 58 | 22.1% | 0.208 |
Malignancy | 7 | 9.7% | 37 | 14.1% | 0.432 |
Hypertension | 44 | 61.1% | 148 | 56.3% | 0.462 |
Chronic kidney disease | 13 | 18.1% | 30 | 11.4% | 0.135 |
Diabetes | 22 | 30.6% | 63 | 24.0% | 0.254 |
Coronary artery disease | 18 | 25.0% | 36 | 13.7% | 0.021 |
Heart failure | 9 | 12.5% | 28 | 10.6% | 0.673 |
History of myocardial infarction | 11 | 15.3% | 13 | 4.9% | 0.003 |
Chronic atrial fibrillation | 22 | 30.6% | 29 | 11.0% | <0.001 |
Tobacco smoker | 5 | 6.9% | 22 | 8.4% | 0.811 |
Asthma | 3 | 4.2% | 15 | 5.7% | 0.773 |
Chronic obstructive pulmonary disease | 3 | 4.2% | 14 | 5.3% | 0.969 |
Preexisting dementia | 6 | 8.33% | 9 | 3.42% | 0.002 |
Delirium (n = 72) | Non-Delirium (n = 263) | Significance p | |||
---|---|---|---|---|---|
Variable | Mean ± SD | Median (Min, Max) | Mean ± SD | Median (Min, Max) | |
Age (years) | 76.1 ± 13.7 | 78 (35, 100) | 63.1 ± 14.4 | 66 (19, 97) | <0.001 |
HGB [g/dL] | 11.9 ± 2.4 | 11.9 (7.1, 20.1) | 12.4 ± 2.2 | 11.9 (6.4, 16.7) | 0.186 |
Albumin [g/dL] | 2.9 ± 0.4 | 3.0 (2.2, 3.8) | 3.3 ± 3.6 | 2.9 (1.6, 32.7) | 0.638 |
ALT [U/L] | 81.9 ± 246.8 | 39.0 (5.0, 1697.0) | 63.8 ± 52.1 | 50.0 (5.0, 386.0) | 0.02 |
AST [U/L] | 99.3 ± 339.4 | 47.0 (10.0, 2317.0) | 45.1 ± 28.2 | 37.0 (10.0, 163.0) | 0.35 |
CRP [mg/L] | 11.2 ± 8.1 | 10.4 (0.6, 38.9) | 7.6 ± 10.8 | 3.3 (0.1, 58.2) | <0.001 |
TP [g/dL] | 5.9 ± 0.6 | 6.0 (4.6, 6.8) | 5.6 ± 0.7 | 5.6 (4.8, 7.0) | 0.276 |
Bilirubin [mg/dL] | 1.2 ± 3.4 | 0.5 (0.1, 19.5) | 0.5 ± 0.3 | 0.5 (0.2, 2.2) | 0.395 |
CHOL [mg/dL] | 175.8 ± 61.4 | 168.5 (110.0, 292.0) | 170.8 ± 50.5 | 178.0 (40.0, 302.0) | 0.791 |
LDH [U/L] | 674.9 ± 1282.7 | 387.5 (61.0, 7087.0) | 428.6 ± 196.6 | 386.5 (87.0, 1096.0) | 0.708 |
Ferritin [ug/L] | 2064.2 ± 5520.5 | 825.0 (117.0, 34,243.0) | 1928.3 ± 4432.1 | 1100.0 (45.0, 46,830.0) | 0.41 |
Fibrinogen [mg/dL] | 543.6 ± 192.6 | 538.0 (177.0, 915.0) | 470.3 ± 178.9 | 448.0 (175.0, 993.0) | 0.115 |
Phosphates [mg/dL] | 3.6 ± 1.0 | 3.3 (2.0, 5.6) | 4.9 ± 2.1 | 4.3 (1.7, 12.4) | 0.016 |
INR | 1.7 ± 1.8 | 1.2 (0.8, 11.6) | 1.2 ± 0.2 | 1.14 (0.9; 2,1) | <0.001 |
Creatinine [mg/dL] | 1.6 ± 1.7 | 1.0 (0.3, 9.8) | 1.5 ± 2.0 | 0.8 (0.3, 13.5) | 0.026 |
Urea [mg/dL] | 89.9 ± 67.5 | 70.0 (25.0, 417.0) | 67.6 ± 50.0 | 47.0 (13.0, 280.0) | 0.001 |
PLT [K/uL] | 250.6 ± 125.2 | 231.5 (46.0, 577.0) | 284.9 ± 112.5 | 278.0 (32.0, 624.0) | 0.04 |
Dimer D [ug/L] | 6.3 ± 14.8 | 1.7(0.3, 87.5) | 6.7 ± 15.8 | 1.6 (0.18, 113.13) | 0.717 |
PCT [ng/mL] | 6.20 ± 16.85 | 0.34 (0.04, 75.42) | 1.87 ± 5.14 | 0.19 (0,03; 31.64) | 0.048 |
WBC [109/L] | 11.1 ± 6.5 | 9.9 (3.41, 46.59) | 12.4 ± 7.4 | 10.7(1.5, 49.0) | 0.251 |
Variable | Odds Ratio | 95% CI | Significance p |
---|---|---|---|
