Atrial Strain Assessment for the Early Detection of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer Women (The STRANO STUDY: Atrial Strain in Cardio-Oncology)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Centers Involved
2.2. Criteria for Enrolling Patients in the Study
2.3. Follow-Up and Study Methodology
2.4. Echocardiographic Examination
Speckle-Tracking Echocardiography (STE)
- ○
- PALS: 42.5% (IQR 36.1–48.0%), LLN 26.1 ± 0.7%
- ○
- LA conduit strain: −25.7% (IQR 20.4–31.8%), LLN—12.0 ± 0.5%
- ○
- PACS: −16.3% (IQR 12.9–19.5%), LLN—7.7 ± 0.3%
- ○
- LASi:
- 0.12 (IQR 0.10–0.15) for ages 20–40, with LLN 0.22 ± 0.01
- 0.13–0.22) for ages 40–60, with LLN 0.42 ± 0.04
- 0.24 (0.18–0.29) for age > 60 years, with LLN 0.55 ± 0.09
2.5. Statistical Analysis
3. Results
3.1. Follow-Up
3.2. Patients with and without Mild CTRCD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamorano, J.L.; Gottfridsson, C.; Asteggiano, R.; Atar, D.; Badimon, L.; Bax, J.J.; Cardinale, D.; Cardone, A.; Feijen, E.A.M.; Ferdinandy, P.; et al. The cancer patient and cardiology. Eur. J. Heart Fail. 2020, 22, 2290–2309. [Google Scholar] [CrossRef]
- Morelli, M.B.; Bongiovanni, C.; Da Pra, S.; Miano, C.; Sacchi, F.; Lauriola, M.; D’Uva, G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front. Cardiovasc. Med. 2022, 9, 847012. [Google Scholar] [CrossRef]
- Novo, G.; Santoro, C.; Manno, G.; Di Lisi, D.; Esposito, R.; Mandoli, G.E.; Evola, V.; Pastore, M.C.; Sperlongano, S.; D’Andrea, A.; et al. Usefulness of Stress Echocardiography in the Management of Patients Treated with Anticancer Drugs. J. Am. Soc. Echocardiogr. 2021, 34, 107–116. [Google Scholar] [CrossRef]
- López-Sendón, J.; Álvarez-Ortega, C.; Zamora Auñon, P.; Buño Soto, A.; Lyon, A.R.; Farmakis, D.; Cardinale, D.; Canales Albendea, M.; Feliu Batlle, J.; Rodríguez, I.; et al. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry. Eur. Heart J. 2020, 41, 1720–1729. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J. 2022, 43, 280–299. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. Cardiovasc. Imaging 2022, 23, e333–e465. [Google Scholar] [CrossRef]
- Leszek, P.; Klotzka, A.; Bartuś, S.; Burchardt, P.; Czarnecka, A.M.; Długosz-Danecka, M.; Gierlotka, M.; Koseła-Paterczyk, H.; Krawczyk-Ożóg, A.; Kubiatowski, T.; et al. A practical approach to the ESC 2022 cardio-oncology guidelines. Comments by a team of experts: Cardiologists and oncologists. Kardiol. Pol. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef]
- Negishi, K.; Negishi, T.; Hare, J.L.; Haluska, B.A.; Plana, J.C.; Marwick, T.H. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J. Am. Soc. Echocardiogr. 2013, 26, 493–498. [Google Scholar] [CrossRef]
