Peripapillary Vascular Density in Childhood Glaucoma: A Pilot Comparative Study with Age and Sex Matched Healthy Subjects
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Study Participants
2.3. Examination Protocol
2.4. OCT and OCT-A Examination
2.5. Structural and Vasculature Correlations
2.6. Statistical Analysis
3. Results
3.1. Analysis of Demographics
3.2. Qualitative Analysis
3.3. Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, D.; Chen, P.P. Glaucoma. Am. Fam. Physician. 2016, 93, 668–674. [Google Scholar]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.; Zangwill, L.M.; Penteado, R.C.; Hasenstab, K.; Ghahari, E.; Hou, H.; Christopher, M.; Yarmohammadi, A.; Manalastas, P.I.C.; Shoji, T.; et al. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology 2018, 125, 1720–1728. [Google Scholar] [CrossRef]
- Suh, M.H.; Zangwill, L.M.; Manalastas, P.I.C.; Belghith, A.; Yarmohammadi, A.; Medeiros, F.A.; Diniz-Filho, A.; Saunders, L.J.; Weinreb, R.N. Deep Retinal Layer Micro-vasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. Ophthalmology 2016, 123, 2509–2518. [Google Scholar] [CrossRef]
- Rao, H.L.; Pradhan, Z.S.F.; Suh, M.H.; Moghimi, S.; Mansouri, K.; Weinreb, R.N. Optical Coherence Tomography Angiography in Glaucoma. Eur. J. Gastroenterol. Hepatol. 2020, 29, 312–321. [Google Scholar] [CrossRef]
- Weinreb, R.N. Childhood Glaucoma; Kluger Publications: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Moore, D.B.; Tomkins, O.; Ben-Zion, I. A Review of Primary Congenital Glaucoma in the Developing World. Surv. Ophthalmol. 2013, 58, 278–285. [Google Scholar] [CrossRef]
- McLaughlin, D.E.; Semrov, A.; Munshi, H.; Patel, A.J.; Rahi, J.; Grajewski, A.L. The impact of childhood glaucoma on psy-chosocial functioning and quality of life: A review of the literature. Eye 2023, 37, 3157–3173. [Google Scholar] [CrossRef]
- Patel, D.E.; Cumberland, P.M.; Walters, B.C.; Russell-Eggitt, I.; Brookes, J.; Papadopoulos, M.; Khaw, P.T.; Viswanathan, A.C.; Garway-Heath, D.; Cortina-Borja, M.; et al. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma. JAMA Ophthalmol. 2018, 136, 155–161. [Google Scholar] [CrossRef]
- Srinivasan, S.; Addepalli, U.K.; Rao, H.L.; Garudadri, C.S.; Mandal, A.K. Spectral domain optical coherence tomography in children operated for primary congenital glaucoma. Br. J. Ophthalmol. 2013, 98, 162–165. [Google Scholar] [CrossRef] [PubMed]
