Effect of Obesity on Lung Function in the Pediatric and Adult Populations with Asthma: A Review
Abstract
:1. Introduction
2. The Obesity-Related Asthma Phenotypes
3. Lung Obstructive Pattern vs. Dysanapsis in Children with Asthma and Obesity
4. Complementary Studies to Evaluate Lung Function in Patients with Asthma and Obesity
4.1. Impulse Oscillometry
4.2. Exhaled Fraction of Nitric Oxide
5. Metabolic Alterations Related to Lung Function in Obesity-Related Asthma Phenotype
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Purnell, J.Q. Definitions, Classification, and Epidemiology of Obesity. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2023. [Google Scholar]
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.C.; Davy, O.; Fink, S.; Fryar, C.D.; Gu, Q.; Hales, C.; Hughes, J.P.; et al. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes; National Health Statistics Reports; National Center for Health Statistics (U.S.): Hyattsville, MD, USA, 2021; p. 158.
- Parameswaran, K.; Todd, D.C.; Soth, M. Altered respiratory physiology in obesity. Can. Respir. J. 2006, 13, 203–210. [Google Scholar] [CrossRef]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma (GINA) Strategy 2021—Executive summary and rationale for key changes. Eur. Respir. J. 2021, 59, 2102730. [Google Scholar] [CrossRef]
- Asher, M.I.; Rutter, C.E.; Bissell, K.; Chiang, C.Y.; El Sony, A.; Ellwood, E.; Ellwood, P.; García-Marcos, L.; Marks, G.B.; Morales, E.; et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet 2021, 398, 1569–1580. [Google Scholar] [CrossRef]
- Song, P.; Adeloye, D.; Salim, H.; Dos Santos, J.P.; Campbell, H.; Sheikh, A.; Rudan, I. Global, regional, and national prevalence of asthma in 2019: A systematic analysis and modelling study. J. Glob. Health 2022, 12, 4052. [Google Scholar] [CrossRef]
- Forno, E.; Young, O.M.; Kumar, R.; Simhan, H.; Celedón, J.C. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics 2014, 134, e535–e546. [Google Scholar] [CrossRef]
- Harskamp-van Ginkel, M.W.; London, S.J.; Magnus, M.C.; Gademan, M.G.; Vrijkotte, T.G. A Study on Mediation by Offspring BMI in the Association between Maternal Obesity and Child Respiratory Outcomes in the Amsterdam Born and Their Development Study Cohort. PLoS ONE 2015, 10, e0140641. [Google Scholar] [CrossRef]
- Zein, J.G.; Erzurum, S.C. Asthma is Different in Women. Curr. Allergy Asthma Rep. 2015, 15, 28. [Google Scholar] [CrossRef]
- Graziottin, A.; Serafini, A. Perimenstrual asthma: From pathophysiology to treatment strategies. Multidiscip. Respir. Med. 2016, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.A., Jr. Physiology of the menstrual cycle. Am. J. Clin. Nutr. 1975, 28, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Vega, A.; Sánchez, J.L.; Maldonado, J.A.; Borrero, F.; Rico, I.V.; Vázquez, R.; Alvarez, F. Premenstrual asthma and atopy markers. Ann. Allergy Asthma Immunol. 2010, 105, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Kalogeromitros, D.; Katsarou, A.; Armenaka, M.; Rigopoulos, D.; Zapanti, M.; Stratigos, I. Influence of the menstrual cycle on skin-prick test reactions to histamine, morphine and allergen. Clin. Exp. Allergy 1995, 25, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Nzekwu, M.M. The effects of body mass index on lung volumes. Chest 2006, 130, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Weiner, D.J.; Mullen, J.; Sawicki, G.; Kurland, G.; Han, Y.Y.; Cloutier, M.M.; Canino, G.; Weiss, S.T.; Litonjua, A.A.; et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am. J. Respir. Crit. Care Med. 2017, 195, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.K.; Zhou, X.; Strandvik, B.; Hansson, G.K. Severe hypercholesterolaemia leads to strong Th2 responses to an exogenous antigen. Scand. J. Immunol. 2004, 59, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schwabe, R.F.; DeVries-Seimon, T.; Yao, P.M.; Gerbod-Giannone, M.C.; Tall, A.R.; Davis, R.J.; Flavell, R.; Brenner, D.A.; Tabas, I. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: Model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 2005, 280, 21763–21772. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Hessel, E.M. Functions of T cells in asthma: More than just T(H)2 cells. Nat. Rev. Immunol. 2010, 10, 838–848. [Google Scholar] [CrossRef]