- Cardinale, D.; Sandri, M.T.; Colombo, A.; Colombo, N.; Boeri, M.; Lamantia, G.; Civelli, M.; Peccatori, F.; Martinelli, G.; Fiorentini, C.; et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004, 109, 2749–2754. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Torrisi, R.; Sandri, M.T.; Civelli, M.; Salvatici, M.; Lamantia, G.; Colombo, N.; Cortinovis, S.; Dessanai, M.A.; et al. Trastuzumab-induced cardiotoxicity: Clinical and prognostic implications of troponin I evaluation. J. Clin. Oncol. 2010, 28, 3910–3916. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Kokkinidis, D.G.; Kampaktsis, P.N.; Amir, E.A.; Marwick, T.H.; Gupta, D.; Thavendiranathan, P. Assessment of Prognostic Value of Left Ventricular Global Longitudinal Strain for Early Prediction of Chemotherapy-Induced Cardiotoxicity: A Systematic Review and Meta-analysis. JAMA Cardiol. 2019, 4, 1007–1018. [Google Scholar] [CrossRef]
- Liu, J.E.; Barac, A.; Thavendiranathan, P.; Scherrer-Crosbie, M. Strain Imaging in Cardio-Oncology. JACC CardioOncol. 2020, 2, 677–689. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Morris, D.A.; Cardim, N.; Cikes, M.; Delgado, V.; Donal, E.; Flachskampf, F.A.; Galderisi, M.; Gerber, B.L.; Gimelli, A.; et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc Imaging 2022, 23, e34–e61. [Google Scholar] [CrossRef]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, Ø.S.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 61–70. [Google Scholar] [CrossRef]
- Mandoli, G.E.; Pastore, M.C.; Benfari, G.; Setti, M.; Maritan, L.; Diviggiano, E.E.; D’Ascenzi, F.; Focardi, M.; Cavigli, L.; Valente, S.; et al. The loss of left atrial contractile function predicts a worse outcome in HFrEF patients. Front. Cardiovasc. Med. 2023, 9, 1079632. [Google Scholar] [CrossRef]
- Bandera, F.; Martone, R.; Chacko, L.; Ganesananthan, S.; Gilbertson, J.A.; Ponticos, M.; Lane, T.; Martinez-Naharro, A.; Whelan, C.; Quarta, C.; et al. Clinical Importance of Left Atrial Infiltration in Cardiac Transthyretin Amyloidosis. JACC Cardiovasc. Imaging 2022, 15, 17–29. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar]
- Nyberg, J.; Jakobsen, E.O.; Østvik, A.; Holte, E.; Stølen, S.; Lovstakken, L.; Grenne, B.; Dalen, H. Echocardiographic Reference Ranges of Global Longitudinal Strain for All Cardiac Chambers Using Guideline-Directed Dedicated Views. JACC Cardiovasc. Imaging 2023. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Caputo, M.; Mondillo, S.; Ballo, P.; Palmerini, E.; Lisi, M.; Marino, E.; Galderisi, M. Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking. Cardiovasc. Ultrasound 2009, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Robinet, S.; Dulgheru, R.; Bernard, A.; Ilardi, F.; Contu, L.; Addetia, K.; Caballero, L.; Kacharava, G.; Athanassopoulos, G.D.; et al. Echocardiographic reference ranges for normal left atrial function parameters: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Thavendiranathan, P.; Poulin, F.; Lim, K.D.; Plana, J.C.; Woo, A.; Marwick, T.H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J. Am. Coll Cardiol. 2014, 63 (25 Pt A), 2751–2768. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Arpino, G.; Esposito, R.; Lembo, M.; Paciolla, I.; Cardalesi, C.; de Simone, G.; Trimarco, B.; De Placido, S.; Galderisi, M. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: A balance with feasibility. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 930–936. [Google Scholar] [CrossRef]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef]
