Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Eligibility Criteria
3. Results
4. Discussion
4.1. Ultrasound in Pancreatic Cancer Diagnosis and Progression
4.2. Dynamic Contrast-Enhanced Ultrasound (DCE-US)
4.3. Microbubble Ultrasound-Mediated Drug Delivery
4.4. Focused Ultrasound
4.5. Sonodynamic Therapy
4.6. Harmonic Motion Elastography (HME) and Shear Wave Elastography (SWE)
4.7. Ultrasound-Guided Procedures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic Cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef]
- Samain, R.; Brunel, A.; Douché, T.; Fanjul, M.; Cassant-Sourdy, S.; Rochotte, J.; Cros, J.; Neuzillet, C.; Raffenne, J.; Duluc, C.; et al. Pharmacologic Normalization of Pancreatic Cancer-Associated Fibroblast Secretome Impairs Prometastatic Cross-Talk with Macrophages. Cell Mol. Gastroenterol. Hepatol. 2021, 11, 1405–1436. [Google Scholar] [CrossRef] [PubMed]
- Gonda, T.A.; Fang, J.; Salas, M.; Do, C.; Hsu, E.; Zhukovskaya, A.; Siegel, A.; Takahashi, R.; Lopez-Bujanda, Z.A.; Drake, C.G.; et al. A DNA Hypomethylating Drug Alters the Tumor Microenvironment and Improves the Effectiveness of Immune Checkpoint Inhibitors in a Mouse Model of Pancreatic Cancer. Cancer Res. 2020, 80, 4754–4767. [Google Scholar] [CrossRef] [PubMed]
- Goetze, R.G.; Buchholz, S.M.; Ou, N.; Zhang, Q.; Patil, S.; Schirmer, M.; Singh, S.K.; Ellenrieder, V.; Hessmann, E.; Lu, Q.-B.; et al. Preclinical Evaluation of 1,2-Diamino-4,5-Dibromobenzene in Genetically Engineered Mouse Models of Pancreatic Cancer. Cells 2019, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-T.; Chen, Y.-C.; Du, Y.; Han, Z.; Ying, H.; Bouchard, R.R.; Hsu, J.L.; Hsu, J.-M.; Mitcham, T.M.; Chen, M.-K.; et al. A Tumor Vessel-Targeting Fusion Protein Elicits a Chemotherapeutic Bystander Effect in Pancreatic Ductal Adenocarcinoma. Am. J. Cancer Res. 2017, 7, 657–672. [Google Scholar] [PubMed]
- Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-Triggered Nitric Oxide Release Platform Based on Energy Transformation for Targeted Inhibition of Pancreatic Tumor. ACS Nano 2016, 10, 10816–10828. [Google Scholar] [CrossRef] [PubMed]
- Muzzolini, M.; Belhabib, I.; Cardot, V.; Tijeras-Raballand, A.; Neuzillet, C.; Bousquet, C.; Lupinacci, R.M.; Jean, C. Pancreatic Cancer Orthotopic Graft in a Murine Model. Acta Cir. Bras. 2023, 38, e382823. [Google Scholar] [CrossRef]
- Coppola, A.; Zorzetto, G.; Piacentino, F.; Bettoni, V.; Pastore, I.; Marra, P.; Perani, L.; Esposito, A.; De Cobelli, F.; Carcano, G.; et al. Imaging in Experimental Models of Diabetes. Acta Diabetol. 2022, 59, 147–161. [Google Scholar] [CrossRef]
- Case, R.M. Is the Rat Pancreas an Appropriate Model of the Human Pancreas? Pancreatology 2006, 6, 180–190. [Google Scholar] [CrossRef]
- Dolenšek, J.; Rupnik, M.S.; Stožer, A. Structural Similarities and Differences between the Human and the Mouse Pancreas. Islets 2015, 7, e1024405. [Google Scholar] [CrossRef]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Universities Federation for Animal Welfare: St Albans, UK, 1992; ISBN 978-0-900767-78-4. [Google Scholar]
- Park, J.H.; Lee, S.; Jeon, H.; Kim, J.H.; Kim, D.J.; Im, M.; Lee, B.C. A Novel Convex Acoustic Lens-Attached Ultrasound Drug Delivery System and Its Testing in a Murine Melanoma Subcutaneous Model. Int. J. Pharm. 2023, 642, 123118. [Google Scholar] [CrossRef]
- Mezzapelle, R.; Rrapaj, E.; Gatti, E.; Ceriotti, C.; Marchis, F.D.; Preti, A.; Spinelli, A.E.; Perani, L.; Venturini, M.; Valtorta, S.; et al. Human Malignant Mesothelioma Is Recapitulated in Immunocompetent BALB/c Mice Injected with Murine AB Cells. Sci. Rep. 2016, 6, 22850. [Google Scholar] [CrossRef]
- Venturini, M.; Bergamini, A.; Perani, L.; Sanchez, A.M.; Rossi, E.G.; Colarieti, A.; Petrone, M.; De Cobelli, F.; Del Maschio, A.; Viganò, P.; et al. Contrast-Enhanced Ultrasound for Ovary Assessment in a Murine Model: Preliminary Findings on the Protective Role of a Gonadotropin-Releasing Hormone Analogue from Chemotherapy-Induced Ovarian Damage. Eur. Radiol. Exp. 2018, 2, 44. [Google Scholar] [CrossRef]
- Chen, X.; Cvetkovic, D.; Chen, L.; Ma, C.-M. An In-Vivo Study of the Combined Therapeutic Effects of Pulsed Non-Thermal Focused Ultrasound and Radiation for Prostate Cancer. Int. J. Radiat. Biol. 2023, 99, 1716–1723. [Google Scholar] [CrossRef]