- Grainge, C.L.; Lau, L.C.; Ward, J.A.; Dulay, V.; Lahiff, G.; Wilson, S.; Holgate, S.; Davies, D.E.; Howarth, P.H. Effect of bronchoconstriction on airway remodeling in asthma. N. Engl. J. Med. 2011, 364, 2006–2015, Correction in N. Engl. J. Med. 2018, 378, 2450. https://doi.org/10.1056/NEJMx180023. [Google Scholar] [CrossRef]
- Ray, A.; Oriss, T.B.; Wenzel, S.E. Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 308, L130–L140. [Google Scholar] [CrossRef]
- Schleich, F.N.; Manise, M.; Sele, J.; Henket, M.; Seidel, L.; Louis, R. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs. neutrophilic inflammation. BMC Pulm. Med. 2013, 13, 11. [Google Scholar] [CrossRef]
- Moore, W.C.; Hastie, A.T.; Li, X.; Li, H.; Busse, W.W.; Jarjour, N.N.; Wenzel, S.E.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R.; et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J. Allergy Clin. Immunol. 2014, 133, 1557–1563.e5. [Google Scholar] [CrossRef]
- Loza, M.J.; Djukanovic, R.; Chung, K.F.; Horowitz, D.; Ma, K.; Branigan, P.; Barnathan, E.S.; Susulic, V.S.; Silkoff, P.E.; Sterk, P.J.; et al. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir. Res. 2016, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Lefaudeux, D.; De Meulder, B.; Loza, M.J.; Peffer, N.; Rowe, A.; Baribaud, F.; Bansal, A.T.; Lutter, R.; Sousa, A.R.; Corfield, J.; et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J. Allergy Clin. Immunol. 2017, 139, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Sideleva, O.; Dixon, A.E. The many faces of asthma in obesity. J. Cell Biochem. 2014, 115, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Sideleva, O.; Suratt, B.T.; Black, K.E.; Tharp, W.G.; Pratley, R.E.; Forgione, P.; Dienz, O.; Irvin, C.G.; Dixon, A.E. Obesity and asthma: An inflammatory disease of adipose tissue not the airway. Am. J. Respir. Crit. Care Med. 2012, 186, 598–605. [Google Scholar] [CrossRef]
- Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, 12997. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Jensen, M.E.; Wood, L.G.; Gibson, P.G. Obesity and childhood asthma—Mechanisms and manifestations. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 186–192. [Google Scholar] [CrossRef]
- Boulet, L.P.; Franssen, E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir. Med. 2007, 101, 2240–2247. [Google Scholar] [CrossRef]
- Dixon, A.E.; Holguin, F.; Sood, A.; Salome, C.M.; Pratley, R.E.; Beuther, D.A.; Celedón, J.C.; Shore, S.A. An official American Thoracic Society Workshop report: Obesity and asthma. Proc. Am. Thorac. Soc. 2010, 7, 325–335. [Google Scholar] [CrossRef]
- Forno, E.; Lescher, R.; Strunk, R.; Weiss, S.; Fuhlbrigge, A.; Celedón, J.C.; Childhood Asthma Management Program Research Group. Decreased response to inhaled steroids in overweight and obese asthmatic children. J. Allergy Clin. Immunol. 2011, 127, 741–749. [Google Scholar] [CrossRef]
- Peters-Golden, M.; Swern, A.; Bird, S.S.; Hustad, C.M.; Grant, E.; Edelman, J.M. Influence of body mass index on the response to asthma controller agents. Eur. Respir. J. 2006, 27, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Murr, M.M.; Siadati, M.R.; Sarr, M.G. Results of Bariatric Surgery for Morbid Obesity in Patients Older than 50 Years. Obes. Surg. 1995, 5, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chandrasekhar, A.; DeSantis, S.M.; Almandoz, J.P.; de la Cruz-Muñoz, N.; Messiah, S.E. Discontinuation and reduction of asthma medications after metabolic and bariatric surgery: A systematic review and meta-analysis. Obes. Rev. 2023, 24, 13527. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.E.; Pratley, R.E.; Forgione, P.M.; Kaminsky, D.A.; Whittaker-Leclair, L.A.; Griffes, L.A.; Garudathri, J.; Raymond, D.; Poynter, M.E.; Bunn, J.Y.; et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J. Allergy Clin. Immunol. 2011, 128, 508–515.e152. [Google Scholar] [CrossRef]
