Heart Rate Variability Biofeedback in Adults with a Spinal Cord Injury: A Laboratory Framework and Case Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Framework
2.2. Case Series
2.2.1. Study Design
2.2.2. Assessment and Outcome Measures
- (i)
- A resting condition, preceded by two minutes of habituation.
- (ii)
- (iii)
- A recovery period.
- (iv)
- A paced breathing task. This involved participants following a pacer, presented on a monitor display, to regulate their breathing to 6 breaths per minute. The inhalation–exhalation ratio was 1:1, with nil breath holds during this task.
- (v)
- A second recovery period.
2.2.3. Intervention
Week | Contents and Visit Type |
---|---|
1 | Introduction (laboratory)
|
2 | Mindful breathing (laboratory)
|
3 | Visualisation strategies (laboratory)
|
4 | Debrief (phone call)
|
5 | Mindfulness (laboratory)
|
6–8 | Debrief (phone call)
|
9 | Goal setting (laboratory)
|
10 | Overview (laboratory)
|
2.2.4. Analyses
Self-Reported Outcomes
Physiological Outcomes
P1 | P2 | Normative Values | |||||
---|---|---|---|---|---|---|---|
0 w | 10 w | 0 w | 10 w | Population | Mean | SD | |
GAD-7 | 1 | 4 | 0 | 0 | * SCI population (n = 465) [37] | 3.86 | 4.34 |
PHQ9 | 8 | 8 | 0 | 2 | * SCI population (n = 116) [38] | 5.23 | 7.451 |
FSS | 6 | 5 | 1.89 | 2.89 | Chronic SCI—no cognitive impairment (n = 53) [39] | 3.55 | 1.35 |
EQ-VAS | 60 | 76 | 75 | 81 | General Danish population (n = 1012) [40] | 82.43 | 15.89 |
ADAPSS—SF | 19 | 16 | 27 | 19 | * SCI population (n = 256) [41] | 16.32 | 6.84 |
ISCIPDS— Pain intensity | 8 | 8 | 5 | 2 | Chronic SCI—Non-neuropathic pain (n = 290) [42] | 5.67 | 2.28 |
ISCIPDS— Activities | 7 | 4 | 2 | 0 | Chronic SCI—Non-neuropathic pain (n = 290) [42] | 3.73 | 3.17 |
ISCIPDS— Mood | 7 | 3 | 1 | 0 | Chronic SCI—Non-neuropathic pain (n = 290) [42] | 3.16 | 3.11 |
ISCIPDS— Sleep | 5 | 6 | 5 | 1 | Chronic SCI—Non-neuropathic pain (n = 290) [42] | 3.64 | 3.41 |
3. Results
3.1. Case Presentations
3.2. Psychosocial Measures
3.3. Physiological
3.3.1. HRV, BPV, and BRS
Baseline | 10-Weeks | Normative Values under Resting Conditions | ||||||
---|---|---|---|---|---|---|---|---|
HRV | ||||||||
R | S | PB | R | S | PB | Mean (SD) | Population | |
P1 | Chronic SCI T3 and above (n = 21) [43] | |||||||
RMSSD (ms) | 7.28 | 3.86 | 4.69 | 5.13 | 4.36 | 6.96 | 29.8 (24.3) | |
HRV-LF (ms2) | 116.19 | 8.82 | 60.45 | 40.07 | 7.22 | 127.08 | 285.4 (325.5) | |
HRV-HF (ms2) | 38.61 | 3.97 | 5.46 | 25.6 | 10.50 | 16.74 | 513.4 (879.4) | |
P2 | ||||||||
RMSSD (ms) | 20.82 | 23.51 | 18.66 | 40.49 | 56.64 | 31.11 | 29.8 (24.3) | |
HRV-LF (ms2) | 349.43 | 318.00 | 254.21 | 1512.98 | 2146.35 | 1698.77 | 285.4 (325.5) | |
HRV-HF (ms2) | 186.92 | 201.84 | 131.75 | 403.69 | 1865.93 | 131.3 | 513.4 (879.4) | |
BPV | ||||||||
R | S | PB | R | S | PB | Mean (SD) | Population | |
P1 | Chronic thoracic SCI (n = 12) [44] | |||||||
BP (mmHg) | 101/57 | 98/52 | 106/53 | 113/61 | 119/61 | 105/58 | 126.8 (7.0)/ 66.2 (4.1) | |
SBP-LF (mmHg2) | 5.02 | 2.54 | 2.73 | 4.88 | 2.43 | 3.77 | 17.32 (7.7) | |
P2 | ||||||||
BP (mmHg) | 111/69 | 107/71 | 105/73 | 109/76 | 126/69 | 115/73 | 126.8 (7.0)/ 66.2 (4.1) | |
SBP-LF (mmHg2) | 6.65 | 7.64 | 12.22 | 5.05 | 5.83 | 11.13 | 17.32 (7.7) | |
BRS | ||||||||
R | S | PB | R | S | PB | Mean (SD) | Population | |
P1 | Chronic thoracic SCI (n = 12) [44] | |||||||
BRS gain (ms/mmHg) | 5.08 | 4.38 | 5.02 | 5.01 | 4.21 | 5.42 | 10.65 (3.2) | |
BEI [ratio] | 0.21 | 0.04 | 0.10 | 0.13 | 0.07 | 0.23 | 0.7 (0.1) | AB (n = 35) [45] |
P2 | Chronic thoracic SCI (n = 12) [44] | |||||||
