All-Cause Mortality and Its Predictors in Haemato-Oncology Patients with Febrile Neutropenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Participants, and Setting
2.2. Variables and Data Source
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. All-Cause Mortality during the Follow-Up Period
3.3. Predictors for All-Cause Mortality after 1, 3, and 12 Months
3.4. Site of Infection, Bloodstream Infections and Antibiotic Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuderer, N.M.; Dale, D.C.; Crawford, J.; Cosler, L.E.; Lyman, G.H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006, 106, 2258–2266. [Google Scholar] [CrossRef] [PubMed]
- Keng, M.K.; Sekeres, M.A. Febrile neutropenia in hematologic malignancies. Curr. Hematol. Malig. Rep. 2013, 8, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Hinedi, K.; Khairallah, H.; Saadeh, B.; Abbasi, S.; Noureen, M.; Raza, S.; Alkhatti, A. Epidemiology and source of infection in patients with febrile neutropenia: A ten-year longitudinal study. J. Infect. Public Health 2019, 12, 364–366. [Google Scholar] [CrossRef]
- Parodi, R.L.; Lagrutta, M.; Tortolo, M.; Navall, E.; Rodriguez, M.S.; Sasia, G.F.; De Candia, L.F.; Gruvman, M.A.; Bottasso, O.; Greca, A.A. A multicenter prospective study of 515 febrile neutropenia episodes in Argentina during a 5-year period. PLoS ONE 2019, 14, e0224299. [Google Scholar] [CrossRef] [PubMed]
- Weerasubpong, B.; Makruasi, N.; Linasmita, P.; Rattanamongkolgul, S. Factors associated with survival outcomes of febrile neutropenia in hematologic malignancy patients. J. Med. Assoc. Thai. 2016, 99, S53–S62. [Google Scholar]
- Lalami, Y.; Klastersky, J. Impact of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) on cancer treatment outcomes: An overview about well-established and recently emerging clinical data. Crit. Rev. Oncol. Hematol. 2017, 120, 163–179. [Google Scholar] [CrossRef]
- Lynn, J.-J.; Chen, K.-F.; Weng, Y.-M.; Chiu, T.-F. Risk factors associated with complications in patients with chemotherapy-induced febrile neutropenia in emergency department. Hematol. Oncol. 2013, 31, 189–196. [Google Scholar] [CrossRef]
- Carmona-Bayonas, A.; Jiménez-Fonseca, P.; Virizuela Echaburu, J.; Antonio, M.; Font, C.; Biosca, M.; Ramchandani, A.; Martinez, J.; Cubero, J.H.; Espinosa, J.; et al. Prediction of serious complications in patients with seemingly stable febrile neutropenia: Validation of the clinical index of stable febrile neutropenia in a prospective cohort of patients from the FINITE study. J. Clin. Oncol. 2015, 33, 465–471. [Google Scholar] [CrossRef]
- Pettengell, R.; Schwenkglenks, M.; Leonard, R.; Bosly, A.; Paridaens, R.; Constenla, M.; Szucs, T.D.; Jackisch, C.; Impact of Neutropenia in Chemotherapy-European Study Group (INC-EU). Neutropenia occurrence and predictors of reduced chemotherapy delivery: Results from the INC-EU prospective observational European neutropenia study. Support Care Cancer 2008, 16, 1299–1309. [Google Scholar] [CrossRef]
- Lyman, G.H.; Michels, S.L.; Reynolds, M.W.; Barron, R.; Tomic, K.S.; Yu, J. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer 2010, 116, 5555–5563. [Google Scholar] [CrossRef]