- Calvillo-Argüelles, O.; Thampinathan, B.; Somerset, E.; Shalmon, T.; Amir, E.; Steve Fan, C.P.; Moon, S.; Abdel-Qadir, H.; Thevakumaran, Y.; Day, J.; et al. Diagnostic and Prognostic Value of Myocardial Work Indices for Identification of Cancer Therapy-Related Cardiotoxicity. JACC Cardiovasc. Imaging 2022, 15, 1361–1376. [Google Scholar] [CrossRef]
- Di Lisi, D.; Manno, G.; Novo, G. Subclinical Cardiotoxicity: The Emerging Role of Myocardial Work and Other Imaging Techniques. Curr. Probl. Cardiol. 2021, 46, 100818. [Google Scholar] [CrossRef]
- Novo, G.; Di Lisi, D.; Manganaro, R.; Manno, G.; Lazzara, S.; Immordino, F.A.; Madaudo, C.; Carerj, S.; Russo, A.; Incorvaia, L.; et al. Arterial Stiffness: Effects of Anticancer Drugs Used for Breast Cancer Women. Front. Physiol. 2021, 12, 661464. [Google Scholar] [CrossRef]
- Timóteo, A.T.; Moura Branco, L.; Filipe, F.; Galrinho, A.; Rio, P.; Portugal, G.; Oliveira, S.; Ferreira, R.C. Cardiotoxicity in breast cancer treatment: What about left ventricular diastolic function and left atrial function? Echocardiography. 2019, 36, 1806–1813. [Google Scholar] [CrossRef]
- Anqi, Y.; Yu, Z.; Mingjun, X.; Xiaoli, K.; Mengmeng, L.; Fangfang, L.; Mei, Z. Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy. Echocardiography 2019, 36, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Laufer-Perl, M.; Arias, O.; Dorfman, S.S.; Baruch, G.; Rothschild, E.; Beer, G.; Hasson, S.P.; Arbel, Y.; Rozenbaum, Z.; Topilsky, Y.; et al. Left Atrial Strain changes in patients with breast cancer during anthracycline therapy. Int. J. Cardiol. 2021, 330, 238–244. [Google Scholar] [PubMed]
- Emerson, P.; Stefani, L.; Boyd, A.; Richards, D.; Hui, R.; Altman, M.; Thomas, L. Alterations in Left Atrial Strain in Breast Cancer Patients Immediately Post Anthracycline Exposure. Heart Lung Circ. 2023. [Google Scholar] [CrossRef] [PubMed]
- Upshaw, J.N.; Finkelman, B.; Hubbard, R.A.; Smith, A.M.; Narayan, H.K.; Arndt, L.; Domchek, S.; DeMichele, A.; Fox, K.; Shah, P. Comprehensive Assessment of Changes in Left Ventricular Diastolic Function with Contemporary Breast Cancer Therapy. JACC Cardiovasc. Imaging 2020, 13 (1 Pt 2), 198–210. [Google Scholar] [CrossRef] [PubMed]
- Henein, M.Y.; Gibson, D.G. Normal long axis function. Heart 1999, 81, 111–113. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, C.Q.; Lam, T.H.; Yue, X.J.; Lin, J.M.; Cheng, K.K.; Liu, B.; Li Jin, Y.; Zhang, W.S.; Thomas, G.N. Arterial stiffness and left-ventricular diastolic dysfunction: Guangzhou Biobank Cohort Study-CVD. J. Hum. Hypertens 2011, 25, 152–158. [Google Scholar] [CrossRef]