- Chaaban, T.A. Bariatric surgery: A potential cure for asthma? Eur. Respir. Rev. 2019, 28, 190003. [Google Scholar] [CrossRef] [PubMed]
- Van Huisstede, A.; Rudolphus, A.; Cabezas, M.C.; Biter, L.U.; van de Geijn, G.J.; Taube, C.; Hiemstra, P.S.; Braunstahl, G.J. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax 2015, 70, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.L.; de Mello, M.T.; Cheik, N.C.; Sanches, P.L.; de Piano, A.; Corgosinho, F.C.; da Silveira Campos, R.M.; Carnier, J.; Inoue, D.; do Nascimento, C.M.; et al. The role of pro-inflammatory and anti-inflammatory adipokines on exercise-induced bronchospasm in obese adolescents undergoing treatment. Respir. Care 2012, 57, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.L.; de Mello, M.T.; Cheik, N.C.; Sanches, P.L.; Correia, F.A.; de Piano, A.; Corgosinho, F.C.; da Silveira Campos, R.M.; do Nascimento, C.M.; Oyama, L.M.; et al. Interdisciplinary therapy improves biomarkers profile and lung function in asthmatic obese adolescents. Pediatr. Pulmonol. 2012, 47, 8–17. [Google Scholar] [CrossRef]
- Lajoie, S.; Lewkowich, I.P.; Suzuki, Y.; Clark, J.R.; Sproles, A.A.; Dienger, K.; Budelsky, A.L.; Wills-Karp, M. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 2010, 11, 928–935. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Van Nimwegen, F.A.; Penders, J.; Stobberingh, E.E.; Postma, D.S.; Koppelman, G.H.; Kerkhof, M.; Reijmerink, N.E.; Dompeling, E.; Van Den Brandt, P.A.; Ferreira, I.; et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol. 2011, 128, 948–955.e553. [Google Scholar] [CrossRef] [PubMed]
- Green, B.J.; Wiriyachaiporn, S.; Grainge, C.; Rogers, G.B.; Kehagia, V.; Lau, L.; Carroll, M.P.; Bruce, K.D.; Howarth, P.H. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS ONE 2014, 9, 100645. [Google Scholar] [CrossRef] [PubMed]
- Stokholm, J.; Blaser, M.J.; Thorsen, J.; Rasmussen, M.A.; Waage, J.; Vinding, R.K.; Schoos, A.M.M.; Kunøe, A.; Fink, N.R.; Chawes, B.L.; et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018, 9, 141, Correction in Nat. Commun. 2018, 9, 704. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Stiemsma, L.T.; Dimitriu, P.A.; Thorson, L.; Russell, S.; Yurist-Doutsch, S.; Kuzeljevic, B.; Gold, M.J.; Britton, H.M.; Lefebvre, D.L.; et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015, 7, 307ra152. [Google Scholar] [CrossRef]
- Durack, J.; Kimes, N.E.; Lin, D.L.; Rauch, M.; McKean, M.; McCauley, K.; Panzer, A.R.; Mar, J.S.; Cabana, M.D.; Lynch, S.V. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 2018, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Bouskra, D.; Brézillon, C.; Bérard, M.; Werts, C.; Varona, R.; Boneca, I.G.; Eberl, G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008, 456, 507–510. [Google Scholar] [CrossRef]
- Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; et al. Disordered microbial communities in asthmatic airways. PLoS ONE 2010, 5, 8578. [Google Scholar] [CrossRef]
- Huang, Y.J.; Nariya, S.; Harris, J.M.; Lynch, S.V.; Choy, D.F.; Arron, J.R.; Boushey, H. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J. Allergy Clin. Immunol. 2015, 136, 874–884. [Google Scholar] [CrossRef]
- Expert Panel Working Group of the National Heart, Lung, and Blood Institute (NHLBI) administered and coordinated National Asthma Education and Prevention Program Coordinating Committee (NAEPPCC); Cloutier, M.M.; Baptist, A.P.; Blake, K.V.; Brooks, E.G.; Bryant-Stephens, T.; DiMango, E.; Dixon, A.E.; Elward, K.S.; Hartert, T.; et al. 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. J. Allergy Clin. Immunol. 2020, 146, 1217–1270. [Google Scholar] [CrossRef]