- Nordvig, J.; Aagaard, T.; Daugaard, G.; Brown, P.; Sengelov, H.; Lundgren, J.; Helleberg, M. Febrile neutropenia and long-term risk of infection among patients treated with chemotherapy for malignant diseases. Open Forum Infect. Dis. 2018, 5, ofy255. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, V.; Weiss, R.V.; Rickert, T.S.; Linde-Zwirble, W.T. Incidence, cost, and mortality of neutropenia hospitalization associated with chemotherapy. Cancer 2005, 103, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Annals Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institution. M07eA10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 10th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2015; p. 35. [Google Scholar]
- Lakshmaiah, K.C.; Malabagi, A.S.; Govindbabu, R.S.; Shetty, R.; Sinha, M.; Jayashree, R.S. Febrile neutropenia in hematological malignancies: Clinical and microbiological profile and outcome in high-risk patients. J. Lab. Physicians 2015, 7, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Tamai, Y.; Imataki, O.; Kawakami, K. Fever profile of febrile neutropenia in patients treated with cancer chemotherapy for hematological malignancies. Gan Kagaku Ryoho. 2010, 37, 859–862. (In Japanese) [Google Scholar]
- Bow, E.J. Infection in neutropenic patients with cancer. Crit. Care. Clin. 2013, 29, 411–441. [Google Scholar] [CrossRef]
- Zimmer, A.J.; Freifeld, A.G. Optimal management of neutropenic fever in patients with cancer. J. Oncol Pract. 2019, 15, 19–24. [Google Scholar] [CrossRef]
- Culakova, E.; Poniewierski, M.S.; Wolff, D.A.; Dale, D.C.; Crawford, J.; Lyman, G.H. The impact of chemotherapy dose intensity and supportive care on the risk of febrile neutropenia in patients with early-stage breast cancer: A prospective cohort study. Springerplus 2015, 4, 396. [Google Scholar] [CrossRef]
- Krell, D.; Jones, A. Impact of effective prevention and management of febrile neutropenia. Br. J. Cancer 2009, 101, S23–S26. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr. J. 2010, 9, 69. [Google Scholar] [CrossRef]
- Kim, J.E.; Yoo, C.; Lee, D.H.; Kim, S.-W.; Lee, J.-S.; Suh, C. Serum albumin level is a significant prognostic factor reflecting disease severity in symptomatic multiple myeloma. Ann. Hematol. 2010, 89, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hosiriluck, N.; Klomjit, S.; Rassameehiran, S.; Sutamtewagul, G.; Tijani, L.; Radhi, S. Prognostic factors for mortality with febrile neutropenia in hospitalized patients. Southwest Respir. Crit. Care. Chron. 2015, 3, 3–13. [Google Scholar] [CrossRef]
- Long, Y.; Zeng, F.; Shi, J.; Tian, H.; Chen, T. Gamma-glutamyltransferase predicts increased risk of mortality: A systematic review and meta-analysis of prospective observational studies. Free Radic. Res. 2014, 48, 716–728. [Google Scholar] [CrossRef]
- Ruttmann, E.; Brant, L.J.; Concin, H.; Diem, G.; Rapp, K.; Ulmar, H.; Vorarlberg Health Monitoring and Promotion Study Group. Gamma-glutamyl transferase as a risk factor for cardiovascular disease mortality: An epidemiological investigation in a cohort of 163, 944 Austrian adults. Circulation 2005, 112, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Song, Z.; Zhang, Q. Gamma-glutamyl transferase is associated with cardiovascular and all-cause mortality: A meta-analysis of prospective cohort studies. Prev. Med. 2013, 57, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Jeong, S.M.; Chung, G.E.; Yoo, J.-J.; Lee, K.-N.; Shin, D.W.; Kim, Y.J.; Cho, Y.; Yoon, J.-H.; Han, K.; et al. Gamma-glutamyl transferase and risk of all-cause and disease-specific mortality: A nationwide cohort study. Sci. Rep. 2023, 13, 1751. [Google Scholar] [CrossRef] [PubMed]