- Tai, H.; Song, J.; Li, J.; Reddy, S.; Khairalseed, M.; Hoyt, K. Three-Dimensional H-Scan Ultrasound Imaging of Early Breast Cancer Response to Neoadjuvant Therapy in a Murine Model. Investig. Radiol. 2022, 57, 222–232. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Z.; Han, J.; Lin, C.; Liu, C.; Ma, Y.; Zhao, Y. Delivery of sPD1 Gene by Anti-CD133 Antibody Conjugated Microbubbles Combined with Ultrasound for the Treatment of Cervical Cancer in Mice. Toxicol. Appl. Pharmacol. 2023, 474, 116605. [Google Scholar] [CrossRef]
- Wang, P.; Tian, M.; Ren, W. Correlation Between Contrast-Enhanced Ultrasound and Immune Response of Distant Hepatocellular Carcinoma After Radiofrequency Ablation in a Murine Model. J. Ultrasound Med. 2022, 41, 713–723. [Google Scholar] [CrossRef]
- Porret, E.; Kereselidze, D.; Dauba, A.; Schweitzer-Chaput, A.; Jegot, B.; Selingue, E.; Tournier, N.; Larrat, B.; Novell, A.; Truillet, C. Refining the Delivery and Therapeutic Efficacy of Cetuximab Using Focused Ultrasound in a Mouse Model of Glioblastoma: An 89Zr-Cetuximab immunoPET Study. Eur. J. Pharm. Biopharm. 2023, 182, 141–151. [Google Scholar] [CrossRef]
- Alchera, E.; Monieri, M.; Maturi, M.; Locatelli, I.; Locatelli, E.; Tortorella, S.; Sacchi, A.; Corti, A.; Nebuloni, M.; Lucianò, R.; et al. Early Diagnosis of Bladder Cancer by Photoacoustic Imaging of Tumor-Targeted Gold Nanorods. Photoacoustics 2022, 28, 100400. [Google Scholar] [CrossRef]
- Venturini, M.; Mezzapelle, R.; La Marca, S.; Perani, L.; Spinelli, A.; Crippa, L.; Colarieti, A.; Palmisano, A.; Marra, P.; Coppola, A.; et al. Use of an Antagonist of HMGB1 in Mice Affected by Malignant Mesothelioma: A Preliminary Ultrasound and Optical Imaging Study. Eur. Radiol. Exp. 2022, 6, 7. [Google Scholar] [CrossRef]
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; PRISMA-DTA Group; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; et al. Preferred Reporting Items for a Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef]
- Mohammed, A.; Janakiram, N.B.; Lightfoot, S.; Gali, H.; Vibhudutta, A.; Rao, C.V. Early Detection and Prevention of Pancreatic Cancer: Use of Genetically Engineered Mouse Models and Advanced Imaging Technologies. Curr. Med. Chem. 2012, 19, 3701–3713. [Google Scholar] [CrossRef]
- Hruban, R.H.; Maitra, A.; Goggins, M. Update on Pancreatic Intraepithelial Neoplasia. Int. J. Clin. Exp. Pathol. 2008, 1, 306–316. [Google Scholar]
- Foygel, K.; Wang, H.; Machtaler, S.; Lutz, A.M.; Chen, R.; Pysz, M.; Lowe, A.W.; Tian, L.; Carrigan, T.; Brentnall, T.A.; et al. Detection of Pancreatic Ductal Adenocarcinoma in Mice by Ultrasound Imaging of Thymocyte Differentiation Antigen 1. Gastroenterology 2013, 145, 885–894.e3. [Google Scholar] [CrossRef]
- Dugnani, E.; Pasquale, V.; Marra, P.; Liberati, D.; Canu, T.; Perani, L.; De Sanctis, F.; Ugel, S.; Invernizzi, F.; Citro, A.; et al. Four-Class Tumor Staging for Early Diagnosis and Monitoring of Murine Pancreatic Cancer Using Magnetic Resonance and Ultrasound. Carcinogenesis 2018, 39, 1197–1206. [Google Scholar] [CrossRef]
- Jugniot, N.; Bam, R.; Paulmurugan, R. Expression and Purification of a Native Thy1-Single-Chain Variable Fragment for Use in Molecular Imaging. Sci. Rep. 2021, 11, 23026. [Google Scholar] [CrossRef]
- Chiba, M.; Imazu, H.; Kato, M.; Ikeda, K.; Arakawa, H.; Kato, T.; Sumiyama, K.; Homma, S. Novel Quantitative Analysis of the S100P Protein Combined with Endoscopic Ultrasound-Guided Fine Needle Aspiration Cytology in the Diagnosis of Pancreatic Adenocarcinoma. Oncol. Rep. 2017, 37, 1943–1952. [Google Scholar] [CrossRef]
- Gayet, O.; Loncle, C.; Duconseil, P.; Gilabert, M.; Lopez, M.B.; Moutardier, V.; Turrini, O.; Calvo, E.; Ewald, J.; Giovannini, M.; et al. A Subgroup of Pancreatic Adenocarcinoma Is Sensitive to the 5-Aza-dC DNA Methyltransferase Inhibitor. Oncotarget 2015, 6, 746–754. [Google Scholar] [CrossRef]
- Bouvet, M.; Hoffman, R.M. Clinically-Relevent Orthotopic Metastatic Models of Pancreatic Cancer Imageable with Fluorescent Genetic Reporters. Minerva Chir. 2009, 64, 521–539. [Google Scholar]
- Snyder, C.S.; Kaushal, S.; Kono, Y.; Tran Cao, H.S.; Hoffman, R.M.; Bouvet, M. Complementarity of Ultrasound and Fluorescence Imaging in an Orthotopic Mouse Model of Pancreatic Cancer. BMC Cancer 2009, 9, 106. [Google Scholar] [CrossRef]
- Rojas, J.D.; Joiner, J.B.; Velasco, B.; Bautista, K.J.B.; Aji, A.M.; Moore, C.J.; Beaumont, N.J.; Pylayeva-Gupta, Y.; Dayton, P.A.; Gessner, R.C.; et al. Validation of a Combined Ultrasound and Bioluminescence Imaging System with Magnetic Resonance Imaging in Orthotopic Pancreatic Murine Tumors. Sci. Rep. 2022, 12, 102. [Google Scholar] [CrossRef]
- Goetze, R.-G.; Buchholz, S.M.; Patil, S.; Petzold, G.; Ellenrieder, V.; Hessmann, E.; Neesse, A. Utilizing High Resolution Ultrasound to Monitor Tumor Onset and Growth in Genetically Engineered Pancreatic Cancer Models. J. Vis. Exp. 2018, 134, e56979. [Google Scholar] [CrossRef]
