A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Disease Cohorts
2.2. Biomarker Assessments
2.3. Statistical Analysis
3. Results
3.1. Basic Demographics
3.2. Neutrophilic Activity, Quantified by the Neoepitope-Specific CPa9-HNE Assay, Is Significantly Increased in COPD and IPF Participants
3.3. The Neoepitope CPa9-HNE Had Superior Diagnostic Power to Identify Disease and Healthy Participants Compared to Non-Neoepitope Measurements in the Serum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gershon, A.S.; Warner, L.; Cascagnette, P.; Victor, J.C.; To, T. Lifetime risk of developing chronic obstructive pulmonary disease: A longitudinal population study. Lancet 2011, 378, 991–996. [Google Scholar] [CrossRef]
- Brandsma, C.; Berge, M.V.D.; Hackett, T.; Brusselle, G.; Timens, W. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine. J. Pathol. 2020, 250, 624–635. [Google Scholar] [CrossRef]
- Pavord, I.D.; Jones, P.W.; Burgel, P.-R.; Rabe, K.F. Exacerbations of COPD. Int. J. Chron. Obstruct Pulmon. Dis. 2016, 11, 21. [Google Scholar] [PubMed]
- Aramburu, A.; Arostegui, I.; Moraza, J.; Barrio, I.; Aburto, M.; García-Loizaga, A.; Uranga, A.; Zabala, T.; Quintana, J.M.; Esteban, C. COPD classification models and mortality prediction capacity. SSRN Electron. J. 2019, 14, 605–613. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, D.N.; Ashley, S.L.; Moore, B.B. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016, 311, L590–L601. [Google Scholar] [CrossRef] [PubMed]
- Brett, L.; Harold, R.C.; Talmadge, E.K.J. Clinical course and prediction of survival in ideopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 431–440. [Google Scholar]
- Wolters, P.J.; Blackwell, T.S.; Eickelberg, O.; E Loyd, J.; Kaminski, N.; Jenkins, G.; Maher, T.M.; Molina-Molina, M.; Noble, P.W.; Raghu, G.; et al. Time for a change: Is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? Lancet Respir. Med. 2018, 6, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.; Beard, L.J.; Thong, Y.H. Early decay of human neutrophil chemotactic responsiveness following isolation from peripheral blood. Clin. Exp. Immunol. 1980, 39, 532–537. [Google Scholar]
- Oh, H.; Siano, B.; Diamond, S. Neutrophil isolation protocol. J. Vis. Exp. 2008, 17, 745. [Google Scholar]
- Monceaux, V.; Chiche-Lapierre, C.; Chaput, C.; Witko-Sarsat, V.; Prevost, M.-C.; Taylor, C.T.; Ungeheuer, M.-N.; Sansonetti, P.J.; Marteyn, B.S. Anoxia and glucose supplementation preserve neutrophil viability and function. Blood 2016, 128, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, J.; Gonzalez, A.L. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction—A Roadway to Multiple Therapeutic Opportunities. Yale J. Biol. Med. 2012, 85, 167–185. [Google Scholar] [PubMed]
- Li, T.; Zhang, Z.; Li, X.; Dong, G.; Zhang, M.; Xu, Z.; Yang, J. Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediat. Inflamm. 2020, 2020, 9254087. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood 2013, 122, 2784–2794. [Google Scholar] [CrossRef] [PubMed]
- Stříž, I.; Trebichavský, I. Calprotectin—A pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 2004, 53, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, J.H.; Sinkeviciute, D.; Manon-Jensen, T.; Domislović, V.; McCall, K.; Thudium, C.S.; Brinar, M.; Önnerfjord, P.; Goodyear, C.S.; Krznarić, Z.; et al. A specific calprotectin neo-epitope [CPa9-HNE] in serum from inflammatory bowel disease patients is associated with neutrophil activity and endoscopic severity. J. Crohn’s Colitis 2022, 16, 1447–1460. [Google Scholar] [CrossRef] [PubMed]
