The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Polysomnography
2.3. Chemokine and Cytokine Serum Levels
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased Prevalence of Sleep-Disordered Breathing in Adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.; Bradley, T.D. Pathogenesis of obstructive sleep apnea. J. Appl. Physiol. 2005, 99, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of Sleep Apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Khalyfa, A.; Gozal, D.; Bhattacharjee, R.; Wang, Y. Endothelial Dysfunction in Children with Obstructive Sleep Apnea Is Associated with Epigenetic Changes in the eNOS Gene. Chest 2013, 143, 971–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewan, N.A.; Nieto, F.J.; Somers, V.K. Intermittent Hypoxemia and OSA: Implications for comorbidities. Chest 2015, 147, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Orrù, G.; Storari, M.; Scano, A.; Piras, V.; Taibi, R.; Viscuso, D. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6939–6948. [Google Scholar]
- Abbasi, A.; Gupta, S.S.; Sabharwal, N.; Meghrajani, V.; Sharma, S.; Kamholz, S.; Kupfer, Y. A comprehensive review of obstructive sleep apnea. Sleep Sci. 2021, 14, 142–154. [Google Scholar] [PubMed]
- Al-Jahdali, H.; Ahmed, A.E.; Abdullah, A.-H.; Ayaz, K.; Ahmed, A.; Majed, A.; Sami, A.; Amirah, A.; Bassam, D. Comorbidities in Clinical and Polysomnographic Features of Obstructive Sleep Apnea: A Single Tertiary Care Center Experience. J. Epidemiol. Glob. Health 2022, 12, 486–495. [Google Scholar] [CrossRef]
- del Campo, F.; Arroyo, C.A.; Zamarrón, C.; Álvarez, D. Diagnosis of Obstructive Sleep Apnea in Patients with Associated Comorbidity. Adv. Exp. Med. Biol. 2022, 1384, 43–61. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Y.; Xu, J.; Yi, F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): A dose-response meta-analysis. Medicine 2022, 101, e29443. [Google Scholar] [CrossRef]
- Vizzardi, E.; Sciatti, E.; Bonadei, I.; D’Aloia, A.; Curnis, A.; Metra, M. Obstructive sleep apnoea–hypopnoea and arrhythmias: New updates. J. Cardiovasc. Med. 2017, 18, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Javaheri, S.; Javaheri, S. Obstructive Sleep Apnea in Heart Failure: Current Knowledge and Future Directions. J. Clin. Med. 2022, 11, 3458. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wang, Z.; Zhan, X.; Wei, Y. Obstructive sleep apnea increases the risk of cardiovascular damage: A systematic review and meta-analysis of imaging studies. Syst. Rev. 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Rana, D.; Torrilus, C.; Ahmad, W.; A Okam, N.; Fatima, T.; Jahan, N. Obstructive Sleep Apnea and Cardiovascular Morbidities: A Review Article. Cureus 2020, 12, e10424. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Khazaie, H.; Abolfathi, M.; Ghasemi, H.; Shabani, S.; Rasoulpoor, S.; Mohammadi, M.; Khaledi-Paveh, B. The effect of obstructive sleep apnea on the increased risk of cardiovascular disease: A systematic review and meta-analysis. Neurol. Sci. 2021, 43, 219–231. [Google Scholar] [CrossRef]
- Gharsalli, H.; Harizi, C.; Zaouche, R.; Sahnoun, I.; Saffar, F.; Maalej, S.; Douik El Gharbi, L. Prevalence of depression and anxiety in obstructive sleep apnea. Tunis Med. 2022, 100, 525–533. [Google Scholar]
- Rodrigues, G.D.; Fiorelli, E.M.; Furlan, L.; Montano, N.; Tobaldini, E. Obesity and sleep disturbances: The “chicken or the egg” question. Eur. J. Intern. Med. 2021, 92, 11–16. [Google Scholar] [CrossRef]
- Wang, L.; Wei, D.-H.; Zhang, J.; Cao, J. Time Under 90% Oxygen Saturation and Systemic Hypertension in Patients with Obstructive Sleep Apnea Syndrome. Nat. Sci. Sleep 2022, 14, 2123–2132. [Google Scholar] [CrossRef]
- Tondo, P.; Fanfulla, F.; Scioscia, G.; Sabato, R.; Salvemini, M.; De Pace, C.C.; Barbaro, M.P.F.; Lacedonia, D. The Burden of Respiratory Alterations during Sleep on Comorbidities in Obstructive Sleep Apnoea (OSA). Brain Sci. 2022, 12, 1359. [Google Scholar] [CrossRef]
- Baguet, J.-P.; Barone-Rochette, G.; Pépin, J.-L. Hypertension and obstructive sleep apnoea syndrome: Current perspectives. J. Hum. Hypertens. 2009, 23, 431–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Lin, B.M.; Stampfer, M.J.; Tworoger, S.S.; Hu, F.B.; Redline, S. A Population-Based Study of the Bidirectional Association Between Obstructive Sleep Apnea and Type 2 Diabetes in Three Prospective U.S. Cohorts. Diabetes Care 2018, 41, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Paschou, S.A.; Bletsa, E.; Saltiki, K.; Kazakou, P.; Kantreva, K.; Katsaounou, P.; Rovina, N.; Trakada, G.; Bakakos, P.; Vlachopoulos, C.V.; et al. Sleep Apnea and Cardiovascular Risk in Patients with Prediabetes and Type 2 Diabetes. Nutrients 2022, 14, 4989. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; McNicholas, W.T. Bidirectional relationships of comorbidity with obstructive sleep apnoea. Eur. Respir. Rev. 2022, 31, 210256. [Google Scholar] [CrossRef]