BRS gain (ms/mmHg) | 7.15 | 9.00 | 7.93 | 8.09 | 7.18 | 8.03 | 10.65 (3.2) | |
BEI [ratio] | 0.32 | 0.45 | 0.39 | 0.62 | 0.70 | 0.77 | 0.7 (0.1) | AB (n = 35) [45] |
3.3.2. HRV-F Results
3.3.3. Self-Reported Weekly Diaries
4. Discussion
4.1. Cardiovascular Changes
4.2. Psychosocial Changes
“…say I’ve got a headache, or I am my headache, it’s kind of like I am my pain. It characterises who I am and how much I’m able to do in a day and being able to separate it as something separate to be managed has allowed me to be more productive during the day and to kind of ground myself and do more, be more active, be more independent.”Comment received from P1.
4.3. Considerations for Future Research
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, A.; Tran, Y.; Middleton, J. Theory of adjustment following severe neurological injury: Vidence supporting the Spinal Cord Injury Adjustment Model. In Horizons in Neuroscience Research; Costa, A., Villalba, E., Eds.; Nova Science Publishers: New York, NY, USA, 2017; pp. 117–139. [Google Scholar]
- Sezer, N.; Akkuş, S.; Uğurlu, F.G. Chronic complications of spinal cord injury. World J. Orthop. 2015, 6, 24–33. [Google Scholar] [CrossRef]
- Hou, S.; Rabchevsky, A.G. Autonomic consequences of spinal cord injury. Compr. Physiol. 2011, 4, 1419–1453. [Google Scholar] [CrossRef]
- Karemaker, J.M. An introduction into autonomic nervous function. Physiol. Meas. 2017, 38, R89–R118. [Google Scholar] [CrossRef]
- Teasell, R.W.; Arnold, J.M.; Krassioukov, A.; Delaney, G.A. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch. Phys. Med. Rehabil. 2000, 81, 506–516. [Google Scholar] [CrossRef]
- Fossey, M.P.M.; Balthazaar, S.J.T.; Squair, J.W.; Williams, A.M.; Poormasjedi-Meibod, M.-S.; Nightingale, T.E.; Erskine, E.; Hayes, B.; Ahmadian, M.; Jackson, G.S.; et al. Spinal cord injury impairs cardiac function due to impaired bulbospinal sympathetic control. Nat. Commun. 2022, 13, 1382. [Google Scholar] [CrossRef]
- Sandalic, D.; Craig, A.; Tran, Y.; Arora, M.; Pozzato, I.; McBain, C.; Tonkin, H.; Simpson, G.; Gopinath, B.; Kaur, J.; et al. Cognitive impairment in individuals with spinal cord injury: Findings of a systematic review with robust variance and network meta-analyses. Neurology 2022, 99, e1779–e1790. [Google Scholar] [CrossRef]
- Singh, V.; Mitra, S. Psychophysiological impact of spinal cord injury: Depression, coping and heart rate variability. J. Spinal Cord Med. 2023, 46, 441–449. [Google Scholar] [CrossRef]
- Rodrigues, D.; Tran, Y.; Guest, R.; Middleton, J.; Craig, A. Influence of neurological lesion level on heart rate variability and fatigue in adults with spinal cord injury. Spinal Cord 2016, 54, 292–297. [Google Scholar] [CrossRef]
- Charlifue, S.; Gerhart, K. Community integration in spinal cord injury of long duration. NeuroRehabilitation 2004, 19, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Krause, J.S. Estimation of indirect costs based on employment and earnings changes after spinal cord injury: An observational study. Spinal Cord 2020, 58, 908–913. [Google Scholar] [CrossRef]
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Sgobba, P.; Zhang, Y. Heart rate variability biofeedback improves emotional and physical health and performance: A systematic review and meta analysis. Appl. Psychophysiol. Biofeedback 2020, 45, 109–129. [Google Scholar] [CrossRef]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef]
- Sevoz-Couche, C.; Laborde, S. Heart rate variability and slow-paced breathing: When coherence meets resonance. Neurosci. Biobehav. Rev. 2022, 135, 104576. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.E.; Scardella, A.; Siddique, M.; Habib, R.H. Biofeedback treatment for asthma. Chest 2004, 126, 352–361. [Google Scholar] [CrossRef]