- Morrison, V.A.; Picozzi, V.; Scott, S.; Pohlman, B.; Dickman, E.; Lee, M.; Lawless, G.; Kerr, R.; Caggiano, V.; Delgado, D.; et al. The impact of age on delivered dose intensity and hospitalizations for febrile neutropenia in patients with intermediate grade non-Hodgkin’s lymphoma receiving initial CHOP chemotherapy: A risk factor analysis. Clin. Lymphoma 2001, 2, 47–56. [Google Scholar] [CrossRef]
- Obadina, M.; Cho, C.; Oketunji, A.; Waterfield, W. Neutropenia and fever in patients receiving chemotherapy in a community teaching hospital: Results of a retrospective chart review. Md. Med. J. 1994, 43, 977–980. [Google Scholar]
- Lee, B.H.; Inui, D.; Suh, G.Y.; Kim, J.Y.; Kwon, J.Y.; Park, J.; Tada, K.; Kanaka, K.; Ietsugu, K.; Uehara, K.; et al. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: Multi-centered prospective observational study. Crit Care 2012, 16, R33. [Google Scholar] [CrossRef]
- Young, P.J.; Saxena, M.; Beasley, R.; Bellomo, R.; Bailey, M.; Pilcher, D.; Finfer, S.; Harrison, D.; Myburgh, J.; Rowan, K. Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med. 2012, 38, 437–444. [Google Scholar] [CrossRef]
- Iff, S.; Craig, J.C.; Turner, R.; Chapman, J.R.; Wang, J.J.; Mitchell, P.; Wong, G. Reduced estimated GFR and cancer mortality. Am. J. Kidney Dis. 2014, 63, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.C.; Tong, A.; Howard, K.; Chapman, J.R.; Craig, J.C.; Wong, G. Knowledge, beliefs, and attitudes of kidney transplant recipients regarding their risk of cancer. Nephrology 2012, 17, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.Y.; Chauvin, F.; Cesne, L.; Anglaret, B.; Bouhour, D.; Lasset, C.; Freyer, G.; Philip, T.; Biron, P. Early lymphopenia after cytotoxic chemotherapy as a risk factor for febrile neutropenia. J. Clin. Oncol. 1996, 14, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Ray-Coquard, I.; Borg, C.; Bachelot, T.; Sebban, C.; Philip, I.; Clapisson, G.; Le Cesne, A.; Biron, P.; Chauvin, F.; Blay, J.Y.; et al. Baseline and early lymphopenia predict for the risk of febrile neutropenia after chemotherapy. Br. J. Cancer 2003, 88, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Bodey, G.P. Unusual presentations of infection in neutropenic patients. Int. J. Antimicrob. Agents 2000, 16, 93–95. [Google Scholar] [CrossRef]
- Tumbarello, M.; Spanu, T.; Caira, M.; Trecarichi, E.M.; Laurenti, L.; Montuori, E.; Fianchi, L.; Leone, F.; Fadda, G.; Cauda, R.; et al. Factors associated with mortality in bacteremic patients with hematologic malignancies. Diagn. Microbiol. Infect. Dis. 2009, 64, 320–326. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Pagano, L.; Candoni, A.; Pastore, D.; Cattaneo, C.; Fanci, R.; Nosari, A.; Caira, M.; Spadea, A.; Busca, A.; et al. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: An Italian multicentre prospective survey. Clin. Microbiol. Infect. 2015, 21, 337–343. [Google Scholar] [CrossRef]
