Cardiovascular Disease in Diabetes and Chronic Kidney Disease
Abstract
:1. Introduction
2. Epidemiology
3. Treatment Options
3.1. Hypertension/Albuminuria
3.2. Lipids
3.3. Glycemia and Glomerular Hyperfiltration
3.4. Cardiac Remodeling
3.5. Inflammation
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Malik, S.; Budoff, M.J.; Correa, A.; Ashley, K.E.; Selvin, E.; Watson, K.E.; Wong, N.D. Identification and Predictors for Cardiovascular Disease Risk Equivalents among Adults With Diabetes Mellitus. Diabetes Care 2021, 44, 2411–2418. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. [Google Scholar] [CrossRef]
- Papademetriou, V.; Lovato, L.; Doumas, M.; Nylen, E.; Mottl, A.; Cohen, R.M.; Applegate, W.B.; Puntakee, Z.; Yale, J.F.; Cushman, W.C.; et al. Chronic Kidney Disease and Intensive Glycemic Control Increase Cardiovascular Risk in Patients with Type 2 Diabetes. Kidney Int. 2015, 87, 649–659. [Google Scholar] [CrossRef]
- Xu, J.; Murphy, S.; Kochanek, K.; Arias, E. Mortality in the United States, 2021; NCHS Data Brief, no 456; National Center for Health Statistics: Hyattsville, MD, USA, 2022. [Google Scholar] [CrossRef]
- Foy, A.J.; Filippone, E.J.; Schaefer, E.; Nudy, M.; Ruzieh, M.; Dyer, A.-M.; Chinchilli, V.M.; Naccarelli, G.V. Association Between Baseline Diastolic Blood Pressure and the Efficacy of Intensive vs Standard Blood Pressure-Lowering Therapy. JAMA Netw. Open 2021, 4, e2128980. [Google Scholar] [CrossRef]
- Newman, J.D.; Schwartzbard, A.Z.; Weintraub, H.S.; Goldberg, I.J.; Berger, J.S. Primary Prevention of Cardiovascular Disease in Diabetes Mellitus. J. Am. Coll. Cardiol. 2017, 70, 883–893. [Google Scholar] [CrossRef]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 49–73. [Google Scholar] [CrossRef]
- Kannel, W.B.; McGee, D.L. Diabetes and Cardiovascular Disease. The Framingham Study. JAMA 1979, 241, 2035–2038. [Google Scholar] [CrossRef]
- Rao Kondapally Seshasai, S.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; et al. Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar] [CrossRef]
- Chun, B.Y.; Dobson, A.J.; Heller, R.F. The Impact of Diabetes on Survival among Patients with First Myocardial Infarction. Diabetes Care 1997, 20, 704–708. [Google Scholar] [CrossRef]
- Haffner, S.M.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Mortality from Coronary Heart Disease in Subjects with Type 2 Diabetes and in Nondiabetic Subjects with and without Prior Myocardial Infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Lennon, L. Cardiovascular Disease Incidence and Mortality in Older Men with Diabetes and in Men with Coronary Heart Disease. Heart 2004, 90, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.S.; Blankstein, R. Are All Individuals With Diabetes Equal, or Some More Equal Than Others? JACC Cardiovasc. Imaging 2016, 9, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, P.; Koukkunen, H.; Ketonen, M.; Jerkkola, T.; Immonen-Räihä, P.; Kärjä-Koskenkari, P.; Kuulasmaa, K.; Palomäki, P.; Mustonen, J.; Lehtonen, A.; et al. Myocardial Infarction in Diabetic and Non-Diabetic Persons with and without Prior Myocardial Infarction: The FINAMI Study. Diabetologia 2005, 48, 2519–2524. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.S.; Liu, J.Y.; Moffet, H.H.; Jaffe, M.; Karter, A.J. Diabetes and Prior Coronary Heart Disease Are Not Necessarily Risk Equivalent for Future Coronary Heart Disease Events. J. Gen. Intern. Med. 2016, 31, 387–393. [Google Scholar] [CrossRef]