- El-Dairi, M.A.; Holgado, S.; Asrani, S.G.; Enyedi, L.B.; Freedman, S.F. Correlation between optical coherence tomography and glaucomatous optic nerve head damage in children. Br. J. Ophthalmol. 2008, 93, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- De Silva, D.J.; Khaw, P.T.; Brookes, J.L. Long-term outcome of primary congenital glaucoma. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2011, 15, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, C.F.; Crawford Downs, J.; Bellezza, A.J.; Francis Suh, J.K.; Hart, R.T. The optic nerve head as a biomechanical struc-ture: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005, 24, 39–73. [Google Scholar] [CrossRef]
- Mursch-Edlmayr, A.-S.; Bolz, M.; Strohmaier, C. Vascular Aspects in Glaucoma: From Pathogenesis to Therapeutic Ap-proaches. Int. J. Mol. Sci. 2021, 22, 4662. [Google Scholar] [CrossRef] [PubMed]
- Garway-Heath, D.F.; Poinoosawmy, D.; Fitzke, F.W.; Hitchings, R.A. Mapping the visual field to the optic disc in normal ten-sion glaucoma eyes11The authors have no proprietary interest in the development or marketing of any product or instrument mentioned in this article. Ophthalmology 2000, 107, 1809–1815. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Triolo, G.; Rabiolo, A.; Shemonski, N.D.; Fard, A.; Di Matteo, F.; Sacconi, R.; Bettin, P.; Magazzeni, S.; Querques, G.; Vazquez, L.E.; et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Investig. Opthalmology Vis. Sci. 2017, 58, 5713–5722. [Google Scholar] [CrossRef]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Reddy, H.B.; Riyazuddin, M.; Sachdeva, S.; Puttaiah, N.K.; Jayadev, C.; Webers, C.A. Determinants of Peripapillary and Macular Vessel Densities Measured by Optical Coherence Tomography Angiography in Normal Eyes. Eur. J. Gastroenterol. Hepatol. 2017, 26, 491–497. [Google Scholar] [CrossRef]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Suh, M.H.; Manalastas, P.I.; Fatehee, N.; Yousefi, S.; Belghith, A.; Saunders, L.J.; Medeiros, F.A.; et al. Optical Coherence Tomogra-phy Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT451-9. [Google Scholar]
- Li, Z.; Xu, Z.; Liu, Q.; Chen, X.; Li, L. Comparisons of retinal vessel density and glaucomatous parameters in optical coherence tomography angiography. PLoS ONE 2020, 15, e0234816. [Google Scholar] [CrossRef]
- Park, J.-H.; Yoo, C.; Kim, Y.Y. Peripapillary Vessel Density in Young Patients with Open-Angle Glaucoma: Comparison between High-Tension and Normal-Tension Glaucoma. Sci. Rep. 2019, 9, 19160. [Google Scholar] [CrossRef]
- Abdelrahman, A.M.; Eltanamly, R.M.; Elsanabary, Z.; Hassan, L.M. Optical coherence tomography angiography in juvenile open angle glaucoma: Correlation between structure and perfusion. Int. Ophthalmol. 2020, 41, 883–889. [Google Scholar] [CrossRef]
- Chen, J.J.; Kardon, R.H. Avoiding Clinical Misinterpretation and Artifacts of Optical Coherence Tomography Analysis of the Optic Nerve, Retinal Nerve Fiber Layer, and Ganglion Cell Layer. J. Neuro-Ophthalmol. 2016, 36, 417–438. [Google Scholar] [CrossRef] [PubMed]