- Stephan, J.R.; Nolan, E.M. Calcium-induced tetramerization and zinc chelation shield human calprotectin from degradation by host and bacterial extracellular proteases. Chem. Sci. 2015, 7, 1962–1975. [Google Scholar] [CrossRef]
- Nacken, W.; Kerkhoff, C. The hetero-oligomeric complex of the S100A8/S100A9 protein is extremely protease resistant. FEBS Lett. 2007, 581, 5127–5130. [Google Scholar] [CrossRef]
- Hood, M.I.; Skaar, E.P. Nutritional immunity: Transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 2012, 10, 525–537. [Google Scholar] [CrossRef]
- Monteith, A.J.; Skaar, E.P. The impact of metal availability on immune function during infection. Trends Endocrinol. Metab. 2021, 32, 916–928. [Google Scholar] [CrossRef]
- Ryckman, C.; Vandal, K.; Rouleau, P.; Talbot, M.; Tessier, P.A. Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 2003, 170, 3233–3242. [Google Scholar] [CrossRef]
- Cesaro, A.; Anceriz, N.; Plante, A.; Pagé, N.; Tardif, M.R.; Tessier, P.A. An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS ONE 2012, 7, e45478. [Google Scholar] [CrossRef]
- Simard, J.C.; Cesaro, A.; Chapeton-Montes, J.; Tardif, M.; Antoine, F.; Girard, D.; Tessier, P.A. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB1. PLoS ONE 2013, 8, e72138. [Google Scholar] [CrossRef]
- Gao, H.; Hou, J.; Meng, H.; Zhang, X.; Zheng, Y.; Peng, L. Proinflammatory effects and mechanisms of calprotectin on human gingival fibroblasts. J. Periodontal Res. 2017, 52, 975–983. [Google Scholar] [CrossRef]
- Marinković, G.; Grauen Larsen, H.; Yndigegn, T.; Szabo, I.A.; Mares, R.G.; De Camp, L.; Weiland, M.; Tomas, L.; Goncalves, I.; Nilsson, J.; et al. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. Eur. Heart J. 2019, 40, 2713–2723. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Song, Y.; Li, Z.; Zhao, L.; Zhang, Y.; Geng, L. S100A8/A9 induces apoptosis and inhibits metastasis of CasKi human cervical cancer cells. Pathol. Oncol. Res. 2010, 16, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zali, H.; Rezaei-Tavirani, M.; Kariminia, A.; Yousefi, R.; Shokrgozar, M.A. Evaluation of growth inhibitory and apoptosis inducing activity of human calprotectin on the human gastric cell line (AGS). Iran. Biomed. J. 2008, 12, 7–14. [Google Scholar] [PubMed]
- Shabani, F.; Mahdavi, M.; Imani, M.; Hosseinpour-Feizi, M.A.; Gheibi, N. Calprotectin (S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric cancer AGS cells: Alteration in expression levels of Bax, Bcl-2, and ERK2. Hum. Exp. Toxicol. 2020, 39, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Yui, S.; Nakatani, Y.; Hunter, M.J.; Chazin, W.J.; Yamazaki, M. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity. Mediat. Inflamm. 2002, 11, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Shibata, F.; Ito, A.; Ohkuma, Y.; Mitsui, K.-I. Mitogenic Activity of S100A9 (MRP-14). Biol. Pharm. Bull. 2005, 28, 2312–2314. [Google Scholar] [CrossRef]