- Saely, C.H.; Drexel, H. Is Type 2 Diabetes Really a Coronary Heart Disease Risk Equivalent? Vasc. Pharmacol. 2013, 59, 11–18. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Pálsson, R.; Patel, U.D. Cardiovascular Complications of Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2014, 21, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Chronic Kidney Disease Prognosis Consortium; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of Estimated Glomerular Filtration Rate and Albuminuria with All-Cause and Cardiovascular Mortality in General Population Cohorts: A Collaborative Meta-Analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef]
- Hillege, H.L.; Janssen, W.M.; Bak, A.A.; Diercks, G.F.; Grobbee, D.E.; Crijns, H.J.; Van Gilst, W.H.; De Zeeuw, D.; De Jong, P.E. Prevend Study Group Microalbuminuria Is Common, Also in a Nondiabetic, Nonhypertensive Population, and an Independent Indicator of Cardiovascular Risk Factors and Cardiovascular Morbidity. J. Intern. Med. 2001, 249, 519–526. [Google Scholar] [CrossRef]
- Branch, M.; German, C.; Bertoni, A.; Yeboah, J. Incremental Risk of Cardiovascular Disease and/or Chronic Kidney Disease for Future ASCVD and Mortality in Patients with Type 2 Diabetes Mellitus: ACCORD Trial. J. Diabetes Complicat. 2019, 33, 468–472. [Google Scholar] [CrossRef]
- Oshima, M.; Jun, M.; Ohkuma, T.; Toyama, T.; Wada, T.; Cooper, M.E.; Hadjadj, S.; Hamet, P.; Harrap, S.; Mancia, G.; et al. The Relationship between EGFR Slope and Subsequent Risk of Vascular Outcomes and All-Cause Mortality in Type 2 Diabetes: The ADVANCE-ON Study. Diabetologia 2019, 62, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- So, W.Y.; Kong, A.P.S.; Ma, R.C.W.; Ozaki, R.; Szeto, C.C.; Chan, N.N.; Ng, V.; Ho, C.S.; Lam, C.W.K.; Chow, C.C.; et al. Glomerular Filtration Rate, Cardiorenal End Points, and All-Cause Mortality in Type 2 Diabetic Patients. Diabetes Care 2006, 29, 2046–2052. [Google Scholar] [CrossRef]
- Drury, P.L.; Ting, R.; Zannino, D.; Ehnholm, C.; Flack, J.; Whiting, M.; Fassett, R.; Ansquer, J.C.; Dixon, P.; Davis, T.M.E.; et al. Estimated Glomerular Filtration Rate and Albuminuria Are Independent Predictors of Cardiovascular Events and Death in Type 2 Diabetes Mellitus: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 2011, 54, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Merletti, F.; Bargero, G.; Novelli, G.; Melis, D.; Soddu, A.; Perotto, M.; Pagano, G.; Cavallo-Perin, P. Estimated Glomerular Filtration Rate, Albuminuria and Mortality in Type 2 Diabetes: The Casale Monferrato Study. Diabetologia 2007, 50, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Verdon, C.; Ninomiya, T.; Barzi, F.; Cass, A.; Patel, A.; Jardine, M.; Gallagher, M.; Turnbull, F.; Chalmers, J.; et al. The Relationship between Proteinuria and Coronary Risk: A Systematic Review and Meta-Analysis. PLoS Med. 2008, 5, e207. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Zoppini, G.; Chonchol, M.; Negri, C.; Stoico, V.; Perrone, F.; Muggeo, M.; Bonora, E. Glomerular Filtration Rate, Albuminuria and Risk of Cardiovascular and All-Cause Mortality in Type 2 Diabetic Individuals. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 294–301. [Google Scholar] [CrossRef]
- Yokoyama, H.; Araki, S.; Haneda, M.; Matsushima, M.; Kawai, K.; Hirao, K.; Oishi, M.; Sugimoto, K.; Sone, H.; Maegawa, H.; et al. Chronic Kidney Disease Categories and Renal-Cardiovascular Outcomes in Type 2 Diabetes without Prevalent Cardiovascular Disease: A Prospective Cohort Study (JDDM25). Diabetologia 2012, 55, 1911–1918. [Google Scholar] [CrossRef]