- Asrani, S.; Essaid, L.; Alder, B.D.; Santiago-Turla, C. Artifacts in Spectral-Domain Optical Coherence Tomography Measurements in Glaucoma. JAMA Ophthalmol. 2014, 132, 396–402. [Google Scholar] [CrossRef]
- Jonas, J.B.; Fernández, M.C.; Stürmer, J. Pattern of Glaucomatous Neuroretinal Rim Loss. Ophthalmology 1993, 100, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Abay, R.N.; Akdeniz, G.; Katipoğlu, Z.; Kerimoğlu, H. Normative data assessment of age-related changes in macular and optic nerve head vessel density using optical coherence tomography angiography. Photodiagnosis Photodyn. Ther. 2022, 37, 102624. [Google Scholar] [CrossRef]
- Mendez-Hernandez, C.; Arribas-Pardo, P.; Jean, R.S.; Garcia-Feljoo, J. Influence of axial length on intraocular pressure meas-urement with three tonometers in childhood glaucoma. J. Pediatr. Ophthalmol. Strabismus. 2020, 57, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Cashwell, L.F.; Martin, C.A. Axial length decrease accompanying successful glaucoma filtration surgery. Ophthalmology 1999, 106, 2307–2311. [Google Scholar] [CrossRef]
- Mendez-Hernandez, C.; Wang, S.; Arribas-Pardo, P.; Salazar-Quiñones, L.; Güemes-Villahoz, N.; Fernandez-Perez, C.; Garcia-Feijoo, J. Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma. Br. J. Ophthalmol. 2021, 105, 957–963. [Google Scholar] [CrossRef]
- Bekkers, A.; Borren, N.; Ederveen, V.; Fokkinga, E.; Andrade De Jesus, D.; Sánchez Brea, L.; Klein, S.; van Walsum, T.; Barbosa-Breda, J.; Stalmans, I. Microvascular damage as-sessed by optical coherence tomography angiography for glaucoma diagnosis: A systematic review of the most discrimina-tive regions. Acta Ophthalmol. 2020, 98, 537–558. [Google Scholar] [CrossRef]
- Richter, G.M.; Lee, J.C.; Khan, N.; Vorperian, A.; Hand, B.; Burkemper, B.; Zhou, X.; Chu, Z.; Wang, R.; Varma, R.; et al. Ocular and systemic determinants of perifoveal and macular vessel parameters in healthy African Americans. Br. J. Ophthalmol. 2021, 107, 540–546. [Google Scholar] [CrossRef]
A | |||
---|---|---|---|
Normal (n = 95) | Glaucoma (n = 68) | p Value | |
Gender (M/F) | 35/60 | 26/42 | 0.492 & |
Age (year) | 12.01 ± 3.71 | 13.47 ± 6.42 | 0.069 # |
Patients under glaucoma medications | - | 39 (57.3%) | - |
Glaucoma surgery | - | 41 (60.3%) | - |
Pseudophakia | 0 (0%) | 2 (2.9%) | 0.173 & |
Visual acuity | 0.99 ± 0.12 | 0.78 ± 0.26 | <0.0001 # |
Sphere | −1.56 ± 2.62 | −2.59 ± 5.47 | 0.153 # |
Astigmastism | −1.00 [−1.75;−0.50] | −1.00 [−1.75;−0.50] | 0.536 * |
Mean Defect (dB) | - | 6.50 [1.72;10.82] | - |