- Lo Menzo, S.; la Martire, G.; Ceccarelli, G.; Venditti, M. New insight on epidemiology and management of bacterial bloodstream infection in patients with haematological malignancies. Mediterr. J. Hematol. Infect. Dis. 2015, 7, e2015044. [Google Scholar] [CrossRef]
- Nesher, L.; Rolston, K.V. The current spectrum of infection in cancer patients with chemotherapy-related neutropenia. Infection 2014, 42, 5–13. [Google Scholar] [CrossRef]
- Mikulska, M.; Viscoli, C.; Orasch, C.; Livermore, D.M.; Averbuch, D.; Cordonnier, C.; Akova, M. Fourth European Conference on Infections in Leukemia Group (ECIL-4), a joint venture of EBMT, EORTC, ICHS, ELN and ESGICH/ESCMID. Aetiology and resistance in bacteraemias among adult and paediatric hematology and cancer patients. J. Infect. 2013, 68, 321–331. [Google Scholar] [CrossRef]
- Gedik, H.; Şimşek, F.; Kantürk, A.; Yildirmak, T.; Arica, D.; Aydin, D.; Demirel, N.; Yokus, O. Bloodstream infections in patients with hematological malignancies: Which is more fatal- cancer or resistant pathogens? Ther. Clin. Risk Manag. 2014, 10, 743–752. [Google Scholar] [CrossRef] [PubMed]
- De Naurois, J.; Novitzky-Basso, I.; Gill, M.J.; Marti Marti, F.M.; Cullen, M.H.; Roila, F. Management of febrile neutropenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2012, 21, v252–v256. [Google Scholar] [CrossRef] [PubMed]
- Ceken, S.; Iskender, G.; Gedik, H.; Duygu, F.; Mert, D.; Haya, A.H.; Altuntas, F.; Ertek, M. Risk factors for bloodstream infections due to extended-spectrum β-lactamase producing Enterobacteriaceae in cancer patients. J. Infect. Dev. Ctries. 2018, 12, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.-A.H.; Wingard, J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Sex (male) n (%) | 78 (49.4%) |
Age median (IQR) | 69.54 (58.43–76.23) |
BMI median (IQR) | 24.8 (22–29.25) |
Temperature (°C) median (IQR) | 38.5 (38.1–39) |
Line | 15 (9.5%) |
HM n (%) | |
Lymphoma | 80 (50.6%) |
Acute myeloid leukemia | 37 (23.4%) |
Myelodysplastic syndrome | 17 (10.8%) |
Multiple myeloma | 15 (9.5%) |
Chronic lymphocytic leukemia | 7 (4.4%) |
Other | 2 (1.3%) |
Comorbidities n (%) | |
DM | 34 (21.5%) |
CRF | 31 (19.6%) |
IHD | 17 (10.8%) |
CHF | 13 (8.2%) |
Laboratory at admission for FN median (IQR) | |
Hemoglobin (12–16 g/dL) | 9.1 (8–10.2) |
WBC (4.5–11 K/µL) | 1.4 (0.6–3.3) |
Absolute neutrophils (1–4.8 K/µL) | 0.23 (0.1–0.44) |
ALC (1.0–4.8 K/µL) | 0.45 (0.2–0.99) |
Platelets (150–450 K/µL) | 81 (27–139.75) |
CRP (0–0.5 mg/dL) | 86.7 (67.4–254) |
ESR (2–30 mm/h) | 52 (32–96) |
eGFR (mL/min/1.73 m2) | 88.22 (67.24–112.16) |
Protein (5.8–8.3 g/dL) | 5.95 (0.98) |
Albumin (3.2–4.6 g/dL) | 3.29 (0.55) |
Bilirubin total (0.3–1.2 mg/dL) | 0.7 (0.5–1) |
Alkaline phosphatase (40–150 U/L) | 77 (60.5–101.25) |
GGT (9–36 U/L) | 40 (20.25–93.75) |
GOT (5–34 U/L) | 19 (14–27) |
GPT (0–55 U/L) | 17.5 (12–31) |
Predictor | Mortality | ||||
---|---|---|---|---|---|
No (n = 133) | Yes (n = 25) | p | Adj. p | ||
Age (years) | median (IQR) | 68.4 (55.2–74.5) | 76.2 (67.7–80.8) | 0.003 | 0.017 |
Male | n (%) | 67 (50.4%) | 11 (44%) | 0.559 | 0.648 |