- Wörmann, S.M.; Song, L.; Ai, J.; Diakopoulos, K.N.; Kurkowski, M.U.; Görgülü, K.; Ruess, D.; Campbell, A.; Doglioni, C.; Jodrell, D.; et al. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival. Gastroenterology 2016, 151, 180–193.e12. [Google Scholar] [CrossRef]
- Thorek, D.L.J.; Kramer, R.M.; Chen, Q.; Jeong, J.; Lupu, M.E.; Lee, A.M.; Moynahan, M.E.; Lowery, M.; Ulmert, D.; Zanzonico, P.; et al. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 444–453. [Google Scholar] [CrossRef]
- Mills, L.D.; Zhang, L.; Marler, R.; Svingen, P.; Fernandez-Barrena, M.G.; Dave, M.; Bamlet, W.; McWilliams, R.R.; Petersen, G.M.; Faubion, W.; et al. Inactivation of the Transcription Factor GLI1 Accelerates Pancreatic Cancer Progression. J. Biol. Chem. 2014, 289, 16516–16525. [Google Scholar] [CrossRef]
- Ziske, C.; Tiemann, K.; Schmidt, T.; Nagaraj, S.; Märten, A.; Schmitz, V.; Clarenbach, R.; Sauerbruch, T.; Schmidt-Wolf, I.G.H. Real-Time High-Resolution Compound Imaging Allows Percutaneous Initiation and Surveillance in an Orthotopic Murine Pancreatic Cancer Model. Pancreas 2008, 36, 146–152. [Google Scholar] [CrossRef]
- Claus, A.; Sweeney, A.; Sankepalle, D.M.; Li, B.; Wong, D.; Xavierselvan, M.; Mallidi, S. 3D Ultrasound-Guided Photoacoustic Imaging to Monitor the Effects of Suboptimal Tyrosine Kinase Inhibitor Therapy in Pancreatic Tumors. Front. Oncol. 2022, 12, 915319. [Google Scholar] [CrossRef]
- Wang, Y.; Jhang, D.-F.; Tsai, C.-H.; Chiang, N.-J.; Tsao, C.-H.; Chuang, C.-C.; Chen, L.-T.; Chang, W.-S.W.; Liao, L.-D. In Vivo Assessment of Hypoxia Levels in Pancreatic Tumors Using a Dual-Modality Ultrasound/Photoacoustic Imaging System. Micromachines 2021, 12, 668. [Google Scholar] [CrossRef]
- Barrefelt, Å.; Zhao, Y.; Larsson, M.K.; Egri, G.; Kuiper, R.V.; Hamm, J.; Saghafian, M.; Caidahl, K.; Brismar, T.B.; Aspelin, P.; et al. Fluorescence Labeled Microbubbles for Multimodal Imaging. Biochem. Biophys. Res. Commun. 2015, 464, 737–742. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.; Kim, Y.J.; Lee, J.Y.; Han, J.K.; Choi, B.-I. Dynamic Contrast-Enhanced Ultrasonographic (DCE-US) Assessment of the Early Response after Combined Gemcitabine and HIFU with Low-Power Treatment for the Mouse Xenograft Model of Human Pancreatic Cancer. Eur. Radiol. 2014, 24, 2059–2068. [Google Scholar] [CrossRef]
- Olson, P.; Chu, G.C.; Perry, S.R.; Nolan-Stevaux, O.; Hanahan, D. Imaging Guided Trials of the Angiogenesis Inhibitor Sunitinib in Mouse Models Predict Efficacy in Pancreatic Neuroendocrine but Not Ductal Carcinoma. Proc. Natl. Acad. Sci. USA 2011, 108, E1275–E1284. [Google Scholar] [CrossRef]
- Korpanty, G.; Carbon, J.G.; Grayburn, P.A.; Fleming, J.B.; Brekken, R.A. Monitoring Response to Anticancer Therapy by Targeting Microbubbles to Tumor Vasculature. Clin. Cancer Res. 2007, 13, 323–330. [Google Scholar] [CrossRef]
- Ng, S.; Healey, A.J.; Sontum, P.C.; Kvåle, S.; Torp, S.H.; Sulheim, E.; Von Hoff, D.; Han, H. Effect of Acoustic Cluster Therapy (ACT®) Combined with Chemotherapy in a Patient-Derived Xenograft Mouse Model of Pancreatic Cancer. J. Control. Release 2022, 352, 1134–1143. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, L.; Tang, Q.; Sun, S.; Zeng, L.; Ma, J.; Li, X.; Ge, H.; Liang, X. Cascade Drug Delivery through Tumor Barriers of Pancreatic Cancer via Ultrasound in Combination with Functional Microbubbles. ACS Biomater. Sci. Eng. 2022, 8, 1583–1595. [Google Scholar] [CrossRef]
- Gdowski, A.; Hayatshahi, H.; Fudala, R.; Joshi, R.; Liu, J.; Vishwanatha, J.K.; Jeyarajah, R.; Guzik, P.; Ranjan, A.P. Novel Use of Hypoxia-Inducible Polymerizable Protein to Augment Chemotherapy for Pancreatic Cancer. Pharmaceutics 2022, 14, 128. [Google Scholar] [CrossRef]
- Bressand, D.; Novell, A.; Girault, A.; Raoul, W.; Fromont-Hankard, G.; Escoffre, J.-M.; Lecomte, T.; Bouakaz, A. Enhancing Nab-Paclitaxel Delivery Using Microbubble-Assisted Ultrasound in a Pancreatic Cancer Model. Mol. Pharm. 2019, 16, 3814–3822. [Google Scholar] [CrossRef]
- Neesse, A.; Frese, K.K.; Chan, D.S.; Bapiro, T.E.; Howat, W.J.; Richards, F.M.; Ellenrieder, V.; Jodrell, D.I.; Tuveson, D.A. SPARC Independent Drug Delivery and Antitumour Effects of Nab-Paclitaxel in Genetically Engineered Mice. Gut 2014, 63, 974–983. [Google Scholar] [CrossRef]
- Paproski, R.J.; Yao, S.Y.M.; Favis, N.; Evans, D.; Young, J.D.; Cass, C.E.; Zemp, R.J. Human Concentrative Nucleoside Transporter 3 Transfection with Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells Greatly Increases Gemcitabine Uptake. PLoS ONE 2013, 8, e56423. [Google Scholar] [CrossRef]