- Chang, W.-L.; Lee, J.-T.; Li, C.-R.; Davis, A.H.T.; Yang, C.-C.; Chen, Y.-J. Effects of heart rate variability biofeedback in patients with acute ischemic stroke: A randomized controlled trial. Biol. Res. Nurs. 2020, 22, 34–44. [Google Scholar] [CrossRef]
- Hassett, A.L.; Radvanski, D.C.; Vaschillo, E.G.; Vaschillo, B.; Sigal, L.H.; Karavidas, M.K.; Buyske, S.; Lehrer, P.M. A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Appl. Psychophysiol. Biofeedback 2007, 32, 1–10. [Google Scholar] [CrossRef]
- Wearne, T.A.; Logan, J.A.; Trimmer, E.M.; Wilson, E.; Filipcikova, M.; Kornfeld, E.; Rushby, J.A.; McDonald, S. Regulating emotion following severe traumatic brain injury: A randomized controlled trial of heart-rate variability biofeedback training. Brain Inj. 2021, 35, 1390–1401. [Google Scholar] [CrossRef]
- Phillips, A.A.; Krassioukov, A.V.; Ainslie, P.N.; Warburton, D.E. Baroreflex function after spinal cord injury. J. Neurotrauma 2012, 29, 2431–2445. [Google Scholar] [CrossRef]
- Lehrer, P. How does heart rate variability biofeedback work? Resonance, the baroreflex, and other mechanisms. Biofeedback 2013, 41, 26–31. [Google Scholar] [CrossRef]
- Schrezenmaier, C.; Singer, W.; Swift, N.M.; Sletten, D.; Tanabe, J.; Low, P.A. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch. Neurol. 2007, 64, 381–386. [Google Scholar] [CrossRef]
- Frank, D.L.; Khorshid, L.; Kiffer, J.F.; Moravec, C.S.; McKee, M.G. Biofeedback in medicine: Who, when, why and how? Ment. Health Fam. Med. 2010, 7, 85–91. [Google Scholar] [PubMed]
- Laborde, S.; Allen, M.S.; Borges, U.; Iskra, M.; Zammit, N.; You, M.; Hosang, T.; Mosley, E.; Dosseville, F. Psychophysiological effects of slow-paced breathing at six cycles per minute with or without heart rate variability biofeedback. Psychophysiology 2022, 59, e13952. [Google Scholar] [CrossRef]
- Craig, A.; Pozzato, I.; Arora, M.; Middleton, J.; Rodrigues, D.; McBain, C.; Tran, Y.; Davis, G.M.; Gopinath, B.; Kifley, A.; et al. A neuro-cardiac self-regulation therapy to improve autonomic and neural function after SCI: A randomized controlled trial protocol. BMC Neurol. 2021, 21, 329. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Treisman, A.; Fearnley, S. The Stroop test: Selective attention to colours and words. Nature 1969, 222, 437–439. [Google Scholar] [CrossRef]
- Tulen, J.H.; Moleman, P.; van Steenis, H.G.; Boomsma, F. Characterization of stress reactions to the Stroop color word test. Pharmacol. Biochem. Behav. 1989, 32, 9–15. [Google Scholar] [CrossRef]
- Shaffer, F.; Meehan, Z.M. A practical guide to resonance frequency assessment for heart rate variability biofeedback. Front. Neurosci. 2020, 14, 570400. [Google Scholar] [CrossRef]
- Lehrer, P.; Vaschillo, B.; Zucker, T.; Graves, J.; Katsamanis, M.; Aviles, M.; Wamboldt, F. Protocol for heart rate variability biofeedback training. Biofeedback 2013, 41, 98–109. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.E.; Eckberg, D.L.; Edelberg, R.; Shih, W.J.; Lin, Y.; Kuusela, T.A.; Tahvanainen, K.U.; et al. Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom. Med. 2003, 65, 796–805. [Google Scholar] [CrossRef]
- Gholamrezaei, A.; Van Diest, I.; Aziz, Q.; Vlaeyen, J.W.S.; Van Oudenhove, L. Influence of inspiratory threshold load on cardiovascular responses to controlled breathing at 0.1 Hz. Psychophysiology 2019, 56, e13447. [Google Scholar] [CrossRef]
