Comparison of Contributors to Mortality Differences in SLE Patients with Different Initial Disease Activity: A Larger Multicenter Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patients
2.2. Data Collection and Definition
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tektonidou, M.G.; Lewandowski, L.B.; Hu, J.; Dasgupta, A.; Ward, M.M. Survival in adults and children with systemic lupus erythematosus: A systematic review and Bayesian meta-analysis of studies from 1950 to 2016. Ann. Rheum. Dis. 2017, 76, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Farinha, F.; Isenberg, D.A.; Rahman, A. Survival analysis of mortality and development of lupus nephritis in patients with systemic lupus erythematosus up to 40-years of follow-up. Rheumatology 2022, 62, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Marozoff, S.; Li, L.; Sayre, E.C.; Zubieta, J.A.A. All-cause and cause-specific mortality in systemic lupus erythematosus: A population-based study. Rheumatology 2021, 61, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Piraquive, V.; Nieto-Aristizábal, I.; Cañas, C.A.; Tobón, G.J. Mortality in systemic lupus erythematosus: Causes, predictors and interventions. Expert Rev. Clin. Immunol. 2018, 14, 1043–1053. [Google Scholar] [CrossRef]
- Magder, L.S.; Petri, M. Incidence of and risk factors for adverse cardiovascular events among patients with systemic lupus erythematosus. Am. J. Epidemiol. 2012, 176, 708–719. [Google Scholar] [CrossRef] [Green Version]
- Polachek, A.; Gladman, D.D.; Su, J.; Urowitz, M.B. Defining Low Disease Activity in Systemic Lupus Erythematosus. Arthritis Care Res. 2017, 69, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- Zen, M.; Iaccarino, L.; Gatto, M.; Saccon, F.; Larosa, M.; Ghirardello, A.; Punzi, L.; Doria, A. Lupus low disease activity state is associated with a decrease in damage progression in Caucasian patients with SLE, but overlaps with remission. Ann. Rheum. Dis. 2018, 77, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Gil, M.; Wojdyla, D.; Pons-Estel, G.; Catoggio, L.; Drenkard, C.; Sarano, J.; Berbotto, G.; Borba, E.; Sato, E.; Tavares Brenol, J.; et al. Remission and Low Disease Activity Status (LDAS) protect lupus patients from damage occurrence: Data from a multiethnic, multinational Latin American Lupus Cohort (GLADEL). Ann. Rheum. Dis. 2017, 76, 2071–2074. [Google Scholar] [CrossRef]
- Li, D.; Yoshida, K.; Feldman, C.H.; Speyer, C.; Barbhaiya, M.; Guan, H.; Solomon, D.H.; Everett, B.M.; Costenbader, K.H. Initial disease severity, cardiovascular events and all-cause mortality among patients with systemic lupus erythematosus. Rheumatology 2020, 59, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Van’t Veer, P.; Zhang, Z.F.; Wang, X.S.; Gu, X.P.; Han, R.Q.; Yang, J.; Zhang, X.F.; Liu, A.M.; Kok, F.J.; et al. A large proportion of esophageal cancer cases and the incidence difference between regions are attributable to lifestyle risk factors in China. Cancer Lett. 2011, 308, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Okosun, I.S.; Boltri, J.M.; Anochie, L.K.; Chandra, K.M. Racial/ethnic differences in prehypertension in American adults: Population and relative attributable risks of abdominal obesity. J. Hum. Hypertens 2004, 18, 849–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horner, M.J.; Shiels, M.S.; Pfeiffer, R.M.; Engels, E.A. Deaths Attributable to Cancer in the US Human Immunodeficiency Virus Population During 2001–2015. Clin. Infect. Dis. 2021, 72, e224–e231. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wang, F.; Pan, W.; Liu, L.; Wu, M.; Hu, H.; Ding, X.; Wei, H.; Zou, Y.; Qian, X.; et al. Association of antimalarial drugs with decreased overall and cause specific mortality in systemic lupus erythematosus. Rheumatology 2021, 60, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Jin, Z.; Feng, X.; Pan, W.; Liu, L.; Wu, M.; Hu, H.; Ding, X.; Wei, H.; Zou, Y.; et al. Creatinine clearance rate predicts prognosis of patients with systemic lupus erythematosus: A large retrospective cohort study. Clin. Rheumatol. 2021, 40, 2221–2231. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Gladman, D.D.; Ibañez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Gladman, D.; Ginzler, E.; Goldsmith, C.; Fortin, P.; Liang, M.; Urowitz, M.; Bacon, P.; Bombardieri, S.; Hanly, J.; Hay, E.; et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996, 39, 363–369. [Google Scholar] [CrossRef]
- Bruzzi, P.; Green, S.B.; Byar, D.P.; Brinton, L.A.; Schairer, C. Estimating the population attributable risk for multiple risk factors using case-control data. Am. J. Epidemiol. 1985, 122, 904–914. [Google Scholar] [CrossRef]
- Natarajan, S.; Lipsitz, S.R.; Rimm, E. A simple method of determining confidence intervals for population attributable risk from complex surveys. Stat. Med. 2007, 26, 3229–3239. [Google Scholar] [CrossRef]
- Wacholder, S.; Benichou, J.; Heineman, E.F.; Hartge, P.; Hoover, R.N. Attributable risk: Advantages of a broad definition of exposure. Am. J. Epidemiol. 1994, 140, 303–309. [Google Scholar] [CrossRef]
- Lele, C.; Whittemore, A.S. Different disease rates in two populations: How much is due to differences in risk factors? Stat. Med. 1997, 16, 2543–2554. [Google Scholar] [CrossRef]
- Lopez, R.; Davidson, J.E.; Beeby, M.D.; Egger, P.J.; Isenberg, D.A. Lupus disease activity and the risk of subsequent organ damage and mortality in a large lupus cohort. Rheumatology 2012, 51, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Telles, R.W.; Lanna, C.C.; Souza, F.L.; Rodrigues, L.A.; Reis, R.C.; Ribeiro, A.L. Causes and predictors of death in Brazilian lupus patients. Rheumatol. Int. 2013, 33, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.D.; Eudy, A.M.; Egger, P.J.; Fu, Q.; Petri, M.A. Impact of systemic lupus erythematosus disease activity, hydroxychloroquine and NSAID on the risk of subsequent organ system damage and death: Analysis in a single US medical centre. Lupus Sci. Med. 2021, 8, e000446. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Puerta, J.A.; Barbhaiya, M.; Guan, H.; Feldman, C.H.; Alarcón, G.S.; Costenbader, K.H. Racial/Ethnic variation in all-cause mortality among United States medicaid recipients with systemic lupus erythematosus: A Hispanic and asian paradox. Arthritis Rheumatol. 2015, 67, 752–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, K.; Owlia, M.B.; El-Hemaidi, I.; Akhtari, M. Management of immune cytopenias in patients with systemic lupus erythematosus—Old and new. Autoimmun. Rev. 2013, 12, 784–791. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, L.; Yao, L.; Gan, C.; Han, X.; Liu, R.; Su, N. Predictive value of the neutrophil-to-lymphocyte ratio and hemoglobin insystemic lupus erythematosus. Exp. Ther. Med. 2018, 16, 1547–1553. [Google Scholar] [CrossRef] [Green Version]