- Rapoport, N.; Payne, A.; Dillon, C.; Shea, J.; Scaife, C.; Gupta, R. Focused Ultrasound-Mediated Drug Delivery to Pancreatic Cancer in a Mouse Model. J. Ther. Ultrasound 2013, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Logan, K.A.; Nesbitt, H.; Callan, B.; McKaig, T.; Taylor, M.; Love, M.; McHale, A.P.; Griffith, D.M.; Callan, J.F. A Single Microbubble Formulation Carrying 5-Fluorouridine, Irinotecan and Oxaliplatin to Enable FOLFIRINOX Treatment of Pancreatic and Colon Cancer Using Ultrasound Targeted Microbubble Destruction. J. Control. Release 2021, 338, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Fan, Y.; Gao, F.; Jin, L.; Li, D.; Sun, W.; Li, F.; Qin, P.; Shi, Q.; Shi, X.; et al. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics 2018, 8, 1923–1939. [Google Scholar] [CrossRef]
- Xing, L.; Shi, Q.; Zheng, K.; Shen, M.; Ma, J.; Li, F.; Liu, Y.; Lin, L.; Tu, W.; Duan, Y.; et al. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Theranostics 2016, 6, 1573–1587. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Nesbitt, H.; Logan, K.; Burnett, K.; White, B.; Jack, I.G.; Taylor, M.A.; Love, M.; Callan, B.; McHale, A.P.; et al. An Ultrasound Responsive Microbubble-Liposome Conjugate for Targeted Irinotecan-Oxaliplatin Treatment of Pancreatic Cancer. Eur. J. Pharm. Biopharm. 2020, 157, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Logan, K.A.; Nesbitt, H.; Callan, B.; Gao, J.; McKaig, T.; Taylor, M.; Love, M.; McHale, A.P.; Callan, J.F. Synthesis of a Gemcitabine-Modified Phospholipid and Its Subsequent Incorporation into a Single Microbubble Formulation Loaded with Paclitaxel for the Treatment of Pancreatic Cancer Using Ultrasound-Targeted Microbubble Destruction. Eur. J. Pharm. Biopharm. 2021, 165, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, H.; Sheng, Y.; Kamila, S.; Logan, K.; Thomas, K.; Callan, B.; Taylor, M.A.; Love, M.; O’Rourke, D.; Kelly, P.; et al. Gemcitabine Loaded Microbubbles for Targeted Chemo-Sonodynamic Therapy of Pancreatic Cancer. J. Control. Release 2018, 279, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Qiao, W.; Tang, J.; Yu, Y.; Gao, S.; Liu, Z.; Zhu, X. Chemotherapy Augmentation Using Low-Intensity Ultrasound Combined with Microbubbles with Different Mechanical Indexes in a Pancreatic Cancer Model. Ultrasound Med. Biol. 2021, 47, 3221–3230. [Google Scholar] [CrossRef]
- Kotopoulis, S.; Delalande, A.; Popa, M.; Mamaeva, V.; Dimcevski, G.; Gilja, O.H.; Postema, M.; Gjertsen, B.T.; McCormack, E. Sonoporation-Enhanced Chemotherapy Significantly Reduces Primary Tumour Burden in an Orthotopic Pancreatic Cancer Xenograft. Mol. Imaging Biol. 2014, 16, 53–62. [Google Scholar] [CrossRef]
- Kotopoulis, S.; Popa, M.; Mayoral Safont, M.; Murvold, E.; Haugse, R.; Langer, A.; Dimcevski, G.; Lam, C.; Bjånes, T.; Gilja, O.H.; et al. SonoVue® vs. SonazoidTM vs. OptisonTM: Which Bubble Is Best for Low-Intensity Sonoporation of Pancreatic Ductal Adenocarcinoma? Pharmaceutics 2022, 14, 98. [Google Scholar] [CrossRef]
- Kulkarni, P.; Haldar, M.K.; Karandish, F.; Confeld, M.; Hossain, R.; Borowicz, P.; Gange, K.; Xia, L.; Sarkar, K.; Mallik, S. Tissue-Penetrating, Hypoxia-Responsive Echogenic Polymersomes For Drug Delivery To Solid Tumors. Chemistry 2018, 24, 12490–12494. [Google Scholar] [CrossRef]
- Maloney, E.; Wang, Y.-N.; Vohra, R.; Son, H.; Whang, S.; Khokhlova, T.; Park, J.; Gravelle, K.; Totten, S.; Hwang, J.H.; et al. Magnetic Resonance Imaging Biomarkers for Pulsed Focused Ultrasound Treatment of Pancreatic Ductal Adenocarcinoma. World J. Gastroenterol. 2020, 26, 904–917. [Google Scholar] [CrossRef]
- Li, T.; Chen, H.; Khokhlova, T.; Wang, Y.-N.; Kreider, W.; He, X.; Hwang, J.H. Passive Cavitation Detection during Pulsed HIFU Exposures of Ex Vivo Tissues and in Vivo Mouse Pancreatic Tumors. Ultrasound Med. Biol. 2014, 40, 1523–1534. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, B.; Guo, Q.; Chen, L. Treatment of Pancreatic Cancer in a Nude Mouse Model Using High-Intensity Focused Ultrasound. Exp. Ther. Med. 2013, 5, 39–44. [Google Scholar] [CrossRef]
- Yu, Q.; Yao, Y.; Zhu, X.; Gao, Y.; Chen, Y.; Wang, R.; Xu, P.; Wei, X.; Jiang, L. In Vivo Flow Cytometric Evaluation of Circulating Metastatic Pancreatic Tumor Cells after High-Intensity Focused Ultrasound Therapy. Cytometry A 2020, 97, 900–908. [Google Scholar] [CrossRef]