- Lucci, V.E.M.; Inskip, J.A.; McGrath, M.S.; Ruiz, I.; Lee, R.; Kwon, B.K.; Claydon, V.E. Longitudinal assessment of autonomic function during the acute phase of spinal cord injury: Use of low-frequency blood pressure variability as a quantitative measure of autonomic function. J. Neurotrauma 2021, 38, 309–321. [Google Scholar] [CrossRef]
- Bertinieri, G.; di Rienzo, M.; Cavallazzi, A.; Ferrari, A.U.; Pedotti, A.; Mancia, G. A new approach to analysis of the arterial baroreflex. J. Hypertens. Suppl. 1985, 3, S79–S81. [Google Scholar] [PubMed]
- Kisala, P.A.; Tulsky, D.S.; Kalpakjian, C.Z.; Heinemann, A.W.; Pohlig, R.T.; Carle, A.; Choi, S.W. Measuring anxiety after spinal cord injury: Development and psychometric characteristics of the SCI-QOL anxiety item bank and linkage with GAD-7. J. Spinal Cord Med. 2015, 38, 315–325. [Google Scholar] [CrossRef]
- Poritz, J.M.P.; Mignogna, J.; Christie, A.J.; Holmes, S.A.; Ames, H. The patient health questionnaire depression screener in spinal cord injury. J. Spinal Cord Med. 2018, 41, 238–244. [Google Scholar] [CrossRef]
- Craig, A.; Guest, R.; Tran, Y.; Middleton, J. Cognitive impairment and mood states after spinal cord injury. J. Neurotrauma 2016, 34, 1156–1163. [Google Scholar] [CrossRef]
- Jensen, M.B.; Jensen, C.E.; Gudex, C.; Pedersen, K.M.; Sørensen, S.S.; Ehlers, L.H. Danish population health measured by the EQ-5D-5L. Scand. J. Public. Health 2023, 51, 241–249. [Google Scholar] [CrossRef]
- McDonald, S.; Goldberg, L.; Mickens, M.; Ellwood, M.; Mutchler, B.; Perrin, P. Appraisals of DisAbility Primary and Secondary Scale-Short Form (ADAPSS-sf): Psychometrics and association with mental health among U.S. military veterans with spinal cord injury. Rehabil. Psychol. 2018, 63, 372. [Google Scholar] [CrossRef]
- Felix, E.R.; Cardenas, D.D.; Bryce, T.N.; Charlifue, S.; Lee, T.K.; MacIntyre, B.; Mulroy, S.; Taylor, H. Prevalence and impact of neuropathic and nonneuropathic pain in chronic spinal cord injury. Arch. Phys. Med. Rehabil. 2022, 103, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Schoffl, J.; Pozzato, I.; Rodrigues, D.; Arora, M.; Craig, A. Pulse rate variability: An alternative to heart rate variability in adults with spinal cord injury. Psychophysiology 2023, 60, e14356. [Google Scholar] [CrossRef]
- Claydon, V.E.; Krassioukov, A.V. Clinical correlates of frequency analyses of cardiovascular control after spinal cord injury. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H668–H678. [Google Scholar] [CrossRef] [PubMed]
- Gholamrezaei, A.; Van Diest, I.; Aziz, Q.; Vlaeyen, J.W.S.; Van Oudenhove, L. Psychophysiological responses to various slow, deep breathing techniques. Psychophysiology 2021, 58, e13712. [Google Scholar] [CrossRef] [PubMed]
- Fournié, C.; Chouchou, F.; Dalleau, G.; Caderby, T.; Cabrera, Q.; Verkindt, C. Heart rate variability biofeedback in chronic disease management: A systematic review. Complement. Ther. Med. 2021, 60, 102750. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Six Dijkstra, M.; Soer, R.; Bieleman, A.; McCraty, R.; Oosterveld, F.; Gross, D.; Reneman, M. Exploring a 1-minute paced deep-breathing measurement of heart rate variability as part of a workers’ health assessment. Appl. Psychophysiol. Biofeedback 2019, 44, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How breath-control can change your life: A systematic review on psycho-physiological correlates of slow breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef]
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef]