- Tseng, J.R.; Hung, J.J.; Huang, J.L. The clinical differences between early-and late-onset pulmonary hemorrhage in systemic lupus erythematosus patients. Acta Paediatr. Taiwan 2006, 47, 232–237. [Google Scholar]
- Ahn, S.S.; Yoo, J.; Jung, S.M.; Song, J.J.; Park, Y.B.; Lee, S.W. Comparison of clinical features and outcomes between patients with early and delayed lupus nephritis. BMC Nephrol. 2020, 21, 258. [Google Scholar] [CrossRef]
- Ganz, T. Anemia of Inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef]
- Rua-Figueroa Fernández de Larrinoa, Í.; Lozano, M.J.C.; Fernández-Cid, C.M.; Cobo Ibáñez, T.; Salman Monte, T.C.; Freire González, M.; Hidalgo Bermejo, F.J.; Román Gutiérrez, C.S.; Cortés-Hernández, J. Preventing organ damage in systemic lupus erythematosus: The impact of early biological treatment. Expert Opin. Biol. Ther. 2022, 22, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Tselios, K.; Urowitz, M.B. Cardiovascular and Pulmonary Manifestations of Systemic Lupus Erythematosus. Curr. Rheumatol. Rev. 2017, 13, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Mancini, J.; Jourde-Chiche, N.; Sarlon, G.; Amoura, Z.; Harlé, J.R.; Jougla, E.; Chiche, L. Mortality associated with systemic lupus erythematosus in France assessed by multiple-cause-of-death analysis. Arthritis Rheumatol. 2014, 66, 2503–2511. [Google Scholar] [CrossRef]
- Tanaka, Y.; O’Neill, S.; Li, M.; Tsai, I.C.; Yang, Y.W. Systemic Lupus Erythematosus: Targeted Literature Review of the Epidemiology, Current Treatment, and Disease Burden in the Asia Pacific Region. Arthritis Care Res. 2022, 74, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Van Vollenhoven, R.F.; Mosca, M.; Bertsias, G.; Isenberg, D.; Kuhn, A.; Lerstrøm, K.; Aringer, M.; Bootsma, H.; Boumpas, D.; Bruce, I.N.; et al. Treat-to-target in systemic lupus erythematosus: Recommendations from an international task force. Ann. Rheum. Dis. 2014, 73, 958–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piranavan, P.; Perl, A. Management of cardiovascular disease in patients with systemic lupus erythematosus. Expert Opin. Pharmacother. 2020, 21, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Hussenbocus, Y.; Jin, Z.; Pan, W.; Liu, L.; Wu, M.; Hu, H.; Ding, X.; Wei, H.; Zou, Y.; Qian, X.; et al. Low dosage use of cyclophosphamide improves the survival of patients with systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 2043–2052. [Google Scholar] [CrossRef]
SLEDAI Score on Admission | |||
---|---|---|---|
Variables | Low–Moderate Activity (≤12, n = 1073) | High Activity (>12, n = 1373) | p |
Death | 83(7.7) | 176(12.8) | <0.001 |
Mortality rate (per 1000 person years, 95% CI) | 7.6 (6.0, 9.4) | 14.0 (1.2, 1.6) | <0.001 |
Age (years), median (IQR) | 32.4 (24.2, 41.1) | 31.5 (23.3, 40.0) | 0.033 |
Diagnosis time (months), median (IQR) | 91.0 (30.0, 377.0) | 91.0 (38.0, 366.0) | 0.275 |
Survival time (years), median (IQR) | 9.0 (6.0, 13.5) | 8.3 (5.3, 12.7) | <0.001 |
SLEDAI score on admission, median (IQR) | 9.0 (6.0, 10.0) | 18.0 (15.0, 23.0) | <0.001 |
SLEDAI score at discharge, median (IQR) | 2.0 (0.0, 6.0) | 6.0 (2.0, 13.0) | <0.001 |
Gender (female) | 997 (92.9) | 1267 (92.3) | 0.551 |
Comorbidities | 129 (12.0) | 122 (8.9) | 0.011 |
Organ involvement | |||