- Adler, D.; Dupuis-Lozeron, E.; Merlet-Violet, R.; Pépin, J.-L.; Espa-Cervena, K.; Muller, H.; Janssens, J.-P.; Brochard, L. Comorbidities and Subgroups of Patients Surviving Severe Acute Hypercapnic Respiratory Failure in the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2017, 196, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.J.; Quek, E.; Alqahtani, J.S.; Hurst, J.R.; Mandal, S. Cardiovascular outcomes in patients with COPD-OSA overlap syndrome: A systematic review and meta-analysis. Sleep Med. Rev. 2022, 63, 101627. [Google Scholar] [CrossRef]
- Unnikrishnan, D.C.; Jun, J.; Polotsky, V. Inflammation in sleep apnea: An update. Rev. Endocr. Metab. Disord. 2014, 16, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Razeghian-Jahromi, I.; Akhormeh, A.K.; Razmkhah, M.; Zibaeenezhad, M.J. Immune system and atherosclerosis: Hostile or friendly relationship. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221092188. [Google Scholar] [CrossRef]
- Dinarello, C.A. Historical insights into cytokines. Eur. J. Immunol. 2007, 37 (Suppl. S1), S34–S45. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, A.; Shrestha, P.; Kleinerman, E.S. The Innate Immune System in Cardiovascular Diseases and Its Role in Doxorubicin-Induced Cardiotoxicity. Int. J. Mol. Sci. 2022, 23, 14649. [Google Scholar] [CrossRef]
- Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993, 81, 2844–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Arroyo, I.; Flores-Ramos, M.; Mancilla-Herrera, I.; Cruz, F.M.C.; Hernández-Ruiz, J.; Diaz, G.P.; Labonne, B.F.; Meza-Rodríguez, M.D.P.; Gelman, P.L. Chemokine profile in women with moderate to severe anxiety and depression during pregnancy. BMC Pregnancy Childbirth 2021, 21, 807. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wu, Y. Interleukin-35 ameliorates cardiovascular disease by suppressing inflammatory responses and regulating immune homeostasis. Int. Immunopharmacol. 2022, 110, 108938. [Google Scholar] [CrossRef]
- Duval, V.; Alayrac, P.; Silvestre, J.-S.; Levoye, A. Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Front. Endocrinol. 2022, 13, 906586. [Google Scholar] [CrossRef]
- Quan, S.F.; Gillin, J.C.; Littner, M.R.; Shepard, J.W. American Academy of Sleep Medicine: Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999, 22, 667–689. [Google Scholar]
- Cubillos-Zapata, C.; Almendros, I.; Diaz-Garcia, E.; Toledano, V.; Casitas, R.; Galera, R.; Lopez-Collazo, E.; Farre, R.; Gozal, D.; Garcia-Rio, F. Differential effect of intermittent hypoxia and sleep fragmentation on PD-1/PD-L1 upregulation. Sleep 2020, 43, zsz285. [Google Scholar] [CrossRef]
- Roesner, C.; Goeller, M.; Raaz-Schrauder, D.; Dey, D.; Kilian, T.; Achenbach, S.; Marwan, M.; Bittner, D.O. Differences of inflammatory cytokine profile in patients with vulnerable plaque: A coronary CTA study. Atherosclerosis 2022, 350, 25–32. [Google Scholar] [CrossRef]
- Caidahl, K.; Hartford, M.; Ravn-Fischer, A.; Lorentzen, E.; Yndestad, A.; Karlsson, T.; Aukrust, P.; Ueland, T. Homeostatic Chemokines and Prognosis in Patients With Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2019, 74, 774–782. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Yang, F.; Peng, L.-J.; Li, Y.-B.; Wang, A.-P. CXCL2, a new critical factor and therapeutic target for cardiovascular diseases. Clin. Exp. Hypertens. 2020, 42, 428–437. [Google Scholar] [CrossRef]
- Schutyser, E.; Struyf, S.; Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003, 14, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Maguire, J.; Davenport, A.P. Chemokine receptor CCR5: From AIDS to atherosclerosis. Br. J. Pharmacol. 2011, 162, 1453–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatara, Y.; Ohishi, M.; Yamamoto, K.; Shiota, A.; Hayashi, N.; Iwamoto, Y.; Takeda, M.; Takagi, T.; Katsuya, T.; Ogihara, T.; et al. Macrophage inflammatory protein-1β induced cell adhesion with increased intracellular reactive oxygen species. J. Mol. Cell. Cardiol. 2009, 47, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-T.; Yang, H.-Y.; Chen, C.; Chen, J.-W. CCL4 Inhibition in Atherosclerosis: Effects on Plaque Stability, Endothelial Cell Adhesiveness, and Macrophages Activation. Int. J. Mol. Sci. 2020, 21, 6567. [Google Scholar] [CrossRef]