- Ninomiya, T.; Perkovic, V.; de Galan, B.E.; Zoungas, S.; Pillai, A.; Jardine, M.; Patel, A.; Cass, A.; Neal, B.; Poulter, N.; et al. Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes. J. Am. Soc. Nephrol. 2009, 20, 1813–1821. [Google Scholar] [CrossRef]
- Coresh, J.; Heerspink, H.J.L.; Sang, Y.; Matsushita, K.; Arnlov, J.; Astor, B.C.; Black, C.; Brunskill, N.J.; Carrero, J.-J.; Feldman, H.I.; et al. Change in Albuminuria and Subsequent Risk of End-Stage Kidney Disease: An Individual Participant-Level Consortium Meta-Analysis of Observational Studies. Lancet Diabetes Endocrinol. 2019, 7, 115–127. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S144–S174. [Google Scholar] [CrossRef]
- ACCORD Study Group; Cushman, W.C.; Evans, G.W.; Byington, R.P.; Goff, D.C.; Grimm, R.H.; Cutler, J.A.; Simons-Morton, D.G.; Basile, J.N.; Corson, M.A.; et al. Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010, 362, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Beddhu, S.; Chertow, G.M.; Greene, T.; Whelton, P.K.; Ambrosius, W.T.; Cheung, A.K.; Cutler, J.; Fine, L.; Boucher, R.; Wei, G.; et al. Effects of Intensive Systolic Blood Pressure Lowering on Cardiovascular Events and Mortality in Patients With Type 2 Diabetes Mellitus on Standard Glycemic Control and in Those Without Diabetes Mellitus: Reconciling Results From ACCORD BP and SPRINT. J. Am. Heart Assoc. 2018, 7, e009326. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. The Collaborative Study Group. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Parving, H.H.; Lehnert, H.; Bröchner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group The Effect of Irbesartan on the Development of Diabetic Nephropathy in Patients with Type 2 Diabetes. N. Engl. J. Med. 2001, 345, 870–878. [Google Scholar] [CrossRef]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.-H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef]
- Keane, W.F.; Brenner, B.M.; de Zeeuw, D.; Grunfeld, J.-P.; McGill, J.; Mitch, W.E.; Ribeiro, A.B.; Shahinfar, S.; Simpson, R.L.; Snapinn, S.M.; et al. The Risk of Developing End-Stage Renal Disease in Patients with Type 2 Diabetes and Nephropathy: The RENAAL Study. Kidney Int. 2003, 63, 1499–1507. [Google Scholar] [CrossRef]
- de Zeeuw, D.; Remuzzi, G.; Parving, H.-H.; Keane, W.F.; Zhang, Z.; Shahinfar, S.; Snapinn, S.; Cooper, M.E.; Mitch, W.E.; Brenner, B.M. Albuminuria, a Therapeutic Target for Cardiovascular Protection in Type 2 Diabetic Patients with Nephropathy. Circulation 2004, 110, 921–927. [Google Scholar] [CrossRef]
- Mann, J.F.; Schmieder, R.E.; McQueen, M.; Dyal, L.; Schumacher, H.; Pogue, J.; Wang, X.; Maggioni, A.; Budaj, A.; Chaithiraphan, S.; et al. Renal Outcomes with Telmisartan, Ramipril, or Both, in People at High Vascular Risk (the ONTARGET Study): A Multicentre, Randomised, Double-Blind, Controlled Trial. Lancet 2008, 372, 547–553. [Google Scholar] [CrossRef]
- Fried, L.F.; Emanuele, N.; Zhang, J.H.; Brophy, M.; Conner, T.A.; Duckworth, W.; Leehey, D.J.; McCullough, P.A.; O’Connor, T.; Palevsky, P.M.; et al. Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy. N. Engl. J. Med. 2013, 369, 1892–1903. [Google Scholar] [CrossRef]