- Grabcanovic-Musija, F.; Obermayer, A.; Stoiber, W.; Krautgartner, W.-D.; Steinbacher, P.; Winterberg, N.; Bathke, A.C.; Klappacher, M.; Studnicka, M. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir. Res. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dicker, A.J.; Crichton, M.L.; Pumphrey, E.G.; Cassidy, A.J.; Suarez-Cuartin, G.; Sibila, O.; Furrie, E.; Fong, C.J.; Ibrahim, W.; Brady, G.; et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2017, 141, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Machahua, C.; Guler, S.A.; Horn, M.P.; Planas-Cerezales, L.; Montes-Worboys, A.; Geiser, T.K.; Molina-Molina, M.; Funke-Chambour, M. Serum calprotectin as new biomarker for disease severity in idiopathic pulmonary fibrosis: A cross-sectional study in two independent cohorts. BMJ Open Respir. Res. 2021, 8, e000827. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Kinoshita, R.; Tomonobu, N.; Gohara, Y.; Tomida, S.; Takahashi, Y.; Senoo, S.; Taniguchi, A.; Itano, J.; Yamamoto, K.-I.; et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J. Mol. Med. 2020, 99, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.W.; Keane, M.P. The role of immunity and inflammation in IPF pathogenesis. In Idiopathic Pulmonary Fibrosis: A Comprehensive Clinical Guide; Springer Nature: Cham, Switzerland, 2019; pp. 97–131. [Google Scholar]
- The Idiopathic Pulmonary Fibrosis Clinical Research Network; Raghu, G.; Anstrom, K.J.; King, T.E., Jr.; Lasky, J.A.; Martinez, F.J. Prednisone, Azathioprine, and N-Acetylcysteine for Pulmonary Fibrosis. N. Engl. J. Med. 2012, 366, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.U.; Kelleher, W.P. Idiopathic pulmonary fibrosis pathogenesis and novel approaches to immunomodulation: We must not be tyrannized by the PANTHER data. Am. J. Respir. Crit. Care Med. 2013, 187, 677–679. [Google Scholar] [CrossRef]
- Fagerhol, M.K.; Nielsen, H.G.; Vetlesen, A.; Sandvik, K.; Lyberg, T. Increase in plasma calprotectin during long-distance running. Scand. J. Clin. Lab. Investig. 2005, 65, 211–220. [Google Scholar] [CrossRef]
- Summers, C.; Rankin, S.M.; Condliffe, A.M.; Singh, N.; Peters, A.M.; Chilvers, E.R. Neutrophil kinetics in health and disease. Trends Immunol. 2010, 31, 318–324. [Google Scholar] [CrossRef]
- Sand, J.M.; Martinez, G.; Midjord, A.-K.; Karsdal, M.A.; Leeming, D.J.; Lange, P. Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease. Clin. Biochem. 2016, 49, 1144–1151. [Google Scholar] [CrossRef]
- Ritchie, A.I.; Wedzicha, J.A. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin. Chest Med. 2020, 41, 421–438. [Google Scholar] [CrossRef]
- Sun, Y.; Milne, S.; Jaw, J.E.; Yang, C.X.; Xu, F.; Li, X.; Obeidat, M.; Sin, D.D. BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: A meta-analysis of clinical trials. Respir. Res. 2019, 20, 236. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Carru, C.; Pirina, P.; Fois, A.G.; Mangoni, A.A. A Systematic Review of the Prognostic Significance of the Body Mass Index in Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2023, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Quach, A.; Glowik, S.; Putty, T.; Ferrante, A. Delayed Blood Processing Leads to Rapid Deterioration in the Measurement of the Neutrophil Respiratory Burst by the Dihydrorhodamine-123 Reduction Assay. Cytom. Part B Clin. Cytom. 2019, 96, 389–396. [Google Scholar] [CrossRef]
- Lorenzo, P.; Aspberg, A.; Saxne, T.; Önnerfjord, P. Quantification of cartilage oligomeric matrix protein (COMP) and a COMP neoepitope in synovial fluid of patients with different joint disorders by novel automated assays. Osteoarthr. Cartil. 2017, 25, 1436–1442. [Google Scholar] [CrossRef]