- Mikolajczyk, T.P.; Szczepaniak, P.; Vidler, F.; Maffia, P.; Graham, G.J.; Guzik, T.J. Role of inflammatory chemokines in hypertension. Pharmacol. Ther. 2021, 223, 107799. [Google Scholar] [CrossRef]
- Leonetti, S.; Tricò, D.; Nesti, L.; Baldi, S.; Kozakova, M.; Goncalves, I.; Nilsson, J.; Shore, A.; Khan, F.; Natali, A. Soluble CD40 receptor is a biomarker of the burden of carotid artery atherosclerosis in subjects at high cardiovascular risk. Atherosclerosis 2022, 343, 1–9. [Google Scholar] [CrossRef]
- Ruchaya, P.; Paton, J.; Murphy, D.; Yao, S. A cardiovascular role for fractalkine and its cognate receptor, CX3CR1, in the rat nucleus of the solitary tract. Neuroscience 2012, 209, 119–127. [Google Scholar] [CrossRef]
- Afsar, G.C.; Oruc, O.; Sarac, S.; Topçuoğlu, B.; Salturk, C.; Tepetam, F.M.; Bulut, I. Fractalkine in obstructive sleep apnea patients. Sleep Breath. 2017, 21, 355–359. [Google Scholar] [CrossRef]
- Moreno, B.; Hueso, L.; Ortega, R.; Benito, E.; Martínez-Hervas, S.; Peiro, M.; Civera, M.; Sanz, M.-J.; Piqueras, L.; Real, J.T. Association of chemokines IP-10/CXCL10 and I-TAC/CXCL11 with insulin resistance and enhance leukocyte endothelial arrest in obesity. Microvasc. Res. 2022, 139, 104254. [Google Scholar] [CrossRef]
- Altara, R.; Manca, M.; Hessel, M.H.; Gu, Y.; van Vark, L.C.; Akkerhuis, K.M.; Staessen, J.A.; Struijker-Boudier, H.A.J.; Booz, G.W.; Blankesteijn, W.M. CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: A Pilot Study. J. Cardiovasc. Transl. Res. 2016, 9, 302–314. [Google Scholar] [CrossRef]
- Yamamura, A.; Nayeem, J.; Sato, M. Roles of growth factors on vascular remodeling in pulmonary hypertension. Folia Pharmacol. Jpn. 2021, 156, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Tsapogas, P.; Mooney, C.J.; Brown, G.; Rolink, A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int. J. Mol. Sci. 2017, 18, 1115. [Google Scholar] [CrossRef] [Green Version]
- Pourtaji, A.; Jahani, V.; Moallem, S.M.H.; Karimani, A.; Mohammadpour, A.H. Application of G-CSF in Congestive Heart Failure Treatment. Curr. Cardiol. Rev. 2019, 15, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mindur, J.; Swirski, F. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2019, 39, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Zeglinski, M.R.; Granville, D.J. Granzymes in cardiovascular injury and disease. Cell. Signal. 2020, 76, 109804. [Google Scholar] [CrossRef] [PubMed]
- Farhangian, M.; Azarafrouz, F.; Chavoshinezhad, S.; Dargahi, L. Intranasal interferon-beta alleviates anxiety and depressive-like behaviors by modulating microglia polarization in an Alzheimer’s disease model. Neurosci. Lett. 2023, 792, 136968. [Google Scholar] [CrossRef]
- Cavalli, G.; Colafrancesco, S.; Emmi, G.; Imazio, M.; Lopalco, G.; Maggio, M.C.; Sota, J.; Dinarello, C.A. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2021, 20, 102763. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Jiang, P.; Kang, R.; Xie, Y. Correlation between hs-CRP, IL-6, IL-10, ET-1, and Chronic Obstructive Pulmonary Disease Combined with Pulmonary Hypertension. J. Healthc. Eng. 2022, 2022, 3247807. [Google Scholar] [CrossRef]
- Fisman, E.Z.; Adler, Y.; Tenenbaum, A. Biomarkers in Cardiovascular Diabetology: Interleukins and Matrixins. Adv. Cardiol. 2008, 45, 44–64. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Z.; Liu, L.; Yang, Z.; Wang, M.; Xu, Y.; Ye, D.; Zhang, J.; Lin, Y.; et al. Roles and Mechanisms of Interleukin-12 Family Members in Cardiovascular Diseases: Opportunities and Challenges. Front. Pharmacol. 2020, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, C.; Guo, J.; Yang, Y.; Huang, M.; Li, L.; Wang, Y.; Qin, Y.; Zhang, M. Serum Cytokines Predict the Severity of Coronary Artery Disease Without Acute Myocardial Infarction. Front. Cardiovasc. Med. 2022, 9, 896810. [Google Scholar] [CrossRef] [PubMed]
- Nik, A.B.; Alvarez-Argote, S.; O’Meara, C.C. Interleukin 4/13 signaling in cardiac regeneration and repair. Am. J. Physiol. Circ. Physiol. 2022, 323, H833–H844. [Google Scholar] [CrossRef]
- Guo, L.; Liu, M.F.; Huang, J.N.; Li, J.M.; Jiang, J.; Wang, J.A. Role of interleukin-15 in cardiovascular diseases. J. Cell. Mol. Med. 2020, 24, 7094–7101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Wu, Y.; Jia, L.; Wang, J.; Xie, B.; Hui, M.; Du, J. 5TNF-α and IL-1β Neutralization Ameliorates Angiotensin II-Induced Cardiac Damage in Male Mice. Endocrinology 2014, 155, 2677–2687. [Google Scholar] [CrossRef]
- Manoochehri, H.; Gheitasi, R.; Pourjafar, M.; Amini, R.; Yazdi, A. Investigating the relationship between the severity of coronary artery disease and inflammatory factors of MHR, PHR, NHR, and IL-25. Med J. Islam. Repub. Iran 2021, 35, 668–673. [Google Scholar] [CrossRef]