- Kuznik, A.; Mardekian, J.; Tarasenko, L. Evaluation of Cardiovascular Disease Burden and Therapeutic Goal Attainment in US Adults with Chronic Kidney Disease: An Analysis of National Health and Nutritional Examination Survey Data, 2001–2010. BMC Nephrol. 2013, 14, 132. [Google Scholar] [CrossRef]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Lipid-Lowering Agents for Concurrent Cardiovascular and Chronic Kidney Disease. Expert Opin. Pharmacother. 2019, 20, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.O.; Rosenson, R.S.; Lyubarova, R.; Chaudhry, R.; Costa, S.P.; Bangalore, S.; Sidhu, M.S. Concepts and Controversies: Lipid Management in Patients with Chronic Kidney Disease. Cardiovasc. Drugs Ther. 2021, 35, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Esmeijer, K.; Dekkers, O.M.; de Fijter, J.W.; Dekker, F.W.; Hoogeveen, E.K. Effect of Different Types of Statins on Kidney Function Decline and Proteinuria: A Network Meta-Analysis. Sci. Rep. 2019, 9, 16632. [Google Scholar] [CrossRef] [PubMed]
- Sung, F.-C.; Jong, Y.-C.; Muo, C.-H.; Hsu, C.-C.; Tsai, W.-C.; Hsu, Y.-H. Statin Therapy for Hyperlipidemic Patients With Chronic Kidney Disease and End-Stage Renal Disease: A Retrospective Cohort Study Based on 925,418 Adults in Taiwan. Front. Pharmacol. 2022, 13, 815882. [Google Scholar] [CrossRef] [PubMed]
- Krane, V.; Wanner, C. Statins, Inflammation and Kidney Disease. Nat. Rev. Nephrol. 2011, 7, 385–397. [Google Scholar] [CrossRef]
- Fellstrom, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.W.; Chevaile, A.; Cobbe, S.M.; Gronhagen-Riska, C.; et al. Rosuvastatin and Cardiovascular Events in Patients Undergoing Hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef]
- Wanner, C.; Krane, V.; Marz, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E. Atorvastatin in Patients with Type 2 Diabetes Mellitus Undergoing Hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef]
- Merovci, A.; Solis-Herrera, C.; Daniele, G.; Eldor, R.; Fiorentino, T.V.; Tripathy, D.; Xiong, J.; Perez, Z.; Norton, L.; Abdul-Ghani, M.A.; et al. Dapagliflozin Improves Muscle Insulin Sensitivity but Enhances Endogenous Glucose Production. J. Clin. Investig. 2014, 124, 509–514. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Norton, L.; Abdul-Ghani, M. Renal, Metabolic and Cardiovascular Considerations of SGLT2 Inhibition. Nat. Rev. Nephrol. 2017, 13, 11–26. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT-2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Bailey, C.J.; Day, C.; Bellary, S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr. Diab. Rep. 2022, 22, 39–52. [Google Scholar] [CrossRef]
- Arshad, A.; Sarween, N.; Sharif, A. Systematic Review of Cardiovascular Outcome Trials Using New Antidiabetic Agents in CKD Stratified by Estimated GFR. Kidney Int. Rep. 2021, 6, 2415–2424. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Zannad, F.; Butler, J.; Filippatos, G.; Pocock, S.J.; Brueckmann, M.; Steubl, D.; Schueler, E.; Anker, S.D.; Packer, M. Association of Empagliflozin Treatment With Albuminuria Levels in Patients With Heart Failure. JAMA Cardiol. 2022, 7, 1148. [Google Scholar] [CrossRef]
- Jardine, M.; Zhou, Z.; Lambers Heerspink, H.J.; Hockham, C.; Li, Q.; Agarwal, R.; Bakris, G.L.; Cannon, C.P.; Charytan, D.M.; Greene, T.; et al. Kidney, Cardiovascular, and Safety Outcomes of Canagliflozin According to Baseline Albuminuria: A CREDENCE Secondary Analysis. Clin. J. Am. Soc. Nephrol. 2021, 16, 384–395. [Google Scholar] [CrossRef]
- Gutzwiller, J.-P.; Tschopp, S.; Bock, A.; Zehnder, C.E.; Huber, A.R.; Kreyenbuehl, M.; Gutmann, H.; Drewe, J.; Henzen, C.; Goeke, B.; et al. Glucagon-like Peptide 1 Induces Natriuresis in Healthy Subjects and in Insulin-Resistant Obese Men. J. Clin. Endocrinol. Metab. 2004, 89, 3055–3061. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-to-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef]