Loss Variance (dB2) | - | 4.24 [2.60;5.55] | - |
Intraocular Pressure (mmHg) | 15.96 ± 3.36 | 18.60 ± 4.98 | 0.015 # |
Pachymetry (μ) | 539.68 ± 38.66 | 553.31 ± 48.26 | 0.199 # |
Cup-to-disk ratio | 0.37 ± 0.15 | 0.47 ± 0.26 | 0.002 # |
RNFL (μ) | 101.38 ± 10.40 | 82.12 ± 24.43 | <0.0001 # |
Peripapillary OCT-A Vessel Density | |||
Average Vessel Density (%) | 0.54 ± 0.015 | 0.52 ± 0.039 | <0.0001 # |
Average Blood Flux Index | 0.37 ± 0.031 | 0.32 ± 0.053 | <0.0001 # |
Superior Quadrant Vessel Density (%) | 0.54 ± 0.022 | 0.51 ± 0.057 | <0.0001 # |
Superior Quandrant Flux Index | 0.37 ± 0.030 | 0.32 ± 0.052 | <0.0001 # |
Inferior Quadrant VesselDensity (%) | 0.55 ± 0.061 | 0.51 ± 0.079 | 0.001 # |
Inferior Quadrant Flux Index | 0.36 ± 0.049 | 0.32 ± 0.066 | <0.0001 # |
Temporal Quadrant Vessel Density (%) | 0.56 ± 0.025 | 0.55 ± 0.044 | 0.011 # |
Temporal Quadrant Flux Index | 0.38 ± 0.033 | 0.33 ± 0.058 | <0.0001 # |
Nasal Quadrant Vessel Density (%) | 0.52 ± 0.029 | 0.52 ± 0.039 | 0.245 # |
Nasal Quadrant Flux Index | 0.37 ± 0.034 | 0.32 ± 0.052 | |
Peripapillary RNFL Thickness | |||
Average RNFL Thickness (μ) | 83.87 ± 8.47 | 69.38 ± 14.68 | <0.0001 # |
Average GH RNFL Thickness(μ) | 96.70 ± 10.41 | 78.50 ± 19.94 | <0.0001 # |
Superior Quadrant RNFL Thickness (μ) | 105.99 ± 13.09 | 81.65 ± 23.54 | <0.0001 # |
Inferior Quadrant RNFL Thickness (μ) | 105.62 ± 19.32 | 80.28 ± 25.70 | <0.0001 # |
Temporal Quadrant RNFL Thickness (μ) | 63.99 ± 11.95 | 59.45 ± 12.79 | 0.021 # |
Nasal Quadrant RNFL Thickness (μ) | 61.93 ± 9.20 | 56.21 ± 9.34 | <0.0001 # |
GH Temporal Sector RNFL Thickness (μ) | 71.64 ± 15.46 | 65.44 ± 16.53 | 0.015 # |
GH Superotemporal Sector RNFL Thickness(μ) | 133.69 ± 24.03 | 98.40 ± 39.21 | <0.0001 # |
GH Inferotemporal Sector RNFL Thickness (μ) | 145.58 ± 25.03 | 111.40 ± 44.62 | <0.0001 # |
GH Nasal Sector RNFL Thickness (μ) | 76.31 ± 15.58 | 66.21 ± 14.10 | <0.0001 # |
GH Superonasal Sector RNFL Thickness (μ) | 121.24 ± 26.43 | 90.71 ± 30.93 | <0.0001 # |
GH Inferonasal Sector RNFL Thickness (μ) | 115.29 ± 29.74 | 84.53 ± 34.83 | <0.0001 # |
B | |||
Normal (n = 47) | Glaucoma (n = 32) | p value | |
Gender (M/F) | 16/31 | 13/19 | 0.359 & |
Age (year) | 12.09 ± 3.72 | 13.69 ± 6.52 | 0.169 # |
Patients under glaucoma medications | - | 18 (56.2%) | - |
Glaucoma surgery | - | 19 (59%) | - |
Pseudophakia | 0 (0%) | 2 (6.2%) | 0.649 & |
Visual acuity | 0.99 ± 0.12 | 0.77 ± 0.29 | <0.0001 # |
Sphere | −1.49 ± 2.51 | −2.68 ± 6.08 | 0.272 # |
Astigmastism | −1.00 [−2.06;−0.50] | −1.00 [−2.06;−0.50] | 0.875 * |
Mean Defect (dB) | - | 5.55 [0.45;9.35] | - |
Loss Variance (dB2) | - | 4.25 [2.60;5.55] | - |