- Melton, E.; Qiu, H. Interleukin-1β in Multifactorial Hypertension: Inflammation, Vascular Smooth Muscle Cell and Extracellular Matrix Remodeling, and Non-Coding RNA Regulation. Int. J. Mol. Sci. 2021, 22, 8639. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Santiago, C.; Quevedo-Abeledo, J.C.; Hernández-Hernández, V.; de Vera-González, A.; Gonzalez-Delgado, A.; González-Gay, M.; Ferraz-Amaro, I. Interleukin 1 receptor antagonist relation to cardiovascular disease risk in patients with rheumatoid arthritis. Sci. Rep. 2022, 12, 13698. [Google Scholar] [CrossRef]
- Penna, C.; Femminò, S.; Tapparo, M.; Lopatina, T.; Fladmark, K.E.; Ravera, F.; Comità, S.; Alloatti, G.; Giusti, I.; Dolo, V.; et al. The Inflammatory Cytokine IL-3 Hampers Cardioprotection Mediated by Endothelial Cell-Derived Extracellular Vesicles Possibly via Their Protein Cargo. Cells 2020, 10, 13. [Google Scholar] [CrossRef]
- Nasab, E.M.; Makoei, R.H.; Aghajani, H.; Athari, S.S. IL-33/ST2 pathway as upper-hand of inflammation in allergic asthma contributes as predictive biomarker in heart failure. ESC Heart Fail. 2022, 9, 3785–3790. [Google Scholar] [CrossRef]
- Xu, J.Y.; Xiong, Y.Y.; Tang, R.J.; Jiang, W.Y.; Ning, Y.; Gong, Z.T.; Huang, P.S.; Chen, G.H.; Wu, C.X.; Hu, M.J.; et al. Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovasc. Res. 2022, 118, 2165–2178. [Google Scholar] [CrossRef]
- Shalitin, S.; Deutsch, V.; Tauman, R. Hepcidin, soluble transferrin receptor and IL-6 levels in obese children and adolescents with and without type 2 diabetes mellitus/impaired glucose tolerance and their association with obstructive sleep apnea. J. Endocrinol. Investig. 2018, 41, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Elisia, I.; Lam, V.; Cho, B.; Hay, M.; Li, M.Y.; Kapeluto, J.; Elliott, T.; Harris, D.; Bu, L.; Jia, W.; et al. Exploratory examination of inflammation state, immune response and blood cell composition in a human obese cohort to identify potential markers predicting cancer risk. PLoS ONE 2020, 15, e0228633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, T.; Harmel, E.; Heier, M.; Peters, A.; Linseisen, J.; Meisinger, C. Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction. J. Transl. Med. 2022, 20, 457. [Google Scholar] [CrossRef] [PubMed]
- Szelag, M.; Piaszyk-Borychowska, A.; Plens-Galaska, M.; Wesoly, J.; Bluyssen, H.A.R. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2016, 7, 48788–48812. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.N.; Liu, Y.; Deck, K.S.; Mora, C.; Mu, S. IFN-γContributes to the Immune Mechanisms of Hypertension. Kidney360 2022, 3, 2164–2173. [Google Scholar] [CrossRef]
- Venugopal, H.; Hanna, A.; Humeres, C.; Frangogiannis, N.G. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022, 11, 1386. [Google Scholar] [CrossRef]
- Narasimhalu, K.; Ma, L.; De Silva, D.A.; Wong, M.-C.; Chang, H.-M.; Chen, C. Elevated Platelet-Derived Growth Factor AB/BB is Associated with a Lower Risk of Recurrent Vascular Events in Stroke Patients. Int. J. Stroke 2015, 10, 85–89. [Google Scholar] [CrossRef]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Cell. Mol. Physiol. 2010, 298, L715–L731. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zang, J.; Liu, C.; Yan, Z.; Shi, D. Interleukin-17 Links Inflammatory Cross-Talks Between Comorbid Psoriasis and Atherosclerosis. Front. Immunol. 2022, 13, 835671. [Google Scholar] [CrossRef]
- Davenport, C.; Kenny, H.; Ashley, D.T.; O’Sullivan, E.P.; Smith, D.; O’Gorman, D.J. The effect of exercise on osteoprotegerin and TNF-related apoptosis-inducing ligand in obese patients. Eur. J. Clin. Investig. 2012, 42, 1173–1179. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular en-dothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Sahlman, J.; Seppä, J.; Herder, C.; Peltonen, M.; Peuhkurinen, K.; Gylling, H.; Vanninen, E.; Tukiainen, H.; Punnonen, K.; Partinen, M.; et al. Effect of weight loss on inflammation in patients with mild obstructive sleep apnea. Nutr. Metab. Cardiovasc. Dis. 2010, 22, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Ping, L.; Cao, T.; Sun, L.; Liu, D.; Wang, S.; Huo, G.; Li, B. Immunomodulatory effects of the Bifidobacterium longum BL-10 on lipopolysaccharide-induced intestinal mucosal immune injury. Front. Immunol. 2022, 13, 947755. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, H.; Tang, Y.; Yan, R. Research on the Association Between Obstructive Sleep Apnea Hypopnea Syndrome Complicated With Coronary Heart Disease and Inflammatory Factors, Glycolipid Metabolism, Obesity, and Insulin Resistance. Front. Endocrinol. 2022, 13, 854142. [Google Scholar] [CrossRef]