- Han, Y.; Wang, S.; Payen, T.; Konofagou, E. Fast Lesion Mapping during HIFU Treatment Using Harmonic Motion Imaging Guided Focused Ultrasound (HMIgFUS) in Vitro and in Vivo. Phys. Med. Biol. 2017, 62, 3111–3123. [Google Scholar] [CrossRef]
- Chen, H.; Hou, G.Y.; Han, Y.; Payen, T.; Palermo, C.F.; Olive, K.P.; Konofagou, E.E. Harmonic Motion Imaging for Abdominal Tumor Detection and High-Intensity Focused Ultrasound Ablation Monitoring: An in Vivo Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer. IEEE Trans. Ultrason Ferroelectr. Freq. Control 2015, 62, 1662–1673. [Google Scholar] [CrossRef]
- Maeda, M.; Muragaki, Y.; Okamoto, J.; Yoshizawa, S.; Abe, N.; Nakamoto, H.; Ishii, H.; Kawabata, K.; Umemura, S.; Nishiyama, N.; et al. Sonodynamic Therapy Based on Combined Use of Low Dose Administration of Epirubicin-Incorporating Drug Delivery System and Focused Ultrasound. Ultrasound Med. Biol. 2017, 43, 2295–2301. [Google Scholar] [CrossRef]
- Wang, J.; Fite, B.Z.; Kare, A.J.; Wu, B.; Raie, M.; Tumbale, S.K.; Zhang, N.; Davis, R.R.; Tepper, C.G.; Aviran, S.; et al. Multiomic Analysis for Optimization of Combined Focal and Immunotherapy Protocols in Murine Pancreatic Cancer. Theranostics 2022, 12, 7884–7902. [Google Scholar] [CrossRef]
- Hendricks-Wenger, A.; Sereno, J.; Gannon, J.; Zeher, A.; Brock, R.M.; Beitel-White, N.; Simon, A.; Davalos, R.V.; Coutermarsh-Ott, S.; Vlaisavljevich, E.; et al. Histotripsy Ablation Alters the Tumor Microenvironment and Promotes Immune System Activation in a Subcutaneous Model of Pancreatic Cancer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2987–3000. [Google Scholar] [CrossRef]
- Tucci, S.T.; Kheirolomoom, A.; Ingham, E.S.; Mahakian, L.M.; Tam, S.M.; Foiret, J.; Hubbard, N.E.; Borowsky, A.D.; Baikoghli, M.; Cheng, R.H.; et al. Tumor-Specific Delivery of Gemcitabine with Activatable Liposomes. J. Control. Release 2019, 309, 277–288. [Google Scholar] [CrossRef]
- Su, J.-J.; Xu, K.; Wang, P.-F.; Zhang, H.-Y.; Chen, Y.-L. Histological Analysis of Human Pancreatic Carcinoma Following Irreversible Electroporation in a Nude Mouse Model. World J. Gastrointest. Oncol. 2018, 10, 476–486. [Google Scholar] [CrossRef]
- Farr, N.; Wang, Y.-N.; D’Andrea, S.; Starr, F.; Partanen, A.; Gravelle, K.M.; McCune, J.S.; Risler, L.J.; Whang, S.G.; Chang, A.; et al. Hyperthermia-Enhanced Targeted Drug Delivery Using Magnetic Resonance-Guided Focussed Ultrasound: A Pre-Clinical Study in a Genetic Model of Pancreatic Cancer. Int. J. Hyperth. 2018, 34, 284–291. [Google Scholar] [CrossRef]
- Khokhlova, T.D.; Wang, Y.-N.; Son, H.; Totten, S.; Whang, S.; Ha Hwang, J. Chronic Effects of Pulsed High Intensity Focused Ultrasound Aided Delivery of Gemcitabine in a Mouse Model of Pancreatic Cancer. Ultrasonics 2023, 132, 106993. [Google Scholar] [CrossRef]
- Camus, M.; Vienne, A.; Mestas, J.-L.; Pratico, C.; Nicco, C.; Chereau, C.; Marie, J.-M.; Moussatov, A.; Renault, G.; Batteux, F.; et al. Cavitation-Induced Release of Liposomal Chemotherapy in Orthotopic Murine Pancreatic Cancer Models: A Feasibility Study. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 669–681. [Google Scholar] [CrossRef]
- Mao, Y.; Fang, L.; Liu, L.; Hu, H.; Li, F.; Zhu, H. Effect of high-intensity focused ultrasound combined with gemcitabine on subcutaneous pancreatic cancer in nude mice. Nan Fang Yi Ke Da Xue Xue Bao 2013, 33, 1713–1717. [Google Scholar]
- Haram, M.; Snipstad, S.; Berg, S.; Mjønes, P.; Rønne, E.; Lage, J.; Mühlenpfordt, M.; Davies, C.D.L. Ultrasound and Microbubbles Increase the Uptake of Platinum in Murine Orthotopic Pancreatic Tumors. Ultrasound Med. Biol. 2023, 49, 1275–1287. [Google Scholar] [CrossRef]
- Kang, H.-J.; Lee, J.Y.; Park, E.-J.; Lee, H.J.; Ha, S.-W.; Ahn, Y.D.; Cheon, Y.; Han, J.K. Synergistic Effects of Pulsed Focused Ultrasound and a Doxorubicin-Loaded Microparticle-Microbubble Complex in a Pancreatic Cancer Xenograft Mouse Model. Ultrasound Med. Biol. 2020, 46, 3046–3058. [Google Scholar] [CrossRef]
- Park, E.-J.; Ahn, Y.D.; Lee, J.Y. In Vivo Study of Enhanced Chemotherapy Combined with Ultrasound Image-Guided Focused Ultrasound (USgFUS) Treatment for Pancreatic Cancer in a Xenograft Mouse Model. Eur. Radiol. 2018, 28, 3710–3718. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Y.-N.; Khokhlova, T.D.; D’Andrea, S.; Starr, F.; Chen, H.; McCune, J.S.; Risler, L.J.; Mashadi-Hossein, A.; Hingorani, S.R.; et al. Pulsed High-Intensity Focused Ultrasound Enhances Delivery of Doxorubicin in a Preclinical Model of Pancreatic Cancer. Cancer Res. 2015, 75, 3738–3746. [Google Scholar] [CrossRef]