- Kolsum, U.; Borrill, Z.; Roy, K.; Starkey, C.; Vestbo, J.; Houghton, C.; Singh, D. Impulse oscillometry in COPD: Identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir. Med. 2009, 103, 136–143. [Google Scholar] [CrossRef]
- Chu, Y.T.; Chen, W.Y.; Wang, T.N.; Tseng, H.I.; Wu, J.R.; Ko, Y.C. Extreme BMI predicts higher asthma prevalence and is associated with lung function impairment in school-aged children. Pediatr. Pulmonol. 2009, 44, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Starr, S.; Wysocki, M.; DeLeon, J.D.; Silverstein, G.; Arcoleo, K.; Rastogi, D.; Feldman, J.M. Obesity-related pediatric asthma: Relationships between pulmonary function and clinical outcomes. J. Asthma 2023, 60, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.G.; A Litonjua, A.; Weiss, S.T.; Fuhlbrigge, A.L.; Childhood Asthma Management Program Research Group. Association of body mass with pulmonary function in the Childhood Asthma Management Program (CAMP). Thorax 2003, 58, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Taussig, L.M.; Cota, K.; Kaltenborn, W. Different mechanical properties of the lung in boys and girls. Am. Rev. Respir. Dis. 1981, 123, 640–643. [Google Scholar]
- Dumas, O.; Varraso, R.; Gillman, M.W.; Field, A.E.; Camargo, C.A., Jr. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy 2016, 71, 1295–1304. [Google Scholar] [CrossRef]
- Lieberman, E.; Torday, J.; Barbieri, R.; Cohen, A.; Van Vunakis, H.; Weiss, S.T. Association of intrauterine cigarette smoke exposure with indices of fetal lung maturation. Obstet. Gynecol. 1992, 79, 564–570. [Google Scholar]
- Zosky, G.R.; Hart, P.H.; Whitehouse, A.J.O.; Kusel, M.M.; Ang, W.; Foong, R.E.; Chen, L.; Holt, P.G.; Sly, P.D.; Hall, G.L. Vitamin D deficiency at 16 to 20 weeks’ gestation is associated with impaired lung function and asthma at 6 years of age. Ann. Am. Thorac. Soc. 2014, 11, 571–577. [Google Scholar] [CrossRef]
- Loddo, F.; Nauleau, S.; Lapalus, D.; Tardieu, S.; Bernard, O.; Boubred, F. Association of Maternal Gestational Vitamin D Supplementation with Respiratory Health of Young Children. Nutrients 2023, 15, 2380. [Google Scholar] [CrossRef]
- Chylikova, J.; Dvorackova, J.; Tauber, Z.; Kamarad, V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed. Pap. 2018, 162, 79–82. [Google Scholar] [CrossRef]
- Van den Borst, B.; Souren, N.Y.; Loos, R.J.; Paulussen, A.D.; Derom, C.; Schols, A.M.; Zeegers, M.P. Genetics of maximally attained lung function: A role for leptin? Respir. Med. 2012, 106, 235–242. [Google Scholar] [CrossRef]
- Peters, M.C.; McGrath, K.W.; A Hawkins, G.; Hastie, A.T.; Levy, B.D.; Israel, E.; Phillips, B.R.; Mauger, D.T.; A Comhair, S.; Erzurum, S.C.; et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: A cross-sectional analysis of two cohorts. Lancet Respir. Med. 2016, 4, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Han, Y.Y.; Mullen, J.; Celedón, J.C. Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis. J. Allergy Clin. Immunol. Pract. 2018, 6, 570–581.e10. [Google Scholar] [CrossRef] [PubMed]
- Mead, J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am. Rev. Respir. Dis. 1980, 121, 339–342. [Google Scholar] [PubMed]
- Smith, J.R.; Rosenkranz, S.K.; Harms, C.A. Dysanapsis ratio as a predictor for expiratory flow limitation. Respir. Physiol. Neurobiol. 2014, 198, 25–31. [Google Scholar] [CrossRef]
- Houghton, C.M.; Woodcock, A.A.; Singh, D. A comparison of lung function methods for assessing dose-response effects of salbutamol. Br. J. Clin. Pharmacol. 2004, 58, 134–141. [Google Scholar] [CrossRef]
- Gemicioglu, B.; Musellim, B.; Dogan, I.; Guven, K. Fractional exhaled nitric oxide (FeNo) in different asthma phenotypes. Allergy Rhinol. 2014, 5, 157–161. [Google Scholar] [CrossRef]