Intraocular pressure (mm Hg) | 15.67 ± 3.31 | 18.63 ± 5.31 | 0.081 # |
Pachymetry (μ) | 542.00 ± 40.86 | 559.79 ± 51.32 | 0.289 # |
Cup-to-disk ratio | 0.39 ± 0.16 | 0.51 ± 0.28 | 0.020 # |
RNFL (μ) | 102.49 ± 10.91 | 80.56 ± 25.20 | <0.0001 # |
Peripapillary OCT-A Vessel Density | |||
Average Vessel Density (%) | 0.55 ± 0.014 | 0.52 ± 0.043 | <0.0001 # |
Average Blood Flux Index | 0.37 ± 0.028 | 0.32 ± 0.054 | <0.0001 # |
Superior Quadrant Vessel Density (%) | 0.55 ± 0.023 | 0.51 ± 0.057 | <0.0001 # |
Superior Quadrant Flux Index | 0.37 ± 0.027 | 0.32 ± 0.051 | <0.0001 # |
Inferior Quadrant Vessel Density (%) | 0.55 ± 0.022 | 0.51 ± 0.054 | <0.0001 # |
Inferior Quadrant Flux Index | 0.37 ± 0.030 | 0.32 ± 0.055 | <0.0001 # |
Temporal Quadrant Vessel Density (%) | 0.57 ± 0.022 | 0.55 ± 0.047 | 0.026 # |
Temporal Quadrant Flux Index | 0.38 ± 0.028 | 0.33 ± 0.057 | <0.0001 # |
Nasal Quadrant Vessel Density (%) | 0.53 ± 0.026 | 0.52 ± 0.042 | 0.277 # |
Nasal Quadrant Flux Index | 0.37 ± 0.032 | 0.32 ± 0.053 | <0.0001 # |
Peripapillary RNFL Thickness | |||
Average RNFL Thickness (μ) | 84.87 ± 9.04 | 69.97 ± 14.68 | <0.0001 # |
Average GH RNFL Thickness (μ) | 97.67 ± 10.90 | 79.59 ± 20.57 | <0.0001 # |
Superior Quadrant RNFL Thickness (μ) | 105.70 ± 13.54 | 80.73 ± 21.72 | <0.0001 # |
Inferior Quadrant RNFL Thickness (μ) | 107.07 ± 16.82 | 79.02 ± 21.93 | <0.0001 # |
Temporal Quadrant RNFL Thickness (μ) | 65.64 ± 12.51 | 61.80 ± 14.34 | 0.211 # |
Nasal Quadrant RNFL Thickness (μ) | 63.58 ± 9.51 | 58.50 ± 9.75 | 0.024 # |
GH Temporal Sector RNFL Thickness (μ) | 72.50 ± 15.47 | 68.27 ± 19.31 | 0.284 # |
GH Superotemporal Sector RNFL Thickness (μ) | 140.99 ± 23.16 | 102.33 ± 40.33 | <0.0001 # |
GH Inferotemporal Sector RNFL Thickness (μ) | 144.71 ± 24.31 | 110.14 ± 44.80 | <0.0001 # |
GH Nasal Sector RNFL Thickness (μ) | 78.08 ± 16.33 | 68.44 ± 14.46 | 0.009 # |
GH Superonasal Sector RNFL Thickness (μ) | 115.96 ± 28.13 | 87.05 ± 27.47 | <0.0001 # |
GH Inferonasal Sector RNFL Thickness (μ) | 117.49 ± 30.77 | 81.17 ± 28.41 | <0.0001 # |
C | |||
Normal (n = 48) | Glaucoma (n = 36) | p value | |
Gender (M/F) | 19/29 | 13/23 | 0.462 & |
Age (year) | 11.94 ± 3.74 | 13.28 ± 6.41 | 0.233 # |
Patients under glaucoma medications | - | 21 (58.3%) | - |
Glaucoma surgery | - | 22/36 | - |
Pseudophakia | - | - | - |
Visual acuity | 0.99 ± 0.12 | 0.77 ± 0.29 | <0.0001 # |
Sphere | −1.65 ± 2.75 | −2.51 ± 5.07 | 0.369 # |
Astigmastism | −1.00 [−1.75;−0.50] | −1.00 [−1.75;−0.50] | 0.500* |
Mean Defect (dB) | - | 7.15 [2.63;13.23] | - |
Loss Variance (dB2) | - | 4.80 [3.23;6.10] | - |
Intraocular pressure (mm Hg) | 16.21 ± 3.51 | 18.57 ± 4.75 | 0.100 # |