- Hirsch, D.; Evans, C.A.; Wong, M.; Machaalani, R.; Waters, K.A. Biochemical markers of cardiac dysfunction in children with obstructive sleep apnoea (OSA). Sleep Breath. 2018, 23, 95–101. [Google Scholar] [CrossRef]
- Acevedo, N.; Escamilla-Gil, J.M.; Espinoza, H.; Regino, R.; Ramírez, J.; de Arco, L.F.; Dennis, R.; Torres-Duque, C.A.; Caraballo, L. Chronic Obstructive Pulmonary Disease Patients Have Increased Levels of Plasma Inflammatory Mediators Reported Upregulated in Severe COVID-19. Front. Immunol. 2021, 12, 678661. [Google Scholar] [CrossRef] [PubMed]
- Grievink, H.W.; Smit, V.; Huisman, B.W.; Gal, P.; Yavuz, Y.; Klerks, C.; Binder, C.J.; Bot, I.; Kuiper, J.; Foks, A.C.; et al. Cardiovascular risk factors: The effects of ageing and smoking on the immune system, an observational clinical study. Front. Immunol. 2022, 13, 968815. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, A.; Tada, Y.; Wang, J.-Y.; Ishizaki, S.; Tsuyusaki, J.; Yamauchi, K.; Kasahara, Y.; Iesato, K.; Tanabe, N.; Takiguchi, Y.; et al. CD40 amplifies Fas-mediated apoptosis: A mechanism contributing to emphysema. Am. J. Physiol. Cell. Mol. Physiol. 2012, 303, L141–L151. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, P.; Siest, G.; Herbeth, B.; Lambert, D.; Masson, C.; Hulot, J.-S.; Bertil, S.; Gaussem, P.; Visvikis-Siest, S. Influence of Genetic Variations on Levels of Inflammatory Markers of Healthy Subjects at Baseline and One Week after Clopidogrel Therapy; Results of a Preliminary Study. Int. J. Mol. Sci. 2013, 14, 16402–16413. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Shan, F.; Zhang, Y.; Jiang, L.; Cheng, Z. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2483–2494. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, A.; Samstein, R.M.; Treuting, P.; Liang, Y.; Pils, M.C.; Heinrich, J.-M.; Jack, R.S.; Wunderlich, F.T.; Brüning, J.C.; Müller, W.; et al. Interleukin-10 Signaling in Regulatory T Cells Is Required for Suppression of Th17 Cell-Mediated Inflammation. Immunity 2011, 34, 566–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovsyannikov, E.S.; Avdeev, S.N.; Budnevsky, A.V. Systemic inflammation in patients with chronic obstructive pulmonary disease and obesity. Ter. Arkhiv 2020, 92, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Kalathil, S.G.; Lugade, A.A.; Pradhan, V.; Miller, A.; Parameswaran, G.I.; Sethi, S.; Thanavala, Y. T-Regulatory Cells and Programmed Death 1+ T Cells Contribute to Effector T-Cell Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2014, 190, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Litwin, M.; Michałkiewicz, J.; Niemirska, A.; Gackowska, L.; Kubiszewska, I.; Wierzbicka-Rucinska, A.; Wawer, Z.; Janas, R. Inflammatory activation in children with primary hypertension. Pediatr. Nephrol. 2010, 25, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Ye, Q.; Zhao, Y.; Liu, Y.; Wang, J. MIP-1α Level and Its Correlation with the Risk of Left Atrial Remodeling in Patients with Atrial Fibrillation. Contrast Media Mol. Imaging 2022, 2022, 1756268. [Google Scholar] [CrossRef]
- Crouch, S.H.; Roux, S.B.-L.; Delles, C.; Graham, L.A.; Schutte, A.E. Inflammation and hypertension development: A longitudinal analysis of the African-PREDICT study. Int. J. Cardiol. Hypertens. 2020, 7, 100067. [Google Scholar] [CrossRef]
- Yi, M.; Zhao, W.; Fei, Q.; Tan, Y.; Liu, K.; Chen, Z.; Zhang, Y. Causal analysis between altered levels of interleukins and obstructive sleep apnea. Front. Immunol. 2022, 13, 888644. [Google Scholar] [CrossRef]
- Qian, X.; Yin, T.; Li, T.; Kang, C.; Guo, R.; Sun, B.; Liu, C. High Levels of Inflammation and Insulin Resistance in Obstructive Sleep Apnea Patients with Hypertension. Inflammation 2012, 35, 1507–1511. [Google Scholar] [CrossRef]
- Qiu, M.; Shu, H.; Li, L.; Shen, Y.; Tian, Y.; Ji, Y.; Sun, W.; Lu, Y.; Kong, X. Interleukin 10 Attenuates Angiotensin II-Induced Aortic Remodelling by Inhibiting Oxidative Stress-Induced Activation of the Vascular p38 and NF-κB Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 8244497. [Google Scholar] [CrossRef]