- Jenkins, R.G.; Simpson, J.K.; Saini, G.; Bentley, J.H.; Russell, A.M.; Braybrooke, R.; Molyneaux, P.L.; McKeever, T.M.; Wells, A.U.; Flynn, A.; et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: An analysis from the prospective, multicentre PROFILE study. Lancet Respir. Med. 2015, 3, 462–472. [Google Scholar] [CrossRef]
- Rønnow, S.R.; Langholm, L.L.; Sand, J.M.B.; Thorlacius-Ussing, J.; Leeming, D.J.; Manon-Jensen, T.; Tal-Singer, R.; Miller, B.E.; Karsdal, M.A.; Vestbo, J. Specific elastin degradation products are associated with poor outcome in the ECLIPSE COPD cohort. Sci. Rep. 2019, 9, 4064. [Google Scholar] [CrossRef]
- Organ, L.A.; Duggan, A.-M.R.; Oballa, E.; Taggart, S.C.; Simpson, J.K.; Kang’ombe, A.R.; Braybrooke, R.; Molyneaux, P.L.; North, B.; Karkera, Y.; et al. Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Respir. Res. 2019, 20, 148. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Genovese, F.; Rasmussen, D.G.K.; Bay-Jensen, A.C.; Mortensen, J.H.; Nielsen, S.H.; Willumsen, N.; Jensen, C.; Manon-Jensen, T.; Jennings, L.; et al. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin. Biochem. 2021, 97, 11–24. [Google Scholar] [CrossRef] [PubMed]
Cohort 1: Demographics of Participants for the CPa9-HNE Evaluation | ||||
Healthy | COPD | IPF | p-Value | |
n | 39 | 67 | 16 | - |
Age (yrs), mean ± SD | 45 ± 16 | 71 ± 9 | 65 ± 7 | p < 0.0001 # |
Male/female sex, n (%) | 26/13 (66.7%/33.3%) | 28/39 (41.8%/58.2%) | 14/2 (87.5%/12.5%) | p = 0.0011 £ |
BMI (kg/m2), mean ± SD | - | 24.5 ± 6.2 | - | - |
Current/ex/never smoker, n | - | 11/53/3 (16.4%/79.1%/4.5%) | - | - |
GOLD A/B/C/D, n | - | 4/13/6/44 (6%/19.4%/8.9%/65.7%) | - | - |
FVC (% pred), mean ± SD | - | 66.1 ± 17.3 | 74.5 ±12.8 | p = 0.0735 $ |
FEV1 (% pred), mean ± SD | - | 39.9 ± 15.8 | 79.0 ± 8.9 | p < 0.0001 $ |
Cohort 2: Demographics of Participants for the Head-to-Head Comparison of CPa9-HNE and Calprotectin | ||||
Healthy | COPD Visit 2 | IPF | p-Value | |
n | 19 | 25 | 19 | - |
Age (yrs), mean ± SD | 36.8 ± 10.11 | 72.7 ± 8.2 | 63.9 ± 7.7 | p < 0.0001 # |
Male/female sex, n (%) | 5/12 (29.4%/70.6%) | 11/15 (42.3%/57.7%) | 16/3 (84.2%/15.8%) | p = 0.0021 £ |
BMI (kg/m2), mean ± SD | - | 24.1 ± 4.9 | - | - |
Current/ex/never smoker, n | - | 1/22/2 (4%/88%/8%) | - | - |
GOLD A/B/C/D, n (%) | - | 0/0/1/24 (0%/0%/4%/96%) | - | - |
FVC (% pred), mean ± SD | - | 45.3 ± 21.9 | - | - |
FEV1 (% pred), mean ± SD | - | 48.4 ± 15.6 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, A.H.; Mortensen, J.H.; Rønnow, S.R.; Karsdal, M.A.; Leeming, D.J.; Sand, J.M.B. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. J. Clin. Med. 2023, 12, 7589. https://doi.org/10.3390/jcm12247589
Hansen AH, Mortensen JH, Rønnow SR, Karsdal MA, Leeming DJ, Sand JMB. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. Journal of Clinical Medicine. 2023; 12(24):7589. https://doi.org/10.3390/jcm12247589
Chicago/Turabian StyleHansen, Annika Hummersgaard, Joachim Høg Mortensen, Sarah Rank Rønnow, Morten Asser Karsdal, Diana Julie Leeming, and Jannie Marie Bülow Sand. 2023. "A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin" Journal of Clinical Medicine 12, no. 24: 7589. https://doi.org/10.3390/jcm12247589
APA StyleHansen, A. H., Mortensen, J. H., Rønnow, S. R., Karsdal, M. A., Leeming, D. J., & Sand, J. M. B. (2023). A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. Journal of Clinical Medicine, 12(24), 7589. https://doi.org/10.3390/jcm12247589