- Mouratidis, P.X.E.; Costa, M.; Rivens, I.; Repasky, E.E.; Ter Haar, G. Pulsed Focused Ultrasound Can Improve the Anti-Cancer Effects of Immune Checkpoint Inhibitors in Murine Pancreatic Cancer. J. R. Soc. Interface 2021, 18, 20210266. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Zhu, Z.; Wang, H.; Zhang, C.; Xu, L.; Zhuang, L.; Yan, X.; Wang, D.; Wang, P.; Meng, Z. High-Intensity Focused Ultrasound Enhances the Effect of Bufalin by Inducing Apoptosis in Pancreatic Cancer Cells. Onco. Targets Ther. 2019, 12, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Chen, J.; Cao, J.; Diao, F.; Huang, P. Low-intensity Low-frequency Ultrasound Enhances the Chemosensitivity of Gemcitabine-resistant ASPC-1 Cells via PI3K/AKT/NF-κB Pathway-mediated ABC Transporters. Oncol. Rep. 2020, 44, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Hadi, M.M.; Farrell, S.; Nesbitt, H.; Thomas, K.; Kubajewska, I.; Ng, A.; Masood, H.; Patel, S.; Sciscione, F.; Davidson, B.; et al. Nanotechnology-Augmented Sonodynamic Therapy and Associated Immune-Mediated Effects for the Treatment of Pancreatic Ductal Adenocarcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 5007–5023. [Google Scholar] [CrossRef] [PubMed]
- Browning, R.J.; Able, S.; Ruan, J.-L.; Bau, L.; Allen, P.D.; Kersemans, V.; Wallington, S.; Kinchesh, P.; Smart, S.; Kartsonaki, C.; et al. Combining Sonodynamic Therapy with Chemoradiation for the Treatment of Pancreatic Cancer. J. Control. Release 2021, 337, 371–377. [Google Scholar] [CrossRef]
- Beguin, E.; Gray, M.D.; Logan, K.A.; Nesbitt, H.; Sheng, Y.; Kamila, S.; Barnsley, L.C.; Bau, L.; McHale, A.P.; Callan, J.F.; et al. Magnetic Microbubble Mediated Chemo-Sonodynamic Therapy Using a Combined Magnetic-Acoustic Device. J. Control. Release 2020, 317, 23–33. [Google Scholar] [CrossRef]
- Nesbitt, H.; Logan, K.; Thomas, K.; Callan, B.; Gao, J.; McKaig, T.; Taylor, M.; Love, M.; Stride, E.; McHale, A.P.; et al. Sonodynamic Therapy Complements PD-L1 Immune Checkpoint Inhibition in a Murine Model of Pancreatic Cancer. Cancer Lett. 2021, 517, 88–95. [Google Scholar] [CrossRef]
- Pigula, M.; Huang, H.-C.; Mallidi, S.; Anbil, S.; Liu, J.; Mai, Z.; Hasan, T. Size-Dependent Tumor Response to Photodynamic Therapy and Irinotecan Monotherapies Revealed by Longitudinal Ultrasound Monitoring in an Orthotopic Pancreatic Cancer Model. Photochem. Photobiol. 2019, 95, 378–386. [Google Scholar] [CrossRef]
- Payen, T.; Oberstein, P.E.; Saharkhiz, N.; Palermo, C.F.; Sastra, S.A.; Han, Y.; Nabavizadeh, A.; Sagalovskiy, I.R.; Orelli, B.; Rosario, V.; et al. Harmonic Motion Imaging of Pancreatic Tumor Stiffness Indicates Disease State and Treatment Response. Clin. Cancer Res. 2020, 26, 1297–1308. [Google Scholar] [CrossRef]
- Nabavizadeh, A.; Payen, T.; Iuga, A.C.; Sagalovskiy, I.R.; Desrouilleres, D.; Saharkhiz, N.; Palermo, C.F.; Sastra, S.A.; Oberstein, P.E.; Rosario, V.; et al. Noninvasive Young’s Modulus Visualization of Fibrosis Progression and Delineation of Pancreatic Ductal Adenocarcinoma (PDAC) Tumors Using Harmonic Motion Elastography (HME) in Vivo. Theranostics 2020, 10, 4614–4626. [Google Scholar] [CrossRef]
- Payen, T.; Palermo, C.F.; Sastra, S.A.; Chen, H.; Han, Y.; Olive, K.P.; Konofagou, E.E. Elasticity Mapping of Murine Abdominal Organs in Vivo Using Harmonic Motion Imaging (HMI). Phys. Med. Biol. 2016, 61, 5741–5754. [Google Scholar] [CrossRef]
- Ahmed, R.; Ye, J.; Gerber, S.A.; Linehan, D.C.; Doyley, M.M. Preclinical Imaging Using Single Track Location Shear Wave Elastography: Monitoring the Progression of Murine Pancreatic Tumor Liver Metastasis In Vivo. IEEE Trans. Med. Imaging 2020, 39, 2426–2439. [Google Scholar] [CrossRef]
- Alvarez, R.; Musteanu, M.; Garcia-Garcia, E.; Lopez-Casas, P.P.; Megias, D.; Guerra, C.; Muñoz, M.; Quijano, Y.; Cubillo, A.; Rodriguez-Pascual, J.; et al. Stromal Disrupting Effects of Nab-Paclitaxel in Pancreatic Cancer. Br. J. Cancer 2013, 109, 926–933. [Google Scholar] [CrossRef]
- Baek, J.; Ahmed, R.; Ye, J.; Gerber, S.A.; Parker, K.J.; Doyley, M.M. H-Scan, Shear Wave and Bioluminescent Assessment of the Progression of Pancreatic Cancer Metastases in the Liver. Ultrasound Med. Biol. 2020, 46, 3369–3378. [Google Scholar] [CrossRef]
- Curiel-Garcia, A.; Decker-Farrell, A.R.; Sastra, S.A.; Olive, K.P. Generation of Orthotopic Patient-Derived Xenograft Models for Pancreatic Cancer Using Tumor Slices. STAR Protoc. 2022, 3, 101899. [Google Scholar] [CrossRef]
- Lottini, T.; Buonamici, M.; Duranti, C.; Arcangeli, A. Generation of an Orthotopic Xenograft of Pancreatic Cancer Cells by Ultrasound-Guided Injection. J. Vis. Exp. 2021, 177, e63123. [Google Scholar] [CrossRef]