Mucocutaneous | 640 (59.6) | 949 (69.1) | <0.001 |
Neuropsychiatric | 22 (2.1) | 129 (9.4) | <0.001 |
Musculoskeletal | 426 (39.7) | 909 (66.2) | <0.001 |
Cardiopulmonary | 137 (12.8) | 386 (28.1) | <0.001 |
Gastrointestinal | 334 (31.1) | 502 (36.6) | 0.005 |
Ocular | 2 (0.2) | 9 (0.7) | 0.085 |
Renal | 584 (54.4) | 1007 (73.3) | <0.001 |
Hematological | 431 (40.2) | 719 (52.4) | <0.001 |
Laboratory tests on admission | |||
Anemia | 560 (52.2) | 983 (71.6) | <0.001 |
Abnormal white blood cell count | 528 (49.2) | 776 (56.5) | <0.001 |
Hypoalbuminemia | 428 (39.9) | 883 (64.3) | <0.001 |
Decrease in creatinine clearance rate | 336 (31.3) | 494 (36.0) | 0.016 |
Anti-dsDNA positive | 473 (44.1) | 845 (61.5) | <0.001 |
Antinuclear antibody positive | 896 (83.5) | 1232 (89.7) | <0.001 |
Anti-Sm positive | 277 (25.8) | 451 (32.8) | <0.001 |
Abnormal C3 complement | 538 (50.1) | 1028 (74.9) | <0.001 |
Abnormal C4 complement | 387 (36.1) | 773 (56.3) | <0.001 |
Medication use | |||
Glucocorticoids | 960 (89.5) | 1310 (95.4) | <0.001 |
Immunosuppressive | 746 (69.5) | 1013 (73.8) | 0.020 |
Antimalarial drugs | 444 (41.4) | 544 (39.6) | 0.379 |
Cyclophosphamide | 429 (40.0) | 648 (47.2) | <0.001 |
Other immunosuppressives | 293 (27.3) | 339 (24.7) | 0.142 |
Low–Moderate Activity (≤12) | High Activity (> 12) | |||||
---|---|---|---|---|---|---|
Variables | Survival No. (%) | Death No. (%) | Adjusted HR (95% CI) a | Survival No. (%) | Death No. (%) | Adjusted HR (95% CI) a |
SLEDAI score at discharge | ||||||
0–6 | 796 (80.4) | 57 (68.7) | 1.00 | 619 (51.7) | 85 (48.3) | 1.00 |
≥7 | 194 (19.6) | 26 (31.3) | 1.69 (1.02, 2.82) | 578 (48.3) | 91 (51.7) | 0.99 (0.73, 1.35) |
Comorbidities | ||||||
No | 882 (89.1) | 62 (74.7) | 1.00 | 1096 (91.6) | 155 (88.1) | 1.00 |
Yes | 108 (10.9) | 21 (25.3) | 2.18 (1.30, 3.64) | 101 (8.4) | 21 (11.9) | 1.11 (0.69, 1.78) |
Mucocutaneous involvement | ||||||
No | 380 (38.4) | 53 (63.9) | 1.00 | 379 (31.7) | 45 (25.6) | 1.00 |
Yes | 610 (61.6) | 30 (36.1) | 0.44 (0.28, 0.70) | 818 (68.3) | 131 (74.4) | 1.44 (1.02, 2.02) |
Neuropsychiatric involvement | ||||||
No | 973 (98.3) | 78 (94.0) | 1.00 | 1098 (91.7) | 146 (83.0) | 1.00 |
Yes | 17 (1.7) | 5 (6.0) | 3.86 (1.55, 9.63) | 99 (8.3) | 30 (17.0) | 1.80 (1.17, 2.76) |
Cardiopulmonary involvement | ||||||
No | 879 (88.8) | 57 (68.7) | 1.00 | 880 (73.5) | 107 (60.8) | 1.00 |
Yes | 111 (11.2) | 26 (31.3) | 2.90 (1.79, 4.68) | 317 (26.5) | 69 (39.2) | 1.53 (1.12, 2.10) |
Gastrointestinal involvement | ||||||
No | 687 (69.4) | 52 (62.7) | 1.00 | 772 (64.5) | 99 (56.3) | 1.00 |
Yes | 303 (30.6) | 31 (37.3) | 1.64 (1.04, 2.57) | 425 (35.5) | 77 (43.8) | 1.42 (1.05, 1.91) |
Anemia | ||||||
No | 489 (49.4) | 24 (28.9) | 1.00 | 358 (29.9) | 32 (18.2) | 1.00 |
Yes | 501 (50.6) | 59 (71.1) | 2.31 (1.43, 3.75) | 839 (70.1) | 144 (81.8) | 1.85 (1.26, 2.72) |
Hypoalbuminemia | ||||||
No | 610 (61.6) | 35 (42.2) | 1.00 | 443 (37.0) | 47 (26.7) | 1.00 |
Yes | 380 (38.4) | 48 (57.8) | 2.01 (1.29, 3.13) | 754 (63.0) | 129 (73.3) | 1.37 (0.98, 1.92) |
Decrease in creatinine clearance rate | ||||||
No | 695 (70.2) | 42 (50.6) | 1.00 | 796 (66.5) | 83 (47.2) | 1.00 |
Yes | 295 (29.8) | 41 (49.4) | 1.93 (1.24, 3.00) | 401 (33.5) | 93 (52.8) | 1.99 (1.47, 2.69) |
Antimalarial drug nonuse | ||||||
No | 422 (42.6) | 22 (26.5) | 1.00 | 499 (41.7) | 45 (25.6) | 1.00 |