- De Albuquerque, C.G.; de Andrade, F.M.D.; Rocha, M.A.d.A.; de Oliveira, A.F.F.; Ladosky, W.; Victor, E.G.; Rizzo, J. Determining respiratory system resistance and reactance by impulse oscillometry in obese individuals. J. Bras. Pneumol. 2015, 41, 422–426. [Google Scholar] [CrossRef]
- De Oliveira Jorge, P.P.; de Lima, J.H.P.; Chong ESilva, D.C.; Medeiros, D.; Solé, D.; Wandalsen, G.F. Impulse oscillometry in the assessment of children’s lung function. Allergol. Immunopathol. 2019, 47, 295–302. [Google Scholar] [CrossRef]
- Lin, L.-M.; Chang, Y.-J.; Yang, K.D.; Lin, C.-H.; Chien, J.-W.; Kao, J.-K.; Lee, M.-S.; Chiang, T.-I.; Tsai, Y.-G. Small Airway Dysfunction Measured by Impulse Oscillometry and Fractional Exhaled Nitric Oxide Is Associated with Asthma Control in Children. Front. Pediatr. 2022, 10, 877681. [Google Scholar] [CrossRef]
- Gochicoa-Rangel, L.; Cantú-González, G.; Miguel-Reyes, J.L.; Rodríguez-Moreno, L.; Torre-Bouscoulet, L. Oscilometría de Impulso: Recomendaciones y Procedimiento. Neumol. Cir. Torax 2014, 78, 124. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0028-37462014000200006&lng=es (accessed on 17 May 2023). [CrossRef]
- Marotta, A.; Klinnert, M.D.; Price, M.R.; Larsen, G.L.; Liu, A.H. Impulse oscillometry provides an effective measure of lung dysfunction in 4-year-old children at risk for persistent asthma. J. Allergy Clin. Immunol. 2003, 112, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Hellinckx, J.; De Boeck, K.; Bande-Knops, J.; van der Poel, M.; Demedts, M. Bronchodilator response in 3–6.5 years old healthy and stable asthmatic children. Eur. Respir. J. 1998, 12, 438–443. [Google Scholar] [CrossRef]
- Assumpção, M.S.; Ribeiro, J.D.; Wamosy, R.M.G.; Figueiredo, F.C.X.S.; Parazzi, P.L.F.; Schivinski, C.I.S. Impulse oscillometry and obesity in children. J. Pediatr. 2018, 94, 419–424. [Google Scholar] [CrossRef]
- Van de Kant, K.D.; Paredi, P.; Meah, S.; Kalsi, H.S.; Barnes, P.J.; Usmani, O.S. The effect of body weight on distal airway function and airway inflammation. Obes. Res. Clin. Pract. 2016, 10, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Lauhkonen, E.; Koponen, P.; Nuolivirta, K.; Paassilta, M.; Toikka, J.; Saari, A.; Korppi, M. Obesity and bronchial obstruction in impulse oscillometry at age 5-7 years in a prospective post-bronchiolitis cohort. Pediatr. Pulmonol. 2015, 50, 908–914. [Google Scholar] [CrossRef]
- Nair, A.; Ward, J.; Lipworth, B.J. Comparison of bronchodilator response in patients with asthma and healthy subjects using spirometry and oscillometry. Ann. Allergy Asthma Immunol. 2011, 107, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Dencker, M.; Malmberg, L.P.; Valind, S.; Thorsson, O.; Karlsson, M.K.; Pelkonen, A.; Pohjanpalo, A.; Haahtela, T.; Turpeinen, M.; Wollmer, P. Reference values for respiratory system impedance by using impulse oscillometry in children aged 2–11 years. Clin. Physiol. Funct. Imaging 2006, 26, 247–250. [Google Scholar] [CrossRef]
- Frei, J.; Jutla, J.; Kramer, G.; Hatzakis, G.E.; Ducharme, F.M.; Davis, G.M. Impulse oscillometry: Reference values in children 100 to 150 cm in height and 3 to 10 years of age. Chest 2005, 128, 1266–1273. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Seo, J.-H.; Kim, H.Y.; Jung, Y.H.; Kwon, J.-W.; Kim, B.-J.; Bin Kim, H.; Lee, S.-Y.; Jang, G.C.; Song, D.J.; et al. Reference values of impulse oscillometry and its utility in the diagnosis of asthma in young Korean children. J. Asthma 2012, 49, 811–816. [Google Scholar] [CrossRef]
- Karrasch, S.; Linde, K.; Rücker, G.; Sommer, H.; Karsch-Völk, M.; Kleijnen, J.; A Jörres, R.; Schneider, A. Accuracy of FENO for diagnosing asthma: A systematic review. Thorax 2017, 72, 109–116. [Google Scholar] [CrossRef]
- Meng, Q.; Polak, J.M.; Edgar, A.J.; Chacon, M.R.; Evans, T.J.; Gruenert, D.C.; Bishop, A.E. Neutrophils enhance expression of inducible nitric oxide synthase in human normal but not cystic fibrosis bronchial epithelial cells. J. Pathol. 2000, 190, 126–132. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar]
