Possible New Histological Prognostic Index for Large B-Cell Lymphoma
Abstract
:1. Introduction
- (1)
- ER stress proteins on the cellular membrane: glucose-regulated protein 94 (GRP94) in LBCL [4,5,6], GRP78 [7,8], transforming growth factor β1 (TGFβ1) [9,10], and tumor necrosis factor α1 (TNFα1) [11]. GRP94 and GRP78 are stress-inducible molecules released into the extracellular space that act to overcome various stresses in the tumor microenvironment, including hypoxia, hypoglycemia, dysregulation of homeostasis, altered cellular metabolism, and acidosis. TGFβ1 plays an important role in promoting tumor progression. TNF inhibits tumor progression.
- (2)
- Enzymes in the cellular cytoplasm involved in anticancer drug metabolism: Aldo-keto reductase family 1 member C3 (AKR1C3) in LBCL [12,13,14,15,16], CYP3A4 [17,18], and CYP2B6 [19]. AKR1C3 is mainly found in the cytoplasm. AKR1C3 catalyzes the reduction of carbonyl groups to water-soluble alcohol groups. AKR1C3 lowers the activities of hydroxyl doxorubicin (H) and oncovin (O) (HO of CHOP) [14] and the risk of disease progression in patients with LBCL carrying AKR1C3 [12]. CYP3A4 inactivates many anticancer drugs, including all components of the CHOP regimen. CYP3A4 has been evaluated as a predictor of the tumor response to chemotherapy in patients with peripheral T-cell lymphomas [17]. Thus, the expression of these enzymes may lower the efficacy of the drugs used for treatment, resulting in drug resistance [17,18]. CYP2B6 activates cyclophosphamide [19].
- (3)
- Anticancer drug efflux pumps on the cellular membrane: multidrug resistance protein 1 (MDR1) [20,21,22], multidrug resistance-associated protein 1 (MRP1) [23,24], and MRP4 [25]. MDR1 and MRP1 found on the cell membrane are hydroxyl doxorubicin (H) and oncovin (O) (HO of CHOP) efflux pumps. Overexpression of MDR1 and MRP1 leads to the development of drug resistance in tumors [20]. Patients with LBCL not harboring MDR1 and MRP1 have a relatively good prognosis [21].
- (4)
- Other items include the revised International Prognostic Index (R-IPI)-poor and high-grade B-cell lymphoma (HGBCL), such as double-hit lymphoma (DHL), MYC translocation LBCL, follicular lymphoma transformation, lymphoplasmacytic lymphoma transformation, and HIV-related Burkitt lymphoma. In addition, double-expression (MYC and BCL2), p53 [26], Ki-67 [26], CD5, glutathione-S-transferase (GST) [27], the presence/absence of fibrosis, and thymidine phosphate [28] were also investigated.
2. Material and Methods
2.1. Immunohistochemistry
2.2. Statistical Analysis
3. Results
3.1. Odds Ratio by Logistic Regression Analysis
3.2. Kaplan–Meier Survival Curves and Between-Group Comparisons (Log-Rank Test)
- (1)
- As ER stress proteins, the following four important proteins were selected: GRP94 [4,5,6], GRP78 [7,8], TGFβ1 [9,10], and TNFα1 [11]. GRP94 and GRP78 are stress-inducible molecules released into the extracellular space that act to overcome various stresses in the tumor microenvironment, including hypoxia, hypoglycemia, dysregulation of homeostasis, altered cellular metabolism, and acidosis. TGFβ1 plays an important role in promoting tumor progression. TNF inhibits tumor progression.
- (2)
- As enzymes involved in anticancer drug metabolism, the following three enzymes were selected: AKR1C3 [12,13,14,15,16], CYP3A4) [17,18], and CYP2B6 [19]. AKR1C3 lowers the activities of daunorubicin, hydroxyl doxorubicin (enzyme involved in the metabolism of H), idarubicin (by two- to five-fold), and oncovin (enzyme involved in the metabolism of O: vincristine) (enzyme involved in the metabolism of HO) [14]. Patients with treatment-resistant T-ALL were found to show tumor overexpression of AKR1C3 [16]. The risks of disease progression and death were elevated in patients with diffuse large B-cell lymphoma (DLBCL) carrying the CC genotype of AKR1C3 [12]. CYP3A4 inactivates many anticancer drugs. Therefore, drugs showing intratumoral distribution intra-tumoral drugs, such as PTCL, may be further inactivated. As a result, the efficacy of these drugs may be lowered, leading to the development of drug resistance [17,18]. CYP62B6 activates cyclophosphamide [19].