- Hay, C.A.; Sor, R.; Flowers, A.J.; Clendenin, C.; Byrne, K.T. Ultrasound-Guided Orthotopic Implantation of Murine Pancreatic Ductal Adenocarcinoma. J. Vis. Exp. 2019, 153, e60497. [Google Scholar] [CrossRef]
- Huynh, A.S.; Abrahams, D.F.; Torres, M.S.; Baldwin, M.K.; Gillies, R.J.; Morse, D.L. Development of an Orthotopic Human Pancreatic Cancer Xenograft Model Using Ultrasound Guided Injection of Cells. PLoS ONE 2011, 6, e20330. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.; Bekeredjian, R.; Schmidt, J.; Büchler, M.W.; Märten, A. Effects of the High-Affinity Peptide Reversin 121 on Multidrug Resistance Proteins in Experimental Pancreatic Cancer. Tumour. Biol. 2008, 29, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Schmidt, T.; Ziske, C.; Tiemann, K.; Lee, K.-M.; Uhlinsky, V.; Behrens, P.; Sauerbruch, T.; Schmidt-Wolf, I.G.H.; Mühlradt, P.F.; et al. Tumour Suppression Induced by the Macrophage Activating Lipopeptide MALP-2 in an Ultrasound Guided Pancreatic Carcinoma Mouse Model. Gut 2004, 53, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Ziske, C.; Märten, A.; Endres, S.; Tiemann, K.; Schmitz, V.; Gorschlüter, M.; Schneider, C.; Sauerbruch, T.; Schmidt-Wolf, I.G.H. Intratumoral Immunization with Tumor RNA-Pulsed Dendritic Cells Confers Antitumor Immunity in a C57BL/6 Pancreatic Murine Tumor Model. Cancer Res. 2003, 63, 8962–8967. [Google Scholar]
- Zhang, W.-Y.; Jin, Z.-D.; Liu, F.; Yuan, H.-H.; Jiang, B. Antitumor Activity of Intratumoral Ethanol Injection in an Orthotopic Pancreatic Cancer Cell Mouse Xenograft Model. Gastroenterol. Res. Pract. 2018, 2018, 7149565. [Google Scholar] [CrossRef]
- Ota, S.; Geschwind, J.-F.H.; Buijs, M.; Wijlemans, J.W.; Kwak, B.K.; Ganapathy-Kanniappan, S. Ultrasound-Guided Direct Delivery of 3-Bromopyruvate Blocks Tumor Progression in an Orthotopic Mouse Model of Human Pancreatic Cancer. Target Oncol. 2013, 8, 145–151. [Google Scholar] [CrossRef]
- Sofuni, A.; Tsuchiya, T.; Itoi, T. Ultrasound Diagnosis of Pancreatic Solid Tumors. J. Med. Ultrason. 2020, 47, 359–376. [Google Scholar] [CrossRef]
- Hollerbach, S.; Juergensen, C.; Hocke, M.; Freund, U.; Wellmann, A.; Burmester, E. EUS-FNA: How to improve biopsy results? An evidence based review. Z Gastroenterol. 2014, 52, 1081–1092. [Google Scholar] [CrossRef]
- Chung, Y.E.; Kim, K.W. Contrast-Enhanced Ultrasonography: Advance and Current Status in Abdominal Imaging. Ultrasonography 2015, 34, 3–18. [Google Scholar] [CrossRef]
- Greis, C. Technology Overview: SonoVue (Bracco, Milan). Eur. Radiol. 2004, 14 (Suppl. S8), P11–P15. [Google Scholar]
- Sontum, P.C. Physicochemical Characteristics of Sonazoid, a New Contrast Agent for Ultrasound Imaging. Ultrasound Med. Biol. 2008, 34, 824–833. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Canestrini, S.; De Robertis, R.; Crosara, S.; Demozzi, E.; Ciaravino, V.; Pozzi Mucelli, R. CEUS of the Pancreas: Still Research or the Standard of Care. Eur. J. Radiol. 2015, 84, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.M.; Abou-Elkacem, L.; Lee, T.; Dahl, J.; Lutz, A.M. Ultrasound and Microbubble Mediated Therapeutic Delivery: Underlying Mechanisms and Future Outlook. J. Control. Release 2020, 326, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T.W. Understanding Ultrasound Induced Sonoporation: Definitions and Underlying Mechanisms. Adv. Drug Deliv. Rev. 2014, 72, 49–64. [Google Scholar] [CrossRef]
- Sequeiros, R.B.; Joronen, K.; Komar, G.; Koskinen, S.K. High Intensity Focused Ultrasound (HIFU) in Tumor Therapy. Duodecim 2017, 133, 143–149. [Google Scholar] [PubMed]
- Jenne, J.W.; Preusser, T.; Günther, M. High-Intensity Focused Ultrasound: Principles, Therapy Guidance, Simulations and Applications. Z. Med. Phys. 2012, 22, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Hu, K.; Zhang, Y.; Gu, L.; Zhu, J.; Zhu, L.; Zhu, Y.; Zhao, H. High-Intensity Focused Ultrasound (HIFU) Treatment for Uterine Fibroids: A Meta-Analysis. Arch. Gynecol. Obstet. 2017, 296, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Napoli, A.; Alfieri, G.; Scipione, R.; Leonardi, A.; Fierro, D.; Panebianco, V.; De Nunzio, C.; Leonardo, C.; Catalano, C. High-Intensity Focused Ultrasound for Prostate Cancer. Expert Rev. Med. Devices 2020, 17, 427–433. [Google Scholar] [CrossRef]