- Schneider, A.; Schwarzbach, J.; Faderl, B.; Welker, L.; Karsch-Völk, M.; Jörres, R.A. FENO measurement and sputum analysis for diagnosing asthma in clinical practice. Respir. Med. 2013, 107, 209–216. [Google Scholar] [CrossRef]
- Han, Y.Y.; Forno, E.; Celedón, J.C. Adiposity, fractional exhaled nitric oxide, and asthma in U.S. children. Am. J. Respir. Crit. Care Med. 2014, 190, 32–39. [Google Scholar] [CrossRef]
- Santamaria, F.; Montella, S.; De Stefano, S.; Sperlì, F.; Barbarano, F.; Spadaro, R.; Franzese, A. Asthma, atopy, and airway inflammation in obese children. J. Allergy Clin. Immunol. 2007, 120, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, D.; Holguin, F. Metabolic Dysregulation, Systemic Inflammation, and Pediatric Obesity-related Asthma. Ann. Am. Thorac. Soc. 2017, 14, S363–S367. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.-C.; Ou, L.-S.; Lee, W.-I.; Yeh, K.-W.; Chen, L.-C.; Huang, J.-L.; for the PATCH Study Group. Exhaled nitric oxide discriminates children with and without allergic sensitization in a population-based study. Clin. Exp. Allergy 2011, 41, 556–564. [Google Scholar] [CrossRef] [PubMed]
- De Winter-de Groot, K.M.; Van der Ent, C.K.; Prins, I.; Tersmette, J.M.; Uiterwaal, C.S. Exhaled nitric oxide: The missing link between asthma and obesity? J. Allergy Clin. Immunol. 2005, 115, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Kazaks, A.; Uriu-Adams, J.Y.; Stern, J.S.; Albertson, T.E. No significant relationship between exhaled nitric oxide and body mass index in people with asthma. J. Allergy Clin. Immunol. 2005, 116, 929–930. [Google Scholar] [CrossRef] [PubMed]
- Flashner, B.M.; Rifas-Shiman, S.L.; Oken, E.; Camargo, C.A.; Platts-Mills, T.J.; Workman, L.; Litonjua, A.A.; Gold, D.R.; Rice, M.B. Obesity, sedentary lifestyle, and exhaled nitric oxide in an early adolescent cohort. Pediatr. Pulmonol. 2020, 55, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.P.; Wood, F.T.; Robson, A.; Innes, J.A.; Greening, A.P. The current single exhalation method of measuring exhales nitric oxide is affected by airway calibre. Eur. Respir. J. 2000, 15, 1009–1013. [Google Scholar] [CrossRef]
- Kongkiattikul, L.; Sritippayawan, S.; Chomtho, S.; Deerojanawong, J.; Prapphal, N. Relationship between Obesity Indices and Pulmonary Function Parameters in Obese Thai Children and Adolescents. Indian J. Pediatr. 2015, 82, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Del Río-Camacho, G.; Domínguez-Garrido, M.N.; Pita, J.; Aragón, I.; Collado, R.; Soriano-Guillén, L. Masa ventricular izquierda, espirometría basal forzada y perfil de adipocitocinas en niños obesos con y sin síndrome metabólico [Left ventricular mass, forced baseline spirometry and adipocytokine profiles in obese children with and without metabolic syndrome]. An. Pediatr. 2013, 78, 27–34. [Google Scholar] [CrossRef]
- Forno, E.; Han, Y.Y.; Muzumdar, R.H.; Celedón, J.C. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J. Allergy Clin. Immunol. 2015, 136, 304–311.e8. [Google Scholar] [CrossRef]
- Zosky, G.R.; Berry, L.J.; Elliot, J.G.; James, A.L.; Gorman, S.; Hart, P.H. Vitamin D deficiency causes deficits in lung function and alters lung structure. Am. J. Respir. Crit. Care Med. 2011, 183, 1336–1343. [Google Scholar] [CrossRef]
- Noveral, J.P.; Bhala, A.; Hintz, R.L.; Grunstein, M.M.; Cohen, P. Insulin-like growth factor axis in airway smooth muscle cells. Am. J. Physiol. 1994, 267, L761–L765. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Mabalirajan, U.; Ahmad, T.; Ghosh, B. Emerging interface between metabolic syndrome and asthma. Am. J. Respir. Cell Mol. Biol. 2011, 44, 270–275. [Google Scholar] [CrossRef]