- (3)
- As anticancer drug efflux pumps, the following three proteins were selected: MDR1 [20,21,22], MRP1 [23,24], and MRP4 [25]. MDR1 and MRP1, found on the cell membranes, are oncovin hydroxyl doxorubicin (OH) efflux pumps. Tumor overexpression of MDR1 and MRP1 leads to the development of drug resistance [20]. DLBCL patients with relatively low expression levels of MDR1 have a good prognosis [21].
- (4)
- Other items (two prognostic indices and seven other proteins) include the revised International R-IPI-poor and HGBCL, including DHL, follicular lymphoma transformation, lymphoplasmacytic lymphoma transformation, and HIV-related Burkitt lymphoma. In addition, double-expression (expression of both MYC and BCL2), p53, Ki-67 [26], CD5, glutathione-S-transferase (GST) [27], presence/absence of fibrosis, and thymidine phosphate [28] were also investigated.
Weighting of the Predictive Factors for the Survival Time
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Coiffier, B.; Sarkozy, C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Boelens, J.; Jais, J.-P.; Vanhoecke, B.; Beck, I.; Van Melckebeke, H.; Philippé, J.; Bracke, M.; Jardin, F.; Brière, J.; Leroy, K.; et al. ER stress in diffuse large B cell lymphoma: GRP94 is a possible biomarker in germinal center versus activated B-cell type. Leuk. Res. 2013, 37, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, Y.B.; Lee, S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Iwanowycz, S.; Ngoi, S.; Hill, M.; Zhao, Q.; Liu, B. Molecular Chaperone GRP94/GP96 in Cancers. Oncogenesis and Therapeutic Target. Front. Oncol. 2021, 1, 629846. [Google Scholar] [CrossRef] [PubMed]
- Mozos, A.; Roué, G.; López-Guillermo, A.; Jares, P.; Campo, E.; Colomer, D.; Martinez, A. The expression of the endoplasmic reticulum stress sensor BiP/GRP78 predicts response to chemotherapy and determines the efficacy of proteasome inhibitors in diffuse large B-cell lymphoma. Am. J. Pathol. 2011, 179, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-C.; Takahashi, H.; Li, X.-H.; Hara, T.; Masuda, S.; Guan, Y.-F.; Takano, Y. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum. Pathol. 2008, 39, 1042–1049. [Google Scholar] [CrossRef]
- El-Hefni, A.M.; Alazzazi, N.M.; Taleb, F.M.A. Prognostic Utility of Transforming Growth Factor Beta-1 in Diffuse Large Cell Non-Hodgkin Lymphoma. J. Hematol. 2015, 4, 131–136. [Google Scholar] [CrossRef]
- Haque, S.; Morris, J.C. Transforming growth factor-b: A therapeutic target for cancer. Hum. Vaccines Immunother. 2017, 13, 1741–1750. [Google Scholar] [CrossRef]
- Nakayama, S.; Yokote, T.; Tsuji, M.; Akioka, T.; Miyoshi, T.; Hirata, Y.; Hiraoka, N.; Iwaki, K.; Takayama, A.; Nishiwaki, U.; et al. TNF-a Receptor 1 Expression Predicts Poor Prognosis of Diffuse Large B-cell Lymphoma, Not Otherwise Specified. Am. J. Surg. Pathol. 2014, 38, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.L.; Yao, S.; Goldman, B.H.; Lee, K.; Spier, C.M.; LeBlanc, M.L.; Rimsza, L.M.; Cerhan, J.R.; Habermann, T.M.; Link, B.K.; et al. Genetic polymorphisms in oxidative stress related genes are associated with outcomes following treatment for aggressive B cell non-Hodgkin lymphoma. Am. J. Hematol. 2014, 89, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, S.; Chen, Y.; Liu, Y.; Feng, F.; Liu, W.; Guo, Q.; Zhao, L.; Sun, H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J. Med. Chem. 2020, 63, 11305–11329. [Google Scholar] [CrossRef] [PubMed]