BMI (Kg/m2) | median (IQR) | 24.6 (21.8–29.1) | 28 (23.8–32.6) | 0.198 | 0.359 |
Temperature (°C) | median (IQR) | 38.4 (38.1–38.8) | 38.8 (38.2–39.1) | 0.045 | 0.131 |
HM | |||||
Lymphoma | n (%) | 66 (49.6%) | 14 (56%) | 0.723 | 0.806 |
CLL | n (%) | 7 (5.3%) | 0 (0%) | ||
AML | n (%) | 34 (25.6%) | 5 (20%) | ||
MM | n (%) | 13 (9.8%) | 2 (8%) | ||
MDS | n (%) | 13 (9.8%) | 4 (16%) | ||
Comorbidities | |||||
DM | n (%) | 27 (20.3%) | 7 (28%) | 0.390 | 0.566 |
CRF | n (%) | 22 (16.5%) | 9 (36%) | 0.050 | 0.132 |
CLD | n (%) | 20 (15%) | 4 (16%) | >0.999 | >0.999 |
IHD | n (%) | 13 (9.8%) | 4 (16%) | 0.478 | 0.630 |
CHF | n (%) | 11 (8.3%) | 2 (8%) | >0.999 | >0.999 |
CCI | median (IQR) | 5 (3–6) | 6 (5–9) | 0.006 | 0.029 |
Laboratory | |||||
Hb (12–16 g/dL) | median (IQR) | 9.2 (8.2–10.3) | 8.6 (7.8–9.3) | 0.082 | 0.183 |
WBC (4.5–11 K/µL) | median (IQR) | 1.3 (0.6–3.1) | 1.7 (0.8–4.6) | 0.333 | 0.508 |
ANC (1–4.8 K/µL) | median (IQR) | 0.2 (0.1–0.4) | 0.3 (0.1–0.5) | 0.273 | 0.440 |
ANC < 100 | n (%) | 29 (21.8%) | 3 (12%) | 0.415 | 0.573 |
ALC (1–4.8 K/µL) | median (IQR) | 0.4 (0.2–0.9) | 0.6 (0.2–1.2) | 0.556 | 0.648 |
PLT (150–450 K/µL) | median (IQR) | 85 (27–149.5) | 54 (27–100.5) | 0.240 | 0.409 |
CRP (0–0.5 mg/dL) | median (IQR) | 86.5 (65.4–147.3) | 156 (72.4–267) | 0.198 | 0.359 |
ESR (2–30/mmh) | median (IQR) | 46 (31.3–85.8) | 129 (79–0) | 0.060 | 0.145 |
eGFR (mL/min/1.73 m2) | median (IQR | 91.8 (71.5–116.5) | 73.8 (44.1–91.8) | 0.003 | 0.017 |
Protein (6.4–6.3 g/dL) | median (IQR) | 6.02 (0.9) | 5.6 (1.27) | 0.125 | 0.259 |
Albumin (3.2–4.6 g/dL) | median (IQR) | 3.39 (0.5) | 2.74 (0.47) | <0.001 | 0.015 |
LDH (125–220 U/L) | median (IQR) | 401 (280–564.5) | 612 (325–854) | 0.022 | 0.080 |
ALP (40–150 U/L) | median (IQR) | 76 (61–102.5) | 85 (55.5–101) | 0.922 | 0.990 |
GGT (9–36 U/L) | median (IQR) | 36 (20–76) | 93 (28.5–172.5) | 0.003 | 0.017 |
GOT (5–34 U/L) | median (IQR) | 18 (13–25.5) | 23 (16.5–34.5) | 0.029 | 0.093 |
GPT (0–55 U/L) | median (IQR) | 17 (12–29.5) | 21 (12.5–34.5) | 0.528 | 0.648 |
Bilirubin total (0.3–1.2) | median (IQR) | 0.7 (0.5–1) | 0.9 (0.6–1.7) | 0.020 | 0.080 |
Bilirubin direct (0.5 mg/dL) | median (IQR) | 0.2 (0.1–0.4) | 0.4 (0.2–0.8) | 0.001 | 0.015 |
Mortality | |||||
---|---|---|---|---|---|
Predictor | No (n = 104) | Yes (n = 54) | p | Adj. p | |
Age (years) | median (IQR) | 64.81 (50.77–70.72) | 75.4 (70.25–81.22) | <0.001 | 0.002 |
Male | n (%) | 50 (50.5%) | 28 (47.5%) | 0.735 | 0.799 |
BMI (Kg/m2) | median (IQR) | 24.4 (21.35–29.55) | 26.1 (22.75–29.05) | 0.596 | 0.725 |
Temperature (°C) | median (IQR) | 38.4 (38.1–38.7) | 38.5 (38.18–39) | 0.040 | 0.089 |
HM | |||||
Lymphoma | n (%) | 48 (48.5%) | 32 (54.2%) | 0.024 | 0.063 |
CLL | n (%) | 7 (7.1%) | 0 (0%) | ||
AML | n (%) | 26 (26.3%) | 13 (22%) | ||
MM | n (%) | 12 (12.1%) | 3 (5.1%) | ||
MDS | n (%) | 6 (6.1%) | 11 (18.6%) | ||
Comorbidities | |||||
DM | n (%) | 18 (18.2%) | 16 (27.1%) | 0.156 | 0.256 |
IHD | n (%) | 11 (11.1%) | 6 (10.2%) | 0.932 | 0.932 |
CRF | n (%) | 14 (14.1%) | 17 (28.8%) | 0.012 | 0.035 |
CLD | n (%) | 14 (14.1%) | 10 (16.9%) | 0.658 | 0.734 |
CHF | n (%) | 5 (5.1%) | 8 (13.6%) | 0.076 | 0.154 |