- Nie, Z.; Jacoby, D.B.; Fryer, A.D. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am. J. Respir. Cell Mol. Biol. 2014, 51, 251–261. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, X.; Castillo, E.F.; Luo, Y.; Liu, M.; Yang, X.O. Leptin Enhances TH2 and ILC2 Responses in Allergic Airway Disease. J. Biol. Chem. 2016, 291, 22043–22052. [Google Scholar] [CrossRef]
- Atamas, S.P.; Chapoval, S.P.; Keegan, A.D. Cytokines in chronic respiratory diseases. F1000 Biol. Rep. 2013, 5, 3. [Google Scholar] [CrossRef]
- Lessard, A.; St-Laurent, J.; Turcotte, H.; Boulet, L.P. Leptin and adiponectin in obese and non-obese subjects with asthma. Biomarkers 2011, 16, 271–273. [Google Scholar] [CrossRef]
- Watanabe, K.; Suzukawa, M.; Kawauchi-Watanabe, S.; Igarashi, S.; Asari, I.; Imoto, S.; Tashimo, H.; Fukami, T.; Hebisawa, A.; Tohma, S.; et al. Leptin-producing monocytes in the airway submucosa may contribute to asthma pathogenesis. Respir. Investig. 2023, 61, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, C.M.; Dias, A.S.O.; Lopes, L.M.; Kasahara, T.M.; Delphim, L.; Silva, J.C.C.; Lourenço, L.P.; Gonçalves, H.C.; Linhares, U.C.; Gupta, S.; et al. Leptin favors Th17/Treg cell subsets imbalance associated with allergic asthma severity. Clin. Transl. Allergy 2022, 12, e12153. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ortega, H.; Jiménez-Cortegana, C.; Novalbos-Ruiz, J.P.; Gómez-Bastero, A.; Soto-Campos, J.G.; Sánchez-Margalet, V. Role of Leptin as a Link between Asthma and Obesity: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 24, 546. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Del-Río-Navarro, B.E.; Torres-Alcántara, S.; Pérez-Ontiveros, J.A.; Ruiz-Bedolla, E.; Saucedo-Ramírez, O.J.; Villafaña, S.; Muñoz, F.S.; Bravo, G.; Hong, E. Adipokines, asymmetrical dimethylarginine, and pulmonary function in adolescents with asthma and obesity. J. Asthma 2017, 54, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.S.; Kim, Y.D.; Shin, J.H.; Kim, J.H.; Oh, J.W.; Lee, H.B. Serum leptin and adiponectin levels correlate with exercise-induced bronchoconstriction in children with asthma. Ann. Allergy Asthma Immunol. 2011, 107, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kilic, H.; Oguzulgen, I.K.; Bakir, F.; Turktas, H. Asthma in obese women: Outcomes and factors involved. J. Investig. Allergol. Clin. Immunol. 2011, 21, 290–296. [Google Scholar] [PubMed]
- Tagi, V.M.; Giannini, C.; Chiarelli, F. Insulin Resistance in Children. Front. Endocrinol. 2019, 10, 342. [Google Scholar] [CrossRef]
- Khokhar, A.; Umpaichitra, V.; Chin, V.L.; Perez-Colon, S. Metformin Use in Children and Adolescents with Prediabetes. Pediatr. Clin. N. Am. 2017, 64, 1341–1353. [Google Scholar] [CrossRef]
- Guo, C.; Huang, T.; Chen, A.; Chen, X.; Wang, L.; Shen, F.; Gu, X. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz. J. Med. Biol. Res. 2016, 49, e5826. [Google Scholar] [CrossRef]
- Guo, H.; Fang, C.; Huang, Y.; Pei, Y.; Chen, L.; Hu, J. The efficacy and safety of DPP4 inhibitors in patients with type 1 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2016, 121, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Foer, D.; Beeler, P.E.; Cui, J.; Karlson, E.W.; Bates, D.W.; Cahill, K.N. Asthma Exacerbations in Patients with Type 2 Diabetes and Asthma on Glucagon-like Peptide-1 Receptor Agonists. Am. J. Respir. Crit. Care Med. 2021, 203, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.O.; Aspinall, R. Vitamin D Status and the Host Resistance to Infections: What It Is Currently (Not) Understood. Clin. Ther. 2017, 39, 930–945. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Pantalena, L.C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; et al. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell Biol. 2011, 31, 3653–3669. [Google Scholar] [CrossRef] [PubMed]