- Ruffolo, G.; Alfano, V.; Romagnolo, A.; Zimmer, T.; Mills, J.D.; Cifelli, P.; Gaeta, A.; Morano, A.; Anink, J.; Mühlebner, A.; et al. GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci. Rep. 2022, 12, 8244497. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Zoumakis, E.; Bixler, E.O.; Lin, H.-M.; Collins, B.; Basta, M.; Pejovic, S.; Chrousos, G.P. Selective effects of CPAP on sleep apnoea-associated manifestations. Eur. J. Clin. Investig. 2008, 38, 585–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargens, T.A.; Guill, S.G.; Kaleth, A.S.; Nickols-Richardson, S.M.; Miller, L.; Zedalis, D.; Gregg, J.M.; Gwazdauskas, F.; Herbert, W.G. Insulin resistance and adipose-derived hormones in young men with untreated obstructive sleep apnea. Sleep Breath. 2012, 17, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Kartsonaki, C.; Lv, J.; Fairhurst-Hunter, Z.; Millwood, I.Y.; Yu, C.; Guo, Y.; Chen, Y.; Bian, Z.; Yang, L.; et al. Associations of Adiposity, Circulating Protein Biomarkers, and Risk of Major Vascular Diseases. JAMA Cardiol. 2021, 6, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Hassan-Zadeh, V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology 2018, 26, 685–698. [Google Scholar] [CrossRef]
- Zoller, V.; Funcke, J.-B.; Roos, J.; Dahlhaus, M.; El Hay, M.A.; Holzmann, K.; Marienfeld, R.; Kietzmann, T.; Debatin, K.-M.; Wabitsch, M.; et al. Trail (TNF-related apoptosis-inducing ligand) induces an inflammatory response in human adipocytes. Sci. Rep. 2017, 7, 5691. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Fujii, T.; Fujii, N. Fas and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Are Closely Linked to the Levels of Glycated and Fetal Hemoglobin in Patients with Diabetes Mellitus. Clin. Lab. 2018, 64, 767–775. [Google Scholar] [CrossRef]
- Chang, W.-W.; Liang, W.; Yao, X.-M.; Zhang, L.; Zhu, L.; Yan, C.; Jin, Y.-L.; Yao, Y.-S. Tumour necrosis factor-related apoptosis-inducing ligand expression in patients with diabetic nephropathy. J. Renin-Angiotensin-Aldosterone Syst. 2018, 19, 1470320318785744. [Google Scholar] [CrossRef] [Green Version]
- Bossi, F.; Bernardi, S.; Zauli, G.; Secchiero, P.; Fabris, B. TRAIL Modulates the Immune System and Protects against the Development of Diabetes. J. Immunol. Res. 2015, 2015, 680749. [Google Scholar] [CrossRef] [Green Version]
- Chyuan, I.-T.; Hsu, P.-N. TRAIL regulates T cell activation and suppresses inflammation in autoimmune diseases. Cell. Mol. Immunol. 2020, 17, 1281–1283. [Google Scholar] [CrossRef]
- Collison, A.M.; Li, J.; de Siqueira, A.P.; Lv, X.; Toop, H.D.; Morris, J.C.; Starkey, M.R.; Hansbro, P.M.; Zhang, J.; Mattes, J. TRAIL signals through the ubiquitin ligase MID1 to promote pulmonary fibrosis. BMC Pulm. Med. 2019, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Arnold, N.D.; Chamberlain, J.; Pickworth, J.A.; Paiva, C.; Dawson, S.; Cross, S.; Long, L.; Zhao, L.; Morrell, N.; et al. Inhibition of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension. J. Exp. Med. 2012, 209, 1919–1935. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, E.; Lu, X.; Zuo, C.; He, Y.; Jia, D.; Zhu, Q.; Yu, Y.; Lv, A. Serum levels of tumor necrosis factor-related apoptosis-inducing ligand correlate with the severity of pulmonary hypertension. Pulm. Pharmacol. Ther. 2015, 33, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhao, Z.; Zhao, Q.; Jin, Q.; Zhang, Y.; Li, X.; Duan, A.; Luo, Q.; Liu, Z. The clinical characteristics of patients with pulmonary hypertension combined with obstructive sleep apnoea. BMC Pulm. Med. 2021, 21, 378. [Google Scholar] [CrossRef] [PubMed]
- Regev, D.; Etzion, S.; Haddad, H.; Gopas, J.; Goldbart, A. Obstructive Sleep Apnea Syndrome In Vitro Model: Controlled Intermittent Hypoxia Stimulation of Human Stem Cells-Derived Cardiomyocytes. Int. J. Mol. Sci. 2022, 23, 10272. [Google Scholar] [CrossRef] [PubMed]
- Farooq, H.; Wessel, R.P.; Brown, K.; Slaven, J.E.; Marini, F.; Malek, S.; Natoli, R.M. Utility of Plasma Protein Biomarkers and Mid-Infrared Spectroscopy for Diagnosing Fracture-Related Infections: A Pilot Study. J. Orthop. Trauma 2022, 36, e380–e387. [Google Scholar] [CrossRef]
- Kalinina, O.; Golovkin, A.; Zaikova, E.; Aquino, A.; Bezrukikh, V.; Melnik, O.; Vasilieva, E.; Karonova, T.; Kudryavtsev, I.; Shlyakhto, E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int. J. Mol. Sci. 2022, 23, 8879. [Google Scholar] [CrossRef]
- Fatyga, P.; Pac, A.; Fedyk-Łukasik, M.; Grodzicki, T.; Skalska, A. The relationship between malnutrition risk and inflammatory biomarkers in outpatient geriatric population. Eur. Geriatr. Med. 2020, 11, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Liu, Y.; Liu, P.; Ji, G.; He, J.; Gan, Y.; Zhu, S.; Chen, B.; Zhang, W. Serum periostin and TNF-α levels in patients with obstructive sleep apnea-hypopnea syndrome. Sleep Breath. 2020, 25, 331–337. [Google Scholar] [CrossRef]
Clinical Data | Obesity | COPD | Hypertension | Diabetes Mellitus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YES N = 42 | NO N = 19 | p | YES N = 7 | NO N = 54 | p | YES N = 43 | NO N = 18 | p | YES N = 16 | NO N = 45 | p | |