- Drexler, A.; Mur, E.; Gunther, V. Efficacy of an EMG-biofeedback therapy in fibromyalgia patients. A comparative study of patients with and without abnormality in (MMPI) psychological scales. Clin. Exp. Rheumatol. 2002, 20, 677–682. [Google Scholar] [PubMed]
- Schumann, A.; de la Cruz, F.; Köhler, S.; Brotte, L.; Bär, K.-J. The influence of heart rate variability biofeedback on cardiac regulation and functional brain connectivity. Front. Neurosci. 2021, 15, 691988. [Google Scholar] [CrossRef] [PubMed]
- Siddall, P.; Loeser, J. Pain following spinal cord injury. Spinal Cord 2001, 39, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Boldt, I.; Eriks-Hoogland, I.; Brinkhof, M.W.G.; de Bie, R.; Joggi, D.; von Elm, E. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst. Rev. 2014, 11, CD009177. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.; Casagrande, M. Heart rate variability and pain: A systematic review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. The relaxation effect of prolonged expiratory breathing. Ment. Illn. 2018, 10, 7669. [Google Scholar] [CrossRef] [PubMed]
- Lalanza, J.F.; Lorente, S.; Bullich, R.; García, C.; Losilla, J.-M.; Capdevila, L. Methods for heart rate variability biofeedback (HRVB): A systematic review and guidelines. Appl. Psychophysiol. Biofeedback 2023, 48, 275–297. [Google Scholar] [CrossRef]
- Solinsky, R.; Schleifer, G.D.; Draghici, A.E.; Hamner, J.W.; Taylor, J.A. Methodologic implications for rehabilitation research: Differences in heart rate variability introduced by respiration. PM&R 2022, 14, 1483–1489. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.J.; Tan, R.L.-Y.; Luo, N. Measurement properties of the EQ VAS around the globe: A systematic review and meta-regression analysis. Value Health 2021, 24, 1223–1233. [Google Scholar] [CrossRef]
- Garin, O.; Ayuso-Mateos, J.L.; Almansa, J.; Nieto, M.; Chatterji, S.; Vilagut, G.; Alonso, J.; Cieza, A.; Svetskova, O.; Burger, H.; et al. Validation of the “World Health Organization Disability Assessment Schedule, WHODAS-2” in patients with chronic diseases. Health Qual. Life Outcomes 2010, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.W.; Tran, Y.; Lo, C.; Craig, A. Reexamining the validity and dimensionality of the Moorong Self-Efficacy Scale: Improving its clinical utility. Arch. Phys. Med. Rehabil. 2016, 97, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Widerström-Noga, E.; Biering-Sørensen, F.; Bryce, T.N.; Cardenas, D.D.; Finnerup, N.B.; Jensen, M.P.; Richards, J.S.; Siddall, P.J. The International Spinal Cord Injury Pain Basic Data Set (version 2.0). Spinal Cord 2014, 52, 282–286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoffl, J.; Arora, M.; Pozzato, I.; McBain, C.; Rodrigues, D.; Vafa, E.; Middleton, J.; Davis, G.M.; Gustin, S.M.; Bourke, J.; et al. Heart Rate Variability Biofeedback in Adults with a Spinal Cord Injury: A Laboratory Framework and Case Series. J. Clin. Med. 2023, 12, 7664. https://doi.org/10.3390/jcm12247664
Schoffl J, Arora M, Pozzato I, McBain C, Rodrigues D, Vafa E, Middleton J, Davis GM, Gustin SM, Bourke J, et al. Heart Rate Variability Biofeedback in Adults with a Spinal Cord Injury: A Laboratory Framework and Case Series. Journal of Clinical Medicine. 2023; 12(24):7664. https://doi.org/10.3390/jcm12247664
Chicago/Turabian StyleSchoffl, Jacob, Mohit Arora, Ilaria Pozzato, Candice McBain, Dianah Rodrigues, Elham Vafa, James Middleton, Glen M. Davis, Sylvia Maria Gustin, John Bourke, and et al. 2023. "Heart Rate Variability Biofeedback in Adults with a Spinal Cord Injury: A Laboratory Framework and Case Series" Journal of Clinical Medicine 12, no. 24: 7664. https://doi.org/10.3390/jcm12247664