- Dogan, M.; Erol, M.; Cesur, Y.; Yuca, S.A.; Doğan, Z. The effect of 25-hydroxyvitamin D3 on the immune system. J. Pediatr. Endocrinol. Metab. 2009, 22, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Trubert, C.; Rizk-Rabin, M.; Rehan, V.; Besançon, F.; Cayre, Y.; Garabédian, M. 1,25-Dihydroxyvitamin D3 and fetal lung maturation: Immunogold detection of VDR expression in pneumocytes type II cells and effect on fructose 1,6 bisphosphatase. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Damera, G.; Fogle, H.W.; Lim, P.; Goncharova, E.A.; Zhao, H.; Banerjee, A.; Tliba, O.; Krymskaya, V.P.; Panettieri, R.A., Jr. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. Br. J. Pharmacol. 2009, 158, 1429–1441. [Google Scholar] [CrossRef]
- Zhu, Y.; Jing, D.; Liang, H.; Li, D.; Chang, Q.; Shen, M.; Pan, P.; Liu, H.; Zhang, Y. Vitamin D status and asthma, lung function, and hospitalization among British adults. Front. Nutr. 2022, 9, 954768. [Google Scholar] [CrossRef]
- Brehm, J.M.; Celedón, J.C.; Soto-Quiros, M.E.; Avila, L.; Hunninghake, G.M.; Forno, E.; Laskey, D.; Sylvia, J.S.; Hollis, B.W.; Weiss, S.T.; et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica. Am. J. Respir. Crit. Care Med. 2009, 179, 765–771. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Mann, E.H.; Hornsby, E.; Chambers, E.S.; Chen, Y.-H.; Rice, L.; Hawrylowicz, C.M. Vitamin D influences asthmatic pathology through its action on diverse immunological pathways. Ann. Am. Thorac. Soc. 2014, 11, S314–S321. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Wang, C.; Xiao, Y.; An, T.; Zou, M.; Cheng, G. Association between vitamin D status and asthma control: A meta-analysis of randomized trials. Respir. Med. 2019, 150, 85–94. [Google Scholar] [CrossRef]
- Berry, M.A.; Hargadon, B.; Shelley, M.; Parker, D.; Shaw, D.E.; Green, R.H.; Bradding, P.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N. Engl. J. Med. 2006, 354, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, E.R.; Goleva, E.; Jackson, L.P.; Stevens, A.D.; Leung, D.Y. Vitamin D levels, lung function, and steroid response in adult asthma. Am. J. Respir. Crit. Care Med. 2010, 181, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, Q.; Zhang, G.; Tian, X.; Chen, Y.; Cun, Y.; Xu, X.; Luo, Z. Long-term effects of vitamin D on exacerbation rate, health care utilization and lung function in children with asthma. Ann. Transl. Med. 2022, 10, 1094. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, J.; Sun, X. A Meta-Analysis on Vitamin D Supplementation and Asthma Treatment. Front. Nutr. 2022, 9, 860628. [Google Scholar] [CrossRef]
Lung Parameters | Obstructive Pattern | Dysanapsis Pattern |
---|---|---|
FEV1/FVC | ↓ | ↓ |
FEV1 | NL or ↑ | NL or ↑ |
FVC | NL or ↑ | NL or ↑↑ |
FEF 25–75% | ↓↓ | ↓ |
MEF50 | ↓ | ↓ |
MEF75% | NI | ↓ |
RV/TLC | ↓ | NL |
TLC | ↓ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes Noriega, N.; Del-Río-Navarro, B.E.; Berber, A.; de Jesús Romero Tapia, S.; Molina Díaz, D.J.M. Effect of Obesity on Lung Function in the Pediatric and Adult Populations with Asthma: A Review. J. Clin. Med. 2023, 12, 5385. https://doi.org/10.3390/jcm12165385
Reyes Noriega N, Del-Río-Navarro BE, Berber A, de Jesús Romero Tapia S, Molina Díaz DJM. Effect of Obesity on Lung Function in the Pediatric and Adult Populations with Asthma: A Review. Journal of Clinical Medicine. 2023; 12(16):5385. https://doi.org/10.3390/jcm12165385
Chicago/Turabian StyleReyes Noriega, Nayely, Blanca E. Del-Río-Navarro, Arturo Berber, Sergio de Jesús Romero Tapia, and Darío Jorge Mario Molina Díaz. 2023. "Effect of Obesity on Lung Function in the Pediatric and Adult Populations with Asthma: A Review" Journal of Clinical Medicine 12, no. 16: 5385. https://doi.org/10.3390/jcm12165385
APA StyleReyes Noriega, N., Del-Río-Navarro, B. E., Berber, A., de Jesús Romero Tapia, S., & Molina Díaz, D. J. M. (2023). Effect of Obesity on Lung Function in the Pediatric and Adult Populations with Asthma: A Review. Journal of Clinical Medicine, 12(16), 5385. https://doi.org/10.3390/jcm12165385