Male gender | 0.43 | 0.25–0.73 | 0.002 |
Age | 1.08 | 1.05–1.11 | <0.001 |
HDU stay | 2.52 | 1.15–5.54 | 0.022 |
Coronary artery disease | 2.10 | 1.11–3.98 | 0.022 |
History of myocardial infarction | 3.47 | 1.48–8.12 | 0.004 |
Chronic atrial fibrillation | 3.55 | 1.89–6.68 | <0.001 |
C-reactive protein | 1.31 | 1.03–1.06 | 0.003 |
Procalcitonin | 1.04 | 1.00–1.09 | 0.047 |
Phosphates | 0.59 | 0.37–0.95 | 0.03 |
International normalized ratio | 16.31 | 2.62–101.40 | 0.003 |
Creatinine | 1.04 | 0.91–1.19 | 0.588 |
Urea | 1.01 | 1.00–1.11 | 0.01 |
Platelets | 0.98 | 0.99–1.00 | 0.041 |
Variable | Odds Ratio | 95% CI | p-Value | AUC | Significance p (AUC) |
---|---|---|---|---|---|
Age | 1.07 | 1.05–1.10 | <0.001 | 0.767 | 0.033 |
Chronic atrial fibrillation | 2.90 | 1.06–4.14 | 0.035 |
Variable | Odds Ratio | 95% CI | p-Value | AUC | Significance p (AUC) |
---|---|---|---|---|---|
Phosphates | 0.62 | 0.44–0.88 | 0.008 | 0.683 | 0.037 |
Urea | 1.01 | 1.00–1.01 | 0.008 | ||
INR | 12.60 | 1.83–86.81 | 0.010 | ||
Procalcitonin | 1.05 | 1.00–1.10 | 0.033 |
Medication | Delirium | Non-Delirium | Significance p | ||
---|---|---|---|---|---|
(n = 72) | (n = 263) | ||||
n | % | n | % | ||
Ketoprofen | 1 | 1.39 | 9 | 3.42 | 0.696 |
Metamizole | 4 | 5.56 | 15 | 5.70 | 1.000 |
Paracetamol | 21 | 29.17 | 100 | 38.02 | 0.166 |
Dexmedetomidine | 10 | 13.89 | 23 | 8.75 | 0.194 |
Tramadol | 5 | 6.94 | 9 | 3.24 | 0.186 |
Morphine | 26 | 36.11 | 19 | 7.22 | <0.001 |
Fentanyl | 6 | 8.45 | 51 | 19.39 | 0.030 |
BZD | 13 | 18.06 | 44 | 16.73 | 0.791 |
Hydroxyzine | 16 | 22.22 | 65 | 24.71 | 0.662 |
Quetiapine | 23 | 31.94 | 22 | 8.37 | <0.001 |
Haloperidol | 20 | 27.78 | 14 | 5.32 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutowski, M.; Klimkiewicz, J.; Michałowski, A.; Ordak, M.; Możański, M.; Lubas, A. ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia. J. Clin. Med. 2023, 12, 5049. https://doi.org/10.3390/jcm12155049
Gutowski M, Klimkiewicz J, Michałowski A, Ordak M, Możański M, Lubas A. ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia. Journal of Clinical Medicine. 2023; 12(15):5049. https://doi.org/10.3390/jcm12155049
Chicago/Turabian StyleGutowski, Mateusz, Jakub Klimkiewicz, Andrzej Michałowski, Michal Ordak, Marcin Możański, and Arkadiusz Lubas. 2023. "ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia" Journal of Clinical Medicine 12, no. 15: 5049. https://doi.org/10.3390/jcm12155049
APA StyleGutowski, M., Klimkiewicz, J., Michałowski, A., Ordak, M., Możański, M., & Lubas, A. (2023). ICU Delirium Is Associated with Cardiovascular Burden and Higher Mortality in Patients with Severe COVID-19 Pneumonia. Journal of Clinical Medicine, 12(15), 5049. https://doi.org/10.3390/jcm12155049