Pachymetry (μ) | 537.67 ± 37.97 | 548.29 ± 45.98 | 0.443 # |
Cup-to-disk ratio | 0.35 ± 0.15 | 0.44 ± 0.24 | 0.036 # |
RNFL (μ) | 100.28 ± 9.87 | 83.59 ± 23.96 | <0.0001 # |
Peripapillary OCT-A Vessel Density | |||
Average Vessel Density (%) | 0.54 ± 0.016 | 0.53 ± 0.035 | 0.006 # |
Average Blood Flux Index | 0.37 ± 0.034 | 0.33 ± 0.054 | <0.0001 # |
Superior Quadrant Vessel Density (%) | 0.54 ± 0.020 | 0.52 ± 0.058 | 0.013 # |
Superior Quadrant Flux Index | 0.37 ± 0.033 | 0.33 ± 0.053 | <0.0001 # |
Inferior Quadrant Vessel Density (%) | 0.54 ± 0.083 | 0.51 ± 0.097 | 0.143 # |
Inferior Quadrant Flux Index | 0.36 ± 0.062 | 0.32 ± 0.074 | 0.009 # |
Temporal QuadrantVessel Density (%) | 0.55 ± 0.025 | 0.54 ± 0.041 | 0.187 # |
Temporal Quadrant Flux Index | 0.37 ± 0.037 | 0.33 ± 0.059 | <0.0001 # |
Nasal Quadrant Vessel Density (%) | 0.52 ± 0.033 | 0.51 ± 0.037 | 0.578 # |
Nasal Quadrant Flux Index | 0.36 ± 0.036 | 0.32 ± 0.051 | <0.0001 # |
Peripapillary RNFL Thickness | |||
Average RNFL Thickness(μ) | 82.90 ± 7.83 | 68.85 ± 14.87 | <0.0001 # |
Average GH RNFLThickness (μ) | 95.75 ± 9.93 | 77.53 ± 19.60 | <0.0001 # |
Superior Quadrant RNFL Thickness (μ) | 106.29 ± 12.79 | 82.47 ± 25.32 | <0.0001 # |
Inferior Quadrant RNFL Thickness (μ) | 104.20 ± 21.58 | 81.40 ± 28.91 | <0.0001 # |
Temporal Quadrant RNFL Thickness (μ) | 62.37 ± 11.26 | 57.36 ± 11.01 | 0.045 # |
Nasal Quadrant RNFL Thickness (μ) | 60.31 ± 8.70 | 54.17 ± 8.57 | 0.002 # |
GH Temporal Sector RNFL Thickness (μ) | 70.81 ± 15.56 | 62.93 ± 13.37 | 0.017 # |
GH Superotemporal Sector RNFL Thickness (μ) | 126.54 ± 22.89 | 94.90 ± 38.41 | <0.0001 # |
GH Inferotemporal Sector RNFL Thickness (μ) | 146.44 ± 25.96 | 112.53 ± 25.07 | <0.0001 # |
GH Nasal Sector RNFL Thickness (μ) | 74.57 ± 14.77 | 64.24 ± 13.66 | 0.002 # |
GH Superonasal Sector RNFL Thickness (μ) | 126.41 ± 23.83 | 93.96 ± 33.77 | <0.0001 # |
GH Inferonasal Sector RNFL Thickness (μ) | 113.13 ± 28.87 | 87.52 ± 39.84 | 0.001 # |
Average Vessel Density (%) | Superior Quadrant Vessel Density (%) | Inferior Quadrant Vessel Density (%) | Nasal Quadrant Vessel Density (%) | Temporal Quadrant Vessel Density (%) | Superior Quadrant Flux Index | Inferior Quadrant Flux Index | |
---|---|---|---|---|---|---|---|
Age (year) | −0.221 (0.005) § | −0.169 (0.031) § | −0.179 (0.023) § | −0.207 (0.008) § | −0.158 (0.044) § | ||
Cilinder | −0.175 (0.045) * | ||||||
Pachymetry (μ) | −0.227 (0.039) § | −0.295 (0.007) § | −0.235 (0.032) § | −0.288 (0.009) § |