- Bruno, F.; Catalucci, A.; Arrigoni, F.; Sucapane, P.; Cerone, D.; Cerrone, P.; Ricci, A.; Marini, C.; Masciocchi, C. An Experience-Based Review of HIFU in Functional Interventional Neuroradiology: Transcranial MRgFUS Thalamotomy for Treatment of Tremor. Radiol. Med. 2020, 125, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Fishman, P.S.; Frenkel, V. Treatment of Movement Disorders With Focused Ultrasound. J. Cent. Nerv. Syst. Dis. 2017, 9, 1179573517705670. [Google Scholar] [CrossRef] [PubMed]
- Lescrauwaet, E.; Vonck, K.; Sprengers, M.; Raedt, R.; Klooster, D.; Carrette, E.; Boon, P. Recent Advances in the Use of Focused Ultrasound as a Treatment for Epilepsy. Front. Neurosci. 2022, 16, 886584. [Google Scholar] [CrossRef]
- Scipione, R.; Anzidei, M.; Bazzocchi, A.; Gagliardo, C.; Catalano, C.; Napoli, A. HIFU for Bone Metastases and Other Musculoskeletal Applications. Semin. Interv. Radiol. 2018, 35, 261–267. [Google Scholar] [CrossRef]
- Wijlemans, J.W.; Bartels, L.W.; Deckers, R.; Ries, M.; Mali, W.P.T.M.; Moonen, C.T.W.; van den Bosch, M.a.a.J. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) Ablation of Liver Tumours. Cancer Imaging 2012, 12, 387–394. [Google Scholar] [CrossRef]
- de Senneville, B.D.; Moonen, C.; Ries, M. MRI-Guided HIFU Methods for the Ablation of Liver and Renal Cancers. Adv. Exp. Med. Biol. 2016, 880, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, D.; Manan, H.A.; Yahya, N.; Hamid, H.A. The Applications of High-Intensity Focused Ultrasound (HIFU) Ablative Therapy in the Treatment of Primary Breast Cancer: A Systematic Review. Diagnostics 2023, 13, 2595. [Google Scholar] [CrossRef] [PubMed]
- Marinova, M.; Wilhelm-Buchstab, T.; Strunk, H. Advanced Pancreatic Cancer: High-Intensity Focused Ultrasound (HIFU) and Other Local Ablative Therapies. Rofo 2019, 191, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Khokhlova, T.D.; Hwang, J.H. HIFU for Palliative Treatment of Pancreatic Cancer. Adv. Exp. Med. Biol. 2016, 880, 83–95. [Google Scholar] [CrossRef]
- Araújo Martins, Y.; Zeferino Pavan, T.; Fonseca Vianna Lopez, R. Sonodynamic Therapy: Ultrasound Parameters and in Vitro Experimental Configurations. Int. J. Pharm. 2021, 610, 121243. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Wang, S.; Sun, X.; Wang, L.; Wang, W.; Shen, H.; Liu, H. Sonodynamic Therapy (SDT): A Novel Strategy for Cancer Nanotheranostics. Sci. China Life Sci. 2018, 61, 415–426. [Google Scholar] [CrossRef]
- Escoffre, J.-M.; Zeghimi, A.; Novell, A.; Bouakaz, A. In-Vivo Gene Delivery by Sonoporation: Recent Progress and Prospects. Curr. Gene Ther. 2013, 13, 2–14. [Google Scholar] [CrossRef]
- Han, Y.; Payen, T.; Wang, S.; Konofagou, E. Focused Ultrasound Steering for Harmonic Motion Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 292–294. [Google Scholar] [CrossRef]
- Konofagou, E.E.; Hynynen, K. Localized Harmonic Motion Imaging: Theory, Simulations and Experiments. Ultrasound Med. Biol. 2003, 29, 1405–1413. [Google Scholar] [CrossRef]
- Daum, D.R.; Smith, N.B.; King, R.; Hynynen, K. In Vivo Demonstration of Noninvasive Thermal Surgery of the Liver and Kidney Using an Ultrasonic Phased Array. Ultrasound Med. Biol. 1999, 25, 1087–1098. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.J.; Hwangbo, L.; Suh, H.B.; Lee, J.W.; Lee, N.K.; Choo, K.S.; Kim, S. Tumor Stiffness Measured by Shear-Wave Elastography: Association with Disease-Free Survival in Women with Early-Stage Breast Cancer. Br. J. Radiol. 2021, 94, 20210584. [Google Scholar] [CrossRef]
- Gennisson, J.-L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound Elastography: Principles and Techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, A.; Grasso, D.; Fontana, F.; Piacentino, F.; Minici, R.; Laganà, D.; Ierardi, A.M.; Carrafiello, G.; D’Angelo, F.; Carcano, G.; et al. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J. Clin. Med. 2023, 12, 7677. https://doi.org/10.3390/jcm12247677
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, et al. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Journal of Clinical Medicine. 2023; 12(24):7677. https://doi.org/10.3390/jcm12247677
Chicago/Turabian StyleCoppola, Andrea, Dario Grasso, Federico Fontana, Filippo Piacentino, Roberto Minici, Domenico Laganà, Anna Maria Ierardi, Gianpaolo Carrafiello, Fabio D’Angelo, Giulio Carcano, and et al. 2023. "Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review" Journal of Clinical Medicine 12, no. 24: 7677. https://doi.org/10.3390/jcm12247677
APA StyleCoppola, A., Grasso, D., Fontana, F., Piacentino, F., Minici, R., Laganà, D., Ierardi, A. M., Carrafiello, G., D’Angelo, F., Carcano, G., & Venturini, M. (2023). Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Journal of Clinical Medicine, 12(24), 7677. https://doi.org/10.3390/jcm12247677