- Cameli, M.; Lisi, M.; Righini, F.M.; Mondillo, S. Novel echocardiographic techniques to assess left atrial size, anatomy and function. Cardiovasc. Ultrasound 2012, 10, 4. [Google Scholar] [CrossRef]
- Parkash, R.; Green, M.S.; Kerr, C.R.; Connolly, S.J.; Klein, G.J.; Sheldon, R.; Talajic, M.; Dorian, P.; Humphries, K.H. The association of left atrial size and occurrence of atrial fibrillation: A prospective cohort study from the Canadian Registry of Atrial Fibrillation. Am. Heart J. 2004, 148, 649–654. [Google Scholar] [CrossRef]
- Rusinaru, D.; Tribouilloy, C.; Grigioni, F.; Avierinos, J.F.; Suri, R.M.; Barbieri, A.; Szymanski, C.; Ferlito, M.; Michelena, H.; Tafanelli, L. Left atrial size is a potent predictor of mortality in mitral regurgitation due to flail leaflets: Results from a large international multicenter study. Circ. Cardiovasc. Imaging 2011, 4, 473–481. [Google Scholar] [CrossRef]
- Ratanasit, N.; Karaketklang, K.; Chirakarnjanakorn, S.; Krittayaphong, R.; Jakrapanichakul, D. Left atrial volume as an independent predictor of exercise capacity in patients with isolated diastolic dysfunction presented with exertional dyspnea. Cardiovasc. Ultrasound 2014, 12, 19. [Google Scholar] [CrossRef]
MEAN ± SD | Overall Population n = 169 | Group 1 n = 28 | Group 2 n = 141 |
---|---|---|---|
Age (years) | 55 ± 10.8 | 55 ± 10.7 | 53.3 ± 9.7 |
Weight (Kg) | 65.8 ± 11.8 | 62 ± 10.8 | 66.7 ± 11.8 |
Body Surface Area BSA (m2) | 1.7 ± 0.14 | 1.6 ± 0.12 | 1.7 ± 0.15 |
Body Mass Index BMI (Kg/m2) | 25.1 ± 4.5 | 24.8 ± 4.3 | 25 ± 4.4 |
Diabetics % (n) | 22% (37) | 14% (4) | 18.4% (26) |
Hypertensive % (n) | 34% (57) | 25% (7) | 26.2% (37) |
Obesity % (n) | 29% (50) | 11% (3) | 25.5% (36) |
Family history of cardiovascular disease % (n) | 26% (44) | 14% (4) | 21.2% (30) |
Smokers % (n) | 33% (55) | 50% (14) | 55.3% (78) |
Ex-smokers % (n) | 10% (17) | 14% (4) | 5.7% (8) |
T1N1M0 | 45.5% (77) | 21.4% (6) | 50.3% (71) |
T2N0M0 | 15.4% (26) | 25% (7) | 13.5% (19) |
T2N1M0 | 39% (66) | 53.5% (15) | 36.1% (51) |
n = 169 | MEAN (SD) | T0 (BL) | T1 | T2 | p-Value |
---|---|---|---|---|---|
LEFT VENTRICLE | EDV (ML) | 80.6 (16) | 84.9 (13.6) | 84.1 (14.8) | 0.7 |
EF (%) | 60 (1.7) | 59.7 (2.8) | 59 (3.4) | 0.1 | |
GLS (%) | −20.7 (2.1) | −19.2 (2.5) | −18.9 (2.4) | <0.0001 | |
LEFT ATRIAL | VOLUME (ML) | 46 (14) | 47 (12.8) | 46 (13.8) | 0.1 |
VOLUME INDEXED (ML/MQ) | 27.9 (7.3) | 27.7 (9.1) | 30.3 (7.3) | 0.03 | |
LEFT ATRIAL FUNCTION | RESERVOIR PHASE 4CH | 37 (9.3) | 32.7 (9) | 29.6 (7.6) | <0.0001 |
RESERVOIR PHASE 2CH | 36 (9.1) | 32 (7.7) | 27.8 (5.9) | 0.0003 | |
AVERAGE RESERVOIR PHASE | 36 (8.9) | 32.4 (7.7) | 28.7 (6.3) | 0.0002 | |
ATRIAL STIFFNESS | 0.19 (0.07) | 0.25 (0.08) | 0.30 (0.09) | <0.0001 | |
TISSUE DOPPLER IMAGING (TDI) | E WAVE (CM/SEC) | 67.7 (24.2) | 75.7 (16.7) | 74.7 (16.9) | 0.3 |
E/A | 1 (0.3) | 0.97 (0.2) | 1.1 (0.3) | 0.01 | |