- Rossing, P.; Baeres, F.M.M.; Bakris, G.; Bosch-Traberg, H.; Gislum, M.; Gough, S.C.L.; Idorn, T.; Lawson, J.; Mahaffey, K.W.; Mann, J.F.E.; et al. The Rationale, Design and Baseline Data of FLOW, a Kidney Outcomes Trial with Once-Weekly Semaglutide in People with Type 2 Diabetes and Chronic Kidney Disease. Nephrol. Dial. Transplant. 2023, 38, 2041–2051. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.; Lewis, J.; Rao, H.; Carter, J.; Portillo, I.; Beuttler, R. Effects of GLP-1 Receptor Agonists on Cardiovascular Outcomes in Patients with Type 2 Diabetes and Chronic Kidney Disease: A Systematic Review and Meta-analysis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 921–928. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. Executive Summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-Based Advances in Monitoring and Treatment. Kidney Int. 2020, 98, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Chimal, J.; Girerd, S.; Jaisser, F. Mineralocorticoid Receptor Antagonists and Kidney Diseases: Pathophysiological Basis. Kidney Int. 2019, 96, 302–319. [Google Scholar] [CrossRef]
- Favre, J.; Gao, J.; Zhang, A.D.; Remy-Jouet, I.; Ouvrard-Pascaud, A.; Dautreaux, B.; Escoubet, B.; Thuillez, C.; Jaisser, F.; Richard, V. Coronary Endothelial Dysfunction after Cardiomyocyte-Specific Mineralocorticoid Receptor Overexpression. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2035–H2043. [Google Scholar] [CrossRef] [PubMed]
- Fraccarollo, D.; Galuppo, P.; Schraut, S.; Kneitz, S.; van Rooijen, N.; Ertl, G.; Bauersachs, J. Immediate Mineralocorticoid Receptor Blockade Improves Myocardial Infarct Healing by Modulation of the Inflammatory Response. Hypertension 2008, 51, 905–914. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, H.; Tao, Y.; Xu, Y.; Chen, J.; Jia, Y.; Zheng, Z. Network Meta-Analysis of Mineralocorticoid Receptor Antagonists for Diabetic Kidney Disease. Front. Pharmacol. 2022, 13, 967317. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.-M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef]
- Rossaint, J.; Oehmichen, J.; Van Aken, H.; Reuter, S.; Pavenstädt, H.J.; Meersch, M.; Unruh, M.; Zarbock, A. FGF23 Signaling Impairs Neutrophil Recruitment and Host Defense during CKD. J. Clin. Investig. 2016, 126, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Munoz Mendoza, J.; Isakova, T.; Cai, X.; Bayes, L.Y.; Faul, C.; Scialla, J.J.; Lash, J.P.; Chen, J.; He, J.; Navaneethan, S.; et al. Inflammation and Elevated Levels of Fibroblast Growth Factor 23 Are Independent Risk Factors for Death in Chronic Kidney Disease. Kidney Int. 2017, 91, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Fiordelisi, A.; Iaccarino, G.; Morisco, C.; Coscioni, E.; Sorriento, D. NFkappaB Is a Key Player in the Crosstalk between Inflammation and Cardiovascular Diseases. Int. J. Mol. Sci. 2019, 20, 1599. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, V.; Lobasso, A.; Barbieri, L.; Parrella, P.; Ciervo, D.; Liccardo, B.; Bonaduce, D.; Tocchetti, C.G.; De Paulis, A.; Rossi, F.W. Inflammatory, Serological and Vascular Determinants of Cardiovascular Disease in Systemic Lupus Erythematosus Patients. Int. J. Mol. Sci. 2019, 20, 2154. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 Inhibition with Ziltivekimab in Patients at High Atherosclerotic Risk (RESCUE): A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
Author | DM without CKD | DM with CKD | DM with Albuminuria |
---|---|---|---|
Rao and all (et al.) [6] | Death from vascular causes compared to non-DM, HR 2.32 (95% CI 2.11–2.56) | ||