- Penning, T.M.; Jonnalagadda, S.; Trippier, P.C.; Rižner, T.L. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol. Rev. 2021, 73, 1150–1171. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhao, J.; Yu, H.; Li, X.; Sun, S.; Li, Y.; Xia, Q.; Zhang, C.; He, Q.; Gao, X.; et al. Elevated Expression of AKR1C3 Increases Resistance of Cancer Cells to Ionizing Radiation via Modulation of Oxidative Stress. PLoS ONE 2014, 9, e111911. [Google Scholar] [CrossRef] [PubMed]
- Manesh, D.M.; El-Hoss, J.; Evans, K.; Richmond, J.; Toscan, C.E.; Bracken, L.S.; Hedrick, A.; Sutton, R.; Marshall, G.M.; Wilson, W.R.; et al. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood 2015, 126, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Antona, C.; Leskelä, S.; Zajac, M.; Cuadros, M.; Alvés, J.; Moneo, M.V.; Martín, C.; Cigudosa, J.C.; Carnero, A.; Robledo, M.; et al. Expression of CYP3A4 as a predictor of response to chemotherapy in peripheral T-cell lymphomas. Blood 2007, 110, 3345–3351. [Google Scholar] [CrossRef] [PubMed]
- Molenaar-Kuijsten, L.; Van Balen, D.E.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. A Review of CYP3A Drug-Drug Interaction Studies: Practical Guidelines for Patients Using Targeted Oral Anticancer Drugs. Front. Pharmacol. 2021, 12, 670862. [Google Scholar] [CrossRef]
- El-Serafi, I.; Afsharian, P.; Moshfegh, A.; Hassan, M.; Terelius, Y. Cytochrome P450 Oxidoreductase Influences CYP2B6 Activity in Cyclophosphamide Bioactivation. PLoS ONE 2015, 10, e0141979. [Google Scholar] [CrossRef]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef]
- Andreadis, C.; Gimotty, P.A.; Wahl, P.; Hammond, R.; Houldsworth, J.; Schuster, S.J.; Rebbeck, T.R. Members of the glutathione and ABC-transporter families are associated with clinical outcome in patients with diffuse large B-cell lymphoma. Blood 2007, 109, 3409–3416. [Google Scholar] [CrossRef] [PubMed]
- Genovese, I.; Ilari, A.; Assaraf, Y.G.; Fazi, F.; Colotti, G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist. Updates 2017, 32, 23–46. [Google Scholar] [CrossRef] [PubMed]
- Bakos, É.; Homolya, L. Portrait of multifaceted transporter, the multidrug resistance-associated protein 1 (MRP1/ABCC1). Eur. J. Physiol. 2007, 453, 621–641. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.F.; Pokharel, D.; Bebawy, M. MRP1 and its role in anticancer drug resistance. Drug Metab. Rev. 2015, 47, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.; Norris, M.D.; Haber, M.; Henderson, M.J. ABCC4/MRP4: A MYCN regulated transporter and potential therapeutic target in neuroblastoma. Front Oncol. 2012, 2, 178. [Google Scholar] [CrossRef]
- El-Bolkainy, T.N.; El-Bolkainy, M.N.; Khaled, H.M.; Mokhtar, N.M.; Eissa, S.S.; Gouda, H.M.; El-Hattab, O.H. Evaluation of MIB-1 and p53 Over-expression as Risk Factors in Large Cell Non-Hodgkin Lymphoma in Adults. J. Egypt. Nat. Cancer Inst. 2007, 19, 231–238. [Google Scholar] [PubMed]
- Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003, 22, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Clifford, P.M.; Bhat, R.; Heintzelman, R.; Abraham, M.; Hou, J.S. Thymidine phosphorylase expression in B-cell lymphomas and its significance: A new prognostic marker? Anal. Quant. Cytopathol. Histpathol. 2013, 35, 301–305. [Google Scholar]
- Kanda, Y. Investigation of the freely available easy-to-use software‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Hiraoka, N.; Kikuchi, J.; Yamauchi, T.; Koyama, D.; Wada, T.; Uesawa, M.; Akutsu, M.; Mori, S.; Nakamura, Y.; Ueda, T.; et al. Purine Analog-Like Properties of Bendamustine Underlie Rapid Activation of DNA Damage Response and Synergistic Effects with Pyrimidine Analogues in Lymphoid Malignancies. PLoS ONE 2014, 9, e90675. [Google Scholar] [CrossRef]
- Cho, S.; Lu, M.; He, X.; Ee, P.L.R.; Bhat, U.; Schneider, E.; Miele, L.; Beck, W.T. Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells. Proc. Natl. Acad. Sci. USA 2011, 108, 20778–20783. [Google Scholar] [CrossRef]
- Qosa, H.; Miller, D.S.; Pasinelli, P.; Trotti, D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 2015, 1628 Pt B, 298–316. [Google Scholar] [CrossRef]
Characteristics of Patients in This Analysis | n = 42 |
---|---|
Age > 60 years (%) | 28 (67%) |
Male (%) | 25 (60%) |
Histology | |
DLBCL(NOS) | 28 (67%) |
GC | 11 (26%) |
non-GC | 17 (40%) |
CD5 positive (non-GC) | 5 (12%) |
HGBCL | 14 (33%) |
MYC and BCL2 translocation | 4 (10%) |
Only MYC translocation (including HIV n = 1) | 4 (10%) |
NOS (No MYC) with transformation | 6 (14%) |
from FL | 4 (10%) |
from LPL | 2 (5%) |
R-IPI | |
0–2 very good plus good | 14 (33%) |
3–5 poor | 28 (67%) |
Stage | |
Stage 1–2 | 14 (33%) |
Stage 3–4 | 28 (67%) |
Serum LDH | |
Normal | 13 (31%) |
High | 29 (69%) |
R-CHOP outcome | |
CR Non-relapse | 16 (38%) |
Relapse | 6 (14%) |
non-CR | 20 (48%) |
PD | 14 (33%) |
PR | 6 (14%) |
median OS (range) | 64 M (4–126) |
median PFS (range) | 29 M (0–126) |
Category | Factors (# Significant Difference) | n | Median OS (Months) | p Value | Figure 1 | Reference |
---|---|---|---|---|---|---|
Total | 42 | 64 | A | |||
ER stress proteins | GRP94 (#) | 38 | 51 | * p < 0.05 | B | [4,5,6] |
TGFβ1 (#) | 34 | 37 | ** p < 0.01 | C | [9,10] | |
GRP78 | 40 | 51 | p > 0.05 | D | [7,8] | |
TNFα1 | 24 | 24 | p > 0.05 | [11] | ||
OH metabolic enzyme | AKR1C3 (#) | 26 | 21 | * p < 0.05 | E | [12,13,14,15,16] |
CHOP metabolic enzyme | CYP3A4 (#) | 3 | 9 | ** p < 0.01 | F | [17,18] |
Cyclophosfamide activator | CYP2B6 | 19 | 94 | p > 0.05 | [19] | |
OH efflux pump | MDR1 | 17 | 21 | p > 0.05 | G | [20,21,22] |
MRP1 | 11 | 18 | p > 0.05 | H | [23,24] | |
MTX efflux pump | MRP4 | 2 | 5 | p > 0.05 | [25] | |
R-IPI | poor | 28 | 37 | p > 0.05 | J | |
HGBCL | DHL, Transformation, HIV (#) | 14 | 11.5 | ** p < 0.01 | K | |
Double expression | MYC + BCL2 > 40% | 25 | 37 | p > 0.05 | L | |
Others | MYC > 40% | 29 | 37 | p > 0.05 | ||
P53 > 20% | 15 | 14 | p > 0.05 | I | [26] | |
CD5 | 5 | 18 | p > 0.05 | |||
Ki-67 > 50% | 40 | 64 | p > 0.05 | [26] | ||
GST | 33 | 94 | p > 0.05 | [27] | ||
Fibrosis (Silver stain) | 38 | 64 | p > 0.05 | [29] | ||
Thymidine phosphate backgrand | 20 | 37 | p > 0.05 | [28] | ||
Combination | AKR1C3+ or MDR1+ (#) | 25 | 18 | ** p < 0.01 | N | |
MRP1 or P53 (#) | 22 | 16 | * p < 0.05 | O | [23,24,26] | |
GRP94+ and CYP3A4+ (#) | 3 | 9 | ** p < 0.01 | M | ||