E/E’ | 7.2 (2.3) | 7.5 (1.9) | 8 (2.7) | 0.3 | |
PULMONARY PRESSURE | SPAP (MMHG) | 26 (4.5) | 23.2 (4.7) | 23.5 (4) | 0.4 |
RIGHT VENTRICLE FUNCTION | TAPSE (MM) | 22.1 (3) | 21.6 (3.3) | 21.7 (2.5) | 0.1 |
S’ TDI (CM/SEC) | 13 (2) | 13 (2.3) | 12.6 (1.6) | 0.2 |
GROUP 1 (n = 28) | MEAN (SD) | T0 (BL) | T1 | T2 | p-Value |
---|---|---|---|---|---|
LEFT VENTRICLE | EDV (ML) | 76.4 (10.7) | 82.4 (15.3) | 77.3 (12.7) | 0.08 |
EF (%) | 60.1 (1.5) | 59.2 (4) | 59.4 (4) | 0.30 | |
GLS (%) | −21.9 (2.1) | −17 (1.6) | −17.3 (2.2) | <0.0001 | |
LEFT ATRIAL | VOLUME (ML) | 47.2 (12.4) | 52.2 (10.6) | 50.5 (10.2) | 0.3 |
VOLUME INDEXED (ML/MQ) | 28 (7.7) | 31.4 (7) | 31.4 (6) | 0.26 | |
LEFT ATRIAL FUNCTION | RESERVOIR PHASE 4CH | 37.5 (7.6) | 30.4 (8.3) | 29.3 (7.3) | 0.0001 |
RESERVOIR PHASE 2CH | 35.5 (9.1) | 27.3 (4.8) | 26 (4.6) | 0.05 | |
AVERAGE RESERVOIR PHASE | 35.9 (8.7) | 27.3 (4.4) | 25.6 (4.4) | 0.029 | |
ATRIAL STIFFNESS | 0.21 (0.06) | 0.29 (0.09) | 0.32 (0.08) | <0.0001 | |
TISSUE DOPPLER IMAGING (TDI) | E WAVE (CM/SEC) | 83.5 (20.6) | 76.8 (20.8) | 75 (20.7) | 0.22 |
E/A | 1.1 (0.33) | 0.97 (0.25) | 1.1 (0.32) | 0.04 | |
E/E’ | 8 (1.7) | 8.52 (2.7) | 8.9 (3) | 0.1 | |
PULMONARY PRESSURE | SPAP (MMHG) | 24.6 (5.8) | 26.8 (4.9) | 27.4 (5.7) | 0.5 |
RIGHT VENTRICLE FUNCTION | TAPSE (MM) | 22.6 (3) | 20.8 (4.3) | 21.2 (2.9) | 0.1 |
S’ TDI (CM/SEC) | 12 (1.5) | 12.4 (2.6) | 13 (0.75) | 0.5 |
GROUP 2 (n = 141) | MEAN (SD) | T0 (BL) | T1 | T2 | p-Value |
---|---|---|---|---|---|
LEFT VENTRICLE | EDV (ML) | 82.4 (18.2) | 85 (13) | 85.7 (15.4) | 0.5 |
EF (%) | 60 (1.8) | 60 (2.3) | 59 (3.2) | 0.05 | |
GLS (%) | −20.4 (2) | −20 (2.4) | −19.6 (2.3) | 0.0030 | |
LEFT ATRIAL | VOLUME (ML) | 43.5 (14.3) | 44.5 (13.4) | 43.6 (12.3) | 0.1 |
VOLUME INDEXED (ML/MQ) | 27.2 (7.7) | 26.4 (10.2) | 29.5 (6.3) | 0.2 | |
LEFT ATRIAL FUNCTION | RESERVOIR PHASE 4CH | 37.3 (9.4) | 33.8 (9.7) | 29.9 (7.8) | <0.0001 |
RESERVOIR PHASE 2CH | 35.9 (9) | 32.5 (7.7) | 27.6 (6.1) | <0.0001 | |
AVERAGE RESERVOIR PHASE | 35.6 (8.9) | 33 (7.7) | 28.8 (6.5) | <0.0001 | |
ATRIAL STIFFNESS | 0.2 (0.08) | 0.24 (0.08) | 0.29 (0.09) | <0.0001 | |
TISSUE DOPPLER IMAGING (TDI) | E WAVE (CM/SEC) | 74.5 (16.1) | 75.7 (16.1) | 76.5 (15.7) | 0.3 |
E/A | 1.1 (0.3) | 0.97 (0.27) | 1.1 (0.35) | 0.08 | |
E/E’ | 7.2 (2.6) | 7.3 (1.8) | 8 (2.8) | 0.01 | |
PULMONARY PRESSURE | SPAP (MMHG) | 23.7 (5.8) | 22.4 (4.7) | 22.7 (2.9) | 0.2 |
RIGHT VENTRICLE FUNCTION | TAPSE (MM) | 22 (3) | 21.6 (3) | 21.6 (2.4) | 0.5 |
S’ TDI (CM/SEC) | 12.9 (1.9) | 13 (2.3) | 12.4 (1.5) | 0.5 |
SUBCLINICAL DYSFUNCTION GROUP GROUP 1 | NO SUBCLINICAL DYSFUNCTION GROUP GROUP 2 | p-Value | |
---|---|---|---|
VARIATION OF LVEF BETWEEN T0 AND T1 | −0.7 ± 2.9 | −0.2 ± 2.7 | 0.38 |
VARIATION OF LVGLS BETWEEN T0 AND T1 | +4.89 ± 1.5 | +0.20 ± 2 | <0.0001 |
RESERVOIR PHASE 4CH. T0 | 37.4 ± 7.58 | 37.2 ± 9.43 | 0.4 |
VARIATION OF PALS (4CH). BETWEEN T0 AND T1 | −6.86 ± 10.1 | −2.97 ± 6.9 | 0.02 |