Average RNFL Thickness (μ) | Superior Quadrant RNFL Thickness (μ) | Inferior Quadrant RNFL Thickness (μ) | Temporal Quadrant RNFL Thickness (μ) | Nasal Quadrant RNFL Thickness(μ) | Average GH RNFL Thickness (μ) | GH Temporal Sector RNFL Thickness(μ) | GH Inferotemporal Sector RNFL Thickness (μ) | GH Nasal Sector RNFL Thickness (μ) | GH Superonasal Sector RNFL Thickness (μ) | GH Inferonasal Sector RNFL Thickness (μ) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Glaucoma meds | −0.243 (0.031) * | −0.244 (0.030) * | |||||||||
Visual acuity | 0.175 (0.031) § | ||||||||||
Sphere | 0.204 (0.020) § | 0.214 (0.014) § | 0.260 (0.003) § | −0.181 (0.040) § | 0.244 (0.005) § | 0.203 (0.021) § | 0.229 (0.009) § | 0.246 (0.005) § | 0.218 (0.013) § | 0.217 (0.013) § | |
Cilinder | 0.182 (0.036) * | −0.305 (0.005) * | |||||||||
Pachymetry (μ) | −0.279 (0.011) § | −0.273 (0.013) § |
Sb at 95% of Sp | Sb at 80% of Sp | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUROC | 95%CI | p Value | Cut Off | Sb | 95%CI | LR+ | LR− | Cut Off | Sb | 95%CI | LR+ | LR− | |
Vessel Density (%) | 0.664 | 0.575; 0.752 | 0.00037 | 0.52 | 0.35 | 0.22; 0.47 | 0.83 | 0.67 | 0.53 | 0.47 | 0.34; 0.60 | 0.63 | 0.69 |
Blood Flux Index | 0.752 | 0.675; 0.828 | <0.0001 | 0.31 | 0.37 | 0.24; 0.51 | 0.84 | 0.68 | 0.35 | 0.56 | 0.41; 0.71 | 0.67 | 0.72 |
RNFL Thickness (μ) | 0.797 | 0.725; 0.869 | <0.0001 | 72.19 | 0.49 | 0.35; 0.62 | 0.87 | 0.72 | 77.00 | 0.66 | 0.51; 0.78 | 0.70 | 0.77 |
GH RNFL Thickness (μ) | 0.782 | 0.707; 0.857 | <0.0001 | 83.16 | 0.51 | 0.32; 0.66 | 0.88 | 0.73 | 88.34 | 0.65 | 0.53; 0.75 | 0.70 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xydaki, F.; Arribas-Pardo, P.; Burgos-Blasco, B.; Garcia-Feijoo, J.; Mendez-Hernandez, C. Peripapillary Vascular Density in Childhood Glaucoma: A Pilot Comparative Study with Age and Sex Matched Healthy Subjects. J. Clin. Med. 2023, 12, 6982. https://doi.org/10.3390/jcm12226982
Xydaki F, Arribas-Pardo P, Burgos-Blasco B, Garcia-Feijoo J, Mendez-Hernandez C. Peripapillary Vascular Density in Childhood Glaucoma: A Pilot Comparative Study with Age and Sex Matched Healthy Subjects. Journal of Clinical Medicine. 2023; 12(22):6982. https://doi.org/10.3390/jcm12226982
Chicago/Turabian StyleXydaki, Flora, Paula Arribas-Pardo, Barbara Burgos-Blasco, Julian Garcia-Feijoo, and Carmen Mendez-Hernandez. 2023. "Peripapillary Vascular Density in Childhood Glaucoma: A Pilot Comparative Study with Age and Sex Matched Healthy Subjects" Journal of Clinical Medicine 12, no. 22: 6982. https://doi.org/10.3390/jcm12226982
APA StyleXydaki, F., Arribas-Pardo, P., Burgos-Blasco, B., Garcia-Feijoo, J., & Mendez-Hernandez, C. (2023). Peripapillary Vascular Density in Childhood Glaucoma: A Pilot Comparative Study with Age and Sex Matched Healthy Subjects. Journal of Clinical Medicine, 12(22), 6982. https://doi.org/10.3390/jcm12226982