GST (MDR1 or MRP1) (#) | 19 | 37 | * p < 0.05 | |||
GST (MDR1 or MRP1 or AKR1C3) (#) | 26 | 51 | * p < 0.05 | |||
R-IPI no poor (AKR1C3+ or MDR1+) (#) | 4 | 9 | * p < 0.05 | |||
HGBCL (CYP3A4+ or GRP94+) (#) | 11 | 11 | * p < 0.05 | |||
HGBCL (AKR1C3+ or MDR1+) (#) | 9 | 11 | ** p < 0.01 | |||
MYC + BCL2+ (AKR1C3 or MDR1) (#) | 15 | 13 | ** p < 0.01 |
Figure 2 | Case | Age | Disease | Characteristics | R-IPI | HPI (Nitta) | HPI 2 Factors | HPI 4 Factors | Treatment | Outcome | OS | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Figure 1K | Immuno-histostaing | Figure 1J | Figure 1M–O | GRP94 | CYP3A4 | AKR1C3 | MDR1 | MRP1 | P53 | months | ||||
A | Case 1 | 64 F | HGBCL | Onset | Poor | Group 1 | (−) | (−) | (−) | (−) | (−) | (+) | R-CHOPx4 | CR1 | 82 |
DHL | GRP94(−) | Very good | DA-EPOCHRx3 | Alive | |||||||||||
B | Case 2-1 | 41 F | DLBCL | Onset Bulky mass | Poor | Group 2 | (+) | (−) | (−) | (−) | (−) | (−) | R-CHOPx6 | CR1 45 M | 64 |
NOS | GRP94(+) 4factors(−) | Good | relapse | ||||||||||||
C | Case 2-2 | 44 F | DLBCL | 1st relapse skin | Good | Group 2 | (+) | (−) | (−) | (−) | (−) | (−) | R-ESHAP | CR2 15 M | 39 |
NOS | GRP94(+) 4factors(−) | Good | ASCT | relapse | |||||||||||
D | Case 2-3 | 46 F | DLBCL | 2nd relapse CNS | Good | Group 3 | (+) | (−) | (+) | (+) | (+) | (−) | HDMTX-HDACx4 | Dead | 24 |
NOS | GRP94(+) 3factors(+) | Poor | WBRT Tirabrutinib Steroid | ||||||||||||
E | Case 3 | 66 F | DLBCL | Onset | Poor | Group 3 | (+) | (−) | (+) | (+) | (+) | (−) | R-CHOPx8 PR | Dead | 18 |
NOS | GRP94(+) 3factors(+) | Poor | R-ESHAPx2 ASCT RT | ||||||||||||
F | Case 4 | 60 M | HGBCL | Onset | Good | Group 4 | (+) | (+) | (+) | (−) | (−) | (+) | R-CHOPx6 | Dead | 11 |
DHL | CYP3A4(+) | Very poor | R-ESHAPx2 IVAM DeVIC | ||||||||||||
G | Case 5 | 40 M | HBGCL | Onset HIV(+) | Good | Group 3 | (+) | (−) | (−) | (−) | (+) | (+) | R-CHOPx2 | Dead | 5 |
BL | GRP94(+) 2factors(+) | Poor | DA-EPOCH-Rx2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitta, H.; Takizawa, H.; Mitsumori, T.; Iizuka-Honma, H.; Araki, Y.; Fujishiro, M.; Tomita, S.; Kishikawa, S.; Hashizume, A.; Sawada, T.; et al. Possible New Histological Prognostic Index for Large B-Cell Lymphoma. J. Clin. Med. 2023, 12, 6324. https://doi.org/10.3390/jcm12196324
Nitta H, Takizawa H, Mitsumori T, Iizuka-Honma H, Araki Y, Fujishiro M, Tomita S, Kishikawa S, Hashizume A, Sawada T, et al. Possible New Histological Prognostic Index for Large B-Cell Lymphoma. Journal of Clinical Medicine. 2023; 12(19):6324. https://doi.org/10.3390/jcm12196324
Chicago/Turabian StyleNitta, Hideaki, Haruko Takizawa, Toru Mitsumori, Hiroko Iizuka-Honma, Yoshihiko Araki, Maki Fujishiro, Shigeki Tomita, Satsuki Kishikawa, Akane Hashizume, Tomohiro Sawada, and et al. 2023. "Possible New Histological Prognostic Index for Large B-Cell Lymphoma" Journal of Clinical Medicine 12, no. 19: 6324. https://doi.org/10.3390/jcm12196324
APA StyleNitta, H., Takizawa, H., Mitsumori, T., Iizuka-Honma, H., Araki, Y., Fujishiro, M., Tomita, S., Kishikawa, S., Hashizume, A., Sawada, T., Okubo, M., Sekiguchi, Y., Ando, M., & Noguchi, M. (2023). Possible New Histological Prognostic Index for Large B-Cell Lymphoma. Journal of Clinical Medicine, 12(19), 6324. https://doi.org/10.3390/jcm12196324