Age [years] | 57.68 | 60.50 | 0.280 | 58.57 | 58.61 | 0.303 | 60.74 | 53.50 | 0.037 | 62.13 | 57.36 | 0.087 |
BMI [kg/m2] | NA | NA | NA | 38.99 | 32.98 | 0.100 | 34.27 | 32.25 | 0.317 | 36.23 | 32.77 | 0.050 |
AHI [n/h] | 48.84 | 24.02 | <0.001 | 53.40 | 40.67 | 0.130 | 42.25 | 41.84 | 0.770 | 38.51 | 43.42 | 0.682 |
Mean SaO2 [%] | 91.68 | 94.24 | <0.001 | 88.80 | 93.00 | 0.004 | 92.15 | 93.38 | 0.097 | 91.76 | 92.79 | 0.075 |
Minimal SaO2 [%] | 73.00 | 83.75 | 0.002 | 71.29 | 77.20 | 0.140 | 76.47 | 76.67 | 0.849 | 77.13 | 76.31 | 0.704 |
pO2 [mmHg] | 69.20 | 71.83 | 0.250 | 59.60 | 71.53 | 0.008 | 69.30 | 72.10 | 0.562 | 71.06 | 69.59 | 0.999 |
pCO2 [mmHg] | 42.14 | 40.94 | 0.167 | 49.41 | 40.66 | 0.271 | 42.36 | 40.04 | 0.667 | 41.19 | 42.01 | 0.992 |
Cytokine/Chemokine | Official Symbol | Official Name | Gene Locus |
---|---|---|---|
B7-H1/PD-L1 | CD274 | CD274 molecule | 9p24.1 |
CCL11/eotaxin | CCL11 | C-C motif chemokine ligand 11 | 17q12 |
CCL19/MIP-3-ß | CCL19 | C-C motif chemokine ligand 19 | 9p13.3 |
CCL2/MCP-1 | CCL2 | C-C motif chemokine ligand 2 | 17q12 |
CCL20/MIP-3-α | CCL20 | C-C motif chemokine ligand 20 | 2q36.3 |
CCL3/MIP-1-α | CCL3 | C-C motif chemokine ligand 3 | 17q12 |
CCL4/MIP-1-ß | CCL4 | C-C motif chemokine ligand 4 | 17q12 |
CCL5/RANTES | CCL5 | C-C motif chemokine ligand 5 | 17q12 |
CD 40 Ligand/TNFSF5 | CD40LG | CD40 ligand | Xq26.3 |
CX3CL1/fractalkine | CX3CL1 | C-X3-C motif chemokine ligand 1 | 16q21 |
CXCL1/GRO α | CXCL1 | C-X-C motif chemokine ligand 1 | 4q13.3 |
CXCL10/IP-10 | CXCL10 | C-X-C motif chemokine ligand 10 | 4q21.1 |
CXCL2/GRO ß | CXCL2 | C-X-C motif chemokine ligand 2 | 4q13.3 |
EGF | EGF | epidermal growth factor | 4q25 |
FGF-basic | FGF2 | fibroblast growth factor 2 | 4q28.1 |
Flt-3 ligand | FLT3LG | fms related tyrosine kinase 3 ligand | 19q13.33 |
G-CSF | CSF3 | colony stimulating factor 3 | 17q21.1 |
GM-CSF | CSF2 | colony stimulating factor 2 | 5q31.1 |
granzyme B | GZMB | granzyme B | 14q12 |
IFN-ß | IFNB1 | interferon beta 1 | 9p21.3 |
IL-1 α/IL-1F1 | IL1A | interleukin 1 alpha | 2q14.1 |
IL-10 | IL10 | interleukin 10 | 1q32.1 |
IL-12 p70 | IL12A + IL12B | IL12 (p70) active heterodimer: IL-12A (p35) and IL-12B (p40) | 3q25.33; 5q33.3 |
IL-13 | IL13 | interleukin 13 | 5q31.1 |
IL-15 | IL15 | interleukin 15 | 4q31.21 |
IL-17A | IL17A | interleukin 17A | 6p12.2 |
IL-17E/IL-25 | IL25 | interleukin 25 | 14q11.2 |
IL-1-ß/IL-1F2 | IL1B | interleukin 1 beta | 2q14.1 |
IL-1ra/IL-1F3 | IL1RN | interleukin 1 receptor antagonist | 2q14.1 |
IL-2 | IL2 | interleukin 2 | 4q27 |
IL-3 | IL3 | interleukin 3 | 5q31.1 |
IL-33 | IL33 | interleukin 33 | 9p24.1 |
IL-4 | IL4 | interleukin 4 | 5q31.1 |
IL-5 | IL5 | interleukin 5 | 5q31.1 |
IL-6 | IL6 | interleukin 6 | 7p15.3 |
IL-7 | IL7 | interleukin 7 | 8q21.13 |
IL-8/CXCL8 | CXCL8 | C-X-C motif chemokine ligand 8 | 4q13.3 |
INF α | IFNA2 | interferon alpha 2 | 9p21.3 |
INF γ | IFNG | interferon gamma | 12q15 |
PDGF-AA | PDGFA | platelet derived growth factor subunit A | 7p22.3 |
PDGF-AB/BB | PDGFB | platelet derived growth factor subunit B | 22q13.1 |
TGF α | TGFA | transforming growth factor alpha | 2p13.3 |
TNF-α | TNF | tumor necrosis factor | 6p21.33 |
TRAIL | TNFSF10 | TNF superfamily member 10 | 3q26 |
VEGF | VEGFA | vascular endothelial growth factor A | 6p21.1 |
Cytokine/Chemokine | Function |
---|---|
B7-H1/PD-L1 | Upregulated in the cells after intermittent hypoxia [37] |
CCL11/eotaxin | Positively associated with vulnerable plaque burden [38] |
CCL19/MIP-3-ß | Increases risk of heart failure in the patients with acute coronary syndrome [39] |
CCL2/MCP-1 | Involved in the pathogenesis of stroke and myocardial infarction [40] |
CCL20/MIP-3-α | Biomarker of endothelial inflammation [41] |
CCL3/MIP-1-α | Involved in the development of atherosclerosis [42] |
CCL4/MIP-1-ß | Increased levels allow to predict cardiovascular and cerebrovascular complications of hypertension [43]; it’s inhibition may reduce endothelial inflammation [44] |
CCL5/RANTES | Associated with immune cells activation in the patients with hypertension [45] |
CD 40 Ligand/TNFSF5 | Biomarker of carotid artery atherosclerosis [46] |
CX3CL1/fractalkine | Microglial biomarker, induces bradycardic response and fall in blood pressure [47] Ruchaya 2012; mediator of chronic inflammation [48] |
CXCL1/GRO α | Biomarker of carotid artery atherosclerosis [46] |
CXCL10/IP-10 | Associated with cardiovascular diseases, obesity [49] and heart failure [50] |
CXCL2/GRO ß | Increased in cardiovascular diseases [40] |
EGF | Involved in the development of pulmonary hypertension [51] |
FGF-basic | Involved in the development of pulmonary hypertension [51] |