Yes | 568 (57.4) | 61 (73.5) | 2.06 (1.25, 3.39) | 698 (58.3) | 131 (74.4) | 1.93 (1.36, 2.72) |
Variables | Low–Moderate Activity (≤12) | High Activity (>12) | High vs. Low–Moderate | |||
---|---|---|---|---|---|---|
Case (%) | PAF% (95% CI) a | Case (%) | PAF% (95% CI) a | RAR (%) | ARR | |
Anemia | ||||||
Cardiopulmonary involvement | 71.1 | 39.4 (13.5, 61.1) | 82.4 | 37.7 (11.6, 58.0) | 39.8 | 1.52 |
Hypoalbuminemia | 79.5 | 55.1 (30.0, 74.6) | 90.3 | 59.3 (33.1, 76.9) | 31.7 | 1.59 |
Neuropsychiatric involvement | 84.3 | 54.2 (21.8, 76.5) | 92.0 | 51.0 (14.4, 73.6) | 35.5 | 1.55 |
Decrease in creatinine clearance rate | 69.9 | 39.5 (14.6, 60.7) | 85.2 | 45.0 (18.7, 64.6) | 25.5 | 1.64 |
Antimalarial drug nonuse | 79.5 | 45.2 (14.0, 68.6) | 86.9 | 37.7 (5.1, 61.0) | 26.0 | 1.64 |
Cardiopulmonary involvement | ||||||
Hypoalbuminemia | 71.1 | 48.8 (27.2, 67.4) | 77.3 | 36.9 (14.9, 55.1) | 38.6 | 1.53 |
Neuropsychiatric involvement | 75.9 | 43.5 (15.0, 66.0) | 85.8 | 33.4 (0.3, 57.4) | 30.5 | 1.60 |
Decrease in creatinine clearance rate | 60.2 | 36.3 (16.2, 55.1) | 71.0 | 31.2 (11.4, 48.5) | 26.1 | 1.64 |
Antimalarial drug nonuse | 69.9 | 34.7 (7.9, 57.4) | 75.0 | 25.3 (1.1, 45.6) | 21.4 | 1.68 |
Hypoalbuminemia | ||||||
Neuropsychiatric involvement | 71.1 | 45.9 (22.9, 65.5) | 84.7 | 44.5 (18.7, 64.0) | 33.2 | 1.57 |
Decrease in creatinine clearance rate | 36.1 | 25.2 (11.8, 39.4) | 48.3 | 19.7 (6.0, 33.3) | 21.4 | 1.68 |
Antimalarial drug nonuse | 65.1 | 41.0 (20.0, 60.0) | 70.5 | 35.4 (16.9, 51.6) | 21.6 | 1.67 |
Neuropsychiatric involvement | ||||||
Decrease in creatinine clearance rate | 60.2 | 32.0 (10.5, 52.0) | 78.4 | 27.5 (0.8, 48.9) | 21.5 | 1.68 |
Antimalarial drug nonuse | 77.1 | 45.0 (16.6, 67.3) | 82.4 | 22.6 (−10.5, 47.8) | 16.5 | 1.72 |
Decrease in creatinine clearance rate | ||||||
Antimalarial drug nonuse | 51.8 | 26.3 (7.3, 45.1) | 59.7 | 30.9 (16.1, 44.9) | 9.5 | 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Chen, Z.; Pan, W.; Liu, L.; Wu, M.; Hu, H.; Ding, X.; Wei, H.; Zou, Y.; Qian, X.; et al. Comparison of Contributors to Mortality Differences in SLE Patients with Different Initial Disease Activity: A Larger Multicenter Cohort Study. J. Clin. Med. 2023, 12, 1061. https://doi.org/10.3390/jcm12031061
Jin Z, Chen Z, Pan W, Liu L, Wu M, Hu H, Ding X, Wei H, Zou Y, Qian X, et al. Comparison of Contributors to Mortality Differences in SLE Patients with Different Initial Disease Activity: A Larger Multicenter Cohort Study. Journal of Clinical Medicine. 2023; 12(3):1061. https://doi.org/10.3390/jcm12031061
Chicago/Turabian StyleJin, Ziyi, Zheng Chen, Wenyou Pan, Lin Liu, Min Wu, Huaixia Hu, Xiang Ding, Hua Wei, Yaohong Zou, Xian Qian, and et al. 2023. "Comparison of Contributors to Mortality Differences in SLE Patients with Different Initial Disease Activity: A Larger Multicenter Cohort Study" Journal of Clinical Medicine 12, no. 3: 1061. https://doi.org/10.3390/jcm12031061
APA StyleJin, Z., Chen, Z., Pan, W., Liu, L., Wu, M., Hu, H., Ding, X., Wei, H., Zou, Y., Qian, X., Wang, M., Wu, J., Tao, J., Tan, J., Da, Z., Zhang, M., Li, J., Feng, X., & Sun, L. (2023). Comparison of Contributors to Mortality Differences in SLE Patients with Different Initial Disease Activity: A Larger Multicenter Cohort Study. Journal of Clinical Medicine, 12(3), 1061. https://doi.org/10.3390/jcm12031061