% OF REDUCTION IN PALS (4CH) BETWEEN T0 AND T1 | −20% | −8% | 0.03 |
VARIATION OF PALS (2CH). BETWEEN T0 AND T1 | −11 ± 8.7 | −3.32 ± 4.5 | 0.0008 |
VARIATION OF PALS (AVERAGE) BETWEEN T0 AND T1 | −8.3 ± 3.3 | −4.7 ± 2.1 | 0.01 |
VARIATION OF ATRIAL STIFFNESS | +0.11 ± 0.05 | +0.05 ± 0.08 | 0.0026 |
T0 (BL) | VARIABLES | GROUP 1 n = 28 MEAN (SD) | GROUP 2 n = 141 MEAN (SD) | p-Value |
---|---|---|---|---|
LEFT VENTRICLE | EDV (ML) | 76.4 (10.7) | 82.4 (18.2) | 0.4 |
EF (%) | 63.3 (5.3) | 62 (4.6) | 0.2 | |
GLS (%) | −21.9 (2.1) | −20.4 (2) | 0.0038 | |
LEFT ATRIAL | VOLUME (ML) | 47.2 (12.4) | 43.5 (14.3) | 0.5 |
VOLUME INDEXED (ML/MQ) | 28 (7.7) | 27.2 (7.7) | 0.9 | |
LEFT ATRIAL FUNCTION | RESERVOIR PHASE 4CH | 37.5 (7.6) | 37.3 (9.4) | 0.7 |
RESERVOIR PHASE 2CH | 35.5 (9.1) | 35.9 (9) | 0.8 | |
AVERAGE RESERVOIR PHASE | 35.9 (8.7) | 35.6 (8.9) | 0.9 | |
ATRIAL STIFFNESS | 0.21 (0.06) | 0.2 (0.08) | 0.3 | |
TISSUE DOPPLER IMAGING (TDI) | E WAVE (CM/SEC) | 83.5 (20.6) | 74.5 (16.1) | 0.3 |
E/A | 1.1 (0.33) | 1.1 (0.3) | 0.8 | |
E/E’ | 8 (1.7) | 7.2 (2.6) | 0.0045 | |
PULMONARY PRESSURE | SPAP (MMHG) | 24.6 (5.8) | 23.7 (5.8) | 0.9 |
RIGHT VENTRICLE FUNCTION | TAPSE (MM) | 22.6 (3) | 22 (3) | 0.4 |
S’ TDI (CM/SEC) | 12 (1.5) | 12.9 (1.9) | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lisi, D.; Moreo, A.; Casavecchia, G.; Cadeddu Dessalvi, C.; Bergamini, C.; Zito, C.; Madaudo, C.; Madonna, R.; Cameli, M.; Novo, G. Atrial Strain Assessment for the Early Detection of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer Women (The STRANO STUDY: Atrial Strain in Cardio-Oncology). J. Clin. Med. 2023, 12, 7127. https://doi.org/10.3390/jcm12227127
Di Lisi D, Moreo A, Casavecchia G, Cadeddu Dessalvi C, Bergamini C, Zito C, Madaudo C, Madonna R, Cameli M, Novo G. Atrial Strain Assessment for the Early Detection of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer Women (The STRANO STUDY: Atrial Strain in Cardio-Oncology). Journal of Clinical Medicine. 2023; 12(22):7127. https://doi.org/10.3390/jcm12227127
Chicago/Turabian StyleDi Lisi, Daniela, Antonella Moreo, Grazia Casavecchia, Christian Cadeddu Dessalvi, Corinna Bergamini, Concetta Zito, Cristina Madaudo, Rosalinda Madonna, Matteo Cameli, and Giuseppina Novo. 2023. "Atrial Strain Assessment for the Early Detection of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer Women (The STRANO STUDY: Atrial Strain in Cardio-Oncology)" Journal of Clinical Medicine 12, no. 22: 7127. https://doi.org/10.3390/jcm12227127
APA StyleDi Lisi, D., Moreo, A., Casavecchia, G., Cadeddu Dessalvi, C., Bergamini, C., Zito, C., Madaudo, C., Madonna, R., Cameli, M., & Novo, G. (2023). Atrial Strain Assessment for the Early Detection of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer Women (The STRANO STUDY: Atrial Strain in Cardio-Oncology). Journal of Clinical Medicine, 12(22), 7127. https://doi.org/10.3390/jcm12227127