CCI | median (IQR) | 5 (3–6) | 6 (5–7) | 0.002 | 0.008 |
Laboratory | |||||
Hb (12–16 g/dL) | median (IQR) | 9.2 (8.2–10.3) | 8.6 (7.8–9.3) | 0.082 | 0.154 |
WBC (4.5–11 K/µL) | median (IQR) | 1.47 (0.64–3.77) | 1.27 (0.4–2.57) | 0.274 | 0.378 |
ANC (1–4.8 K/µL) | median (IQR) | 0.2 (0.1–0.45) | 0.25 (0.1–0.42) | 0.625 | 0.725 |
ANC < 100 | n (%) | 26 (22.2%) | 6 (14.6%) | 0.370 | 0.488 |
ALC (1–4.8 K/µL) | median (IQR) | 0.42 (0.2–1.1) | 0.48 (0.2–0.9) | 0.008 | 0.026 |
PLT (150–450 K/µL) | median (IQR) | 102 (34–156) | 43 (23–98) | 0.004 | 0.015 |
CRP (0–0.5 mg/dL) | median (IQR) | 87.35 (39.85–154) | 83.8 (75.25–172.5) | 0.108 | 0.184 |
ESR (2–30 mm/h) | median (IQR) | 42 (31.5–75) | 82 (30.75–130.75) | 0.085 | 0.154 |
eGFR (mL/min/1.73 m2) | median (IQR | 95.17 (75.51–119.24) | 77.45 (49.86–94.12) | <0.001 | 0.002 |
Protein (6.4–6.3 g/dL) | median (IQR) | 6.06 (0.85) | 5.78 (1.14) | 0.029 | 0.07 |
Albumin (3.2–4.6 g/dL) | median (IQR) | 3.45 (0.49) | 3.02 (0.55) | <0.001 | 0.002 |
LDH (125–220 U/L) | median (IQR) | 405 (272–573) | 446 (299–736) | 0.260 | 0.378 |
ALP (40–150 U/L) | median (IQR) | 72 (57–101) | 83 (63–102) | 0.271 | 0.378 |
GGT (9–36 U/L) | median (IQR) | 36 (20–74.5) | 63 (24–138) | <0.001 | 0.002 |
GOT (5–34 U/L) | median (IQR) | 17 (13–24) | 21 (14–29) | 0.551 | 0.695 |
GPT (0–55 U/L) | median (IQR) | 16 (12–29) | 21 (12–34) | 0.875 | 0.906 |
Bilirubin total (0.3–1.2) | median (IQR) | 0.7 (0.5–1) | 0.85 (0.6–1.28) | <0.001 | 0.002 |
Bilirubin direct (0.5 mg/dL) | median (IQR) | 0.2 (0.1–0.33) | 0.3 (0.2–0.6) | <0.001 | 0.002 |
Mortality | Adj. OR (95% CI) | p | |
---|---|---|---|
1 m | Albumin (g/dL) | 0.096 (0.033–0.28) | <0.001 |
GGT (10 IU/L) | 1.073 (1.017–1.132) | 0.010 | |
3 m | Albumin(g/dL) | 0.185 (0.071–0.481) | 0.001 |
GGT (10 IU/L) | 1.079 (1.020–1.142) | 0.009 | |
eGFR (mL/min/1.73 m2) | 0.982 (0.966–0.999) | 0.035 | |
Age (years) | 1.037 (0.996–1.08) | 0.077 | |
Temperature (°C) | 3.209 (1.274–8.086) | 0.013 | |
Mortality | Adj. HR (95% CI) | p | |
12 m | Albumin(g/dL) | 0.456 (0.27–0.771) | 0.003 |
GGT (10 IU/L) | 1.033 (1.005–1.062) | 0.020 | |
eGFR (mL/min/1.73 m2) | 0.986 (0.977–0.995) | 0.004 | |
Age (years) | 1.032 (1.012–1.053) | 0.002 | |
Temperature(°C) | 1.601 (1.039–2.467) | 0.033 | |
ALC (K/µL) | 1.087 (1.025–1.152) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmuely, H.; Monely, L.; Shvidel, L. All-Cause Mortality and Its Predictors in Haemato-Oncology Patients with Febrile Neutropenia. J. Clin. Med. 2023, 12, 5635. https://doi.org/10.3390/jcm12175635
Shmuely H, Monely L, Shvidel L. All-Cause Mortality and Its Predictors in Haemato-Oncology Patients with Febrile Neutropenia. Journal of Clinical Medicine. 2023; 12(17):5635. https://doi.org/10.3390/jcm12175635
Chicago/Turabian StyleShmuely, Haim, Lea Monely, and Lev Shvidel. 2023. "All-Cause Mortality and Its Predictors in Haemato-Oncology Patients with Febrile Neutropenia" Journal of Clinical Medicine 12, no. 17: 5635. https://doi.org/10.3390/jcm12175635
APA StyleShmuely, H., Monely, L., & Shvidel, L. (2023). All-Cause Mortality and Its Predictors in Haemato-Oncology Patients with Febrile Neutropenia. Journal of Clinical Medicine, 12(17), 5635. https://doi.org/10.3390/jcm12175635