Haffner et al. [8] | -Death from CVD in DM without MI compared to non-DM with prior MI, HR 1.2–1.4 (95% CI 0.7–2.6) -7-year incidence rates of MI in non-DM with and without prior MI: 18.8% and 3.5%, vs. 45.0% and 20.2%, (p < 0.001), in DM with and without prior MI respectively. | ||
Wannamethee et al. [9] | CVD and CV deaths: RR 2.82 (95% CI 1.85 to 4.28) in DM and 8.93 (95% CI 6.13 to 12.99) in patients with both DM and CHD. | ||
Zhao et al. [14] | CVD events in DM vs. non-DM vs. DM + CVD: HR 2.2 (95% CI 2.1–2.3), 2.9 (95% CI: 2.7–3.1) and 5.13 (95% CI: 4.7–5.5), respectively. | ||
CKD Prognosis consortium [17] | CV death: HR 1.52 for CKD3a, 2.4 for CKD3b and 13.5 for CKD4 | CV death in CKD3a and 3b: HR 3·13 and 4.12 for ACR 30–299 mg/g, 4·97 and 6.10 for ACR > 300 mg/g | |
Branch et al. [19] | -ASCVD (non-fatal MI, non-fatal stroke, CVD death) in DM with CVD: HR 2.20 (1.92–2.53, p < 0.001) -All-cause mortality in DM with CVD: HR 1.29 (95% CI 1.51–2.12, p < 0.0001) | ASCVD in DM + CKD without CVD, HR 1.41 (95% CI 1.06–1.89, p = 0.02) ASCVD in DM + CKD + CVD: HR 2.35 (1.81–3.04), p < 0.001) -All-cause mortality in DM + CKD without CVD: HR 1.39 (1.01–1.90, p = 0.04) -All-cause mortality in DM + CKD + CVD: 2.36 (95% CI 1.75–3.13, p < 0.0001) | |
Papademetriou et al. [20] | -ASCVD in CKD vs. non-CKD: HR 1.86 (95% CI 1.6–2.1), p < 0.001 -All-cause mortality in CKD vs. non-CKD: HR 1.97 (95% CI 1.70–2.28), p < 0.0001 -CV mortality in CKD vs. non-CKD: HR 2.18 (95% CI 1.75–2.72), p < 0.0001 | ||
So WY et al. [22] | -CV end points across CKD stage 1–4: HR 1.00, 1.04, 1.05, and 3.23 respectively (p < 0.001) -All cause mortality across CKD stage 1–4: HR 1.00, 1.27, 2.34, and 9.82 respectively (p < 0.001) | ||
Drury et al. [23] | Total CVD events -eGFR 60–89 mL/min/1.73 m2: HR 1.14 (95% CI 1.01–1.29) -eGFR 30–59 mL/min/1.73 m2: HR 1.59 (95% CI 1.28–1.98) p < 0.001 | CVD Risk in Type 2 DM with eGFR ≥ 90 mL/min/1.73 m2 -Microalbuminuria: HR 1.25 (95% CI 1.01–1.54) -Macroalbuminuria increased: HR 1.19 (95% CI 0.76–1.85), | |
Bruon et al. [24] | CV mortality compared to CKD1 across CKD stage 2–4: HR 0.65, 0.79, 0.67 and 2.03 (p = 0.27) | CV mortality in patient with AER 20–200 and >200ug/min: HR 1.06 and 2.0 respectively (p < 0.0001) | |
Targher at al [26] | All-cause and CV mortality per 1-SD decrease in eGFR: HR 1.53 (95% CI 1.2–2.0; p < 0.0001) and 1.51 (95% CI 1.05–2.2; p = 0.023), respectively. | All-cause and CV mortality per 1-SD increase in albuminuria: HR 1.14 (95% CI 1.01–1.3, p = 0.028) and 1.19 (95% CI 1.01–1.4, p = 0.043) respectively. | |
Ninomiya et al. [27] | CV events for every halving of baseline eGFR: HR 2.20 (95% CI 1.09 to 4.43) | CV events for every 10-fold increase in baseline UACR, HR 2.48 (95% CI 1.74–3.52) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swamy, S.; Noor, S.M.; Mathew, R.O. Cardiovascular Disease in Diabetes and Chronic Kidney Disease. J. Clin. Med. 2023, 12, 6984. https://doi.org/10.3390/jcm12226984
Swamy S, Noor SM, Mathew RO. Cardiovascular Disease in Diabetes and Chronic Kidney Disease. Journal of Clinical Medicine. 2023; 12(22):6984. https://doi.org/10.3390/jcm12226984
Chicago/Turabian StyleSwamy, Sowmya, Sahibzadi Mahrukh Noor, and Roy O. Mathew. 2023. "Cardiovascular Disease in Diabetes and Chronic Kidney Disease" Journal of Clinical Medicine 12, no. 22: 6984. https://doi.org/10.3390/jcm12226984
APA StyleSwamy, S., Noor, S. M., & Mathew, R. O. (2023). Cardiovascular Disease in Diabetes and Chronic Kidney Disease. Journal of Clinical Medicine, 12(22), 6984. https://doi.org/10.3390/jcm12226984