Flt-3 ligand | Involved in the regulation of hematopoiesis [52] |
G-CSF | Involved in cardiac repair after myocardial infarction and potential novel treatment in heart failure [53] |
GM-CSF | May drive cardiovascular inflammation [54] |
granzyme B | Increases in coronary artery disease [55] |
IFN-ß | Anti-inflammatory cytokine [56] |
IL-1 α/IL-1F1 | Involved in the pathogenesis of cardiovascular diseases [57] |
IL-10 | Predictor of pulmonary hypertension [58]; protective effects in cardiovascular diseases in the course of diabetes [59] |
IL-12 p70 | Related to progression of cardiovascular diseases [60]; negative correlation with severity of coronary artery disease [61] |
IL-13 | Supports cardiac repair following myocardial infarction [62] |
IL-15 | May be protective in myocardial infarction [63] |
IL-17A | Highly expressed in atherosclerotic plaques [64] |
IL-17E/IL-25 | Marker of severity of coronary artery disease [65] |
IL-1-ß/IL-1F2 | Contributes to regulation of arterial blood pressure [66] |
IL-1ra/IL-1F3 | Associated with increased cardiovascular risk; increases in obesity [67] |
IL-2 | Harmful in cardiovascular diseases in the course of diabetes [59] |
IL-3 | May impair cardioprotective mechanisms in the ischemia/reperfusion settings [68] |
IL-33 | Involved in pathophysiology of heart failure [69] |
IL-4 | Protective effects in cardiovascular diseases in the course of diabetes [59]; low levels in severe coronary artery disease [61] |
IL-5 | Facilitates heart repair after myocardial infarction [70] |
IL-6 | Increases in diabetes [71] and in obesity [72] |
IL-7 | Harmful effects in cardiovascular diseases in the course of diabetes [59] |
IL-8/CXCL8 | Inflammatory marker associated with mortality after myocardial infarction [73] |
INF α | Pro-inflammatory cytokine [74] |
INF γ | Contributes to hypertension [75] |
PDGF-AA | Influence on cardiac fibroblasts function in myocardial infarction [76] |
PDGF-AB/BB | Decreased levels associated with atherosclerotic plaque instability and higher risk of recurrent stroke [77] |
TGF α | Involved in lung repair in COPD [78] |
TNF-α | Increases in hypertension [79] |
TRAIL | Negatively correlates with cardiovascular risk [80] |
VEGF | Pro-angiogenetic, mitogenic and anti-apoptotic activity [81] |
Chemokine/Cytokine [pg/mL] | Obesity | COPD | Hypertension | Diabetes Mellitus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YES N = 42 | NO N = 19 | p | YES N = 7 | NO N = 54 | p | YES N = 43 | NO N = 18 | p | YES N = 16 | NO N = 45 | p | |
CCL11/Eotaxin | 6.74 | 9.86 | 0.121 β = −0.37 | 12.66 | 7.12 | 0.044 β = 0.66 | 8.02 | 7.14 | 0.779 β = 0.10 | 5.90 | 8.42 | 0.624 β = −0.30 |
CCL19/MIP-3-ß | 189.89 | 183.39 | 0.149 β = 0.04 | 141.65 | 193.73 | 0.453 β = −0.37 | 178.34 | 210.26 | 0.161 β = −0.22 | 168.14 | 194.73 | 0.389 β = −0.18 |
CCL2/MCP-1 | 757.41 | 791.98 | 0.834 β = −0.09 | 654.90 | 783.50 | 0.424 β = −0.34 | 716.89 | 892.63 | 0.105 β = −0.47 | 816.91 | 751.62 | 0.667 β = 0.17 |
CCL20/MIP-3-α | 20.27 | 31.05 | 0.167 β = −0.26 | 8.21 | 25.83 | 0.149 β = −0.44 | 25.46 | 19.85 | 0.952 β = 0.14 | 27.10 | 22.63 | 0.896 β = 0.11 |
CCL3/MIP-1-α | 28.95 | 45.08 | 0.215 β = −0.31 | 26.22 | 35.27 | 0.674 β = −0.17 | 40.63 | 18.96 | 0.008 β = 0.42 | 41.13 | 31.78 | 0.294 β = 0.18 |
CCL4/MIP-1-ß | 0.29 | 0.28 | 0.904 β = 0.11 | 0.29 | 0.28 | 0.865 β = 0.12 | 0.29 | 0.27 | 0.920 β = 0.25 | 0.32 | 0.27 | 0.267 β = 0.62 |
CCL5/RANTES | 241.99 | 169.75 | 0.204 β = 0.39 | 234.30 | 216.23 | 0.952 β = 0.09 | 221.14 | 211.54 | 0.968 β = 0.05 | 245.26 | 208.72 | 0.952 β = 0.20 |
CD40 Ligand/TNFSF5 | 6.69 | 7.11 | 0.327 β = −0.10 | 8.83 | 6.57 | 0.016 β = 0.54 | 7.12 | 6.13 | 0.379 β = 0.24 | 7.24 | 6.68 | 0.164 β = 0.13 |
CX3CL1/Fractalkine | 0.04 | 0.04 | 0.190 β = 0 | 0.04 | 0.04 | 0.704 β = 0 | 0.04 | 0.05 | 0.787 β = −0.20 | 0.03 | 0.04 | 0.944 β = −0.20 |
CXCL1/GRO-α | 0.05 | 0.03 | 0.542 β = 0.40 | 0.04 | 0.04 | 0.976 β = 0 | 0.04 | 0.04 | 0.968 β = 0 | 0.04 | 0.04 | 0.764 β = 0 |
CXCL10/IP-10 | 55.35 | 63.12 | 0.960 β = −0.18 | 54.31 | 58.36 | 0.849 β = −0.09 | 53.13 | 69.29 | 0.373 β = −0.38 | 67.95 | 54.32 | 0.234 β = 0.32 |
CXCL2/GRO-ß | 265.03 | 209.31 | 0.802 β = 0.20 | 256.31 | 245.52 | 0.772 β = 0.04 | 259.95 | 215.25 | 0.696 β = 0.15 | 396.15 | 193.65 | 0.128 β = 0.72 |
EGF | 240.86 | 270.86 | 0.280 β = −0.29 | 252.12 | 250.51 | 0.992 β = 0.01 | 250.90 | 250.21 | 0.674 β = 0.01 | 247.59 | 251.80 | 0.726 β = −0.03 |
FGF-basic | 16.69 | 16.01 | 0.881 β = 0.02 | 10.27 | 17.27 | 0.704 β = −0.21 | 16.41 | 16.60 | 0.834 β = −0.01 | 12.35 | 17.93 | 0.749 β = −0.17 |
Flt-3 Ligand | 0.11 | 0.10 | 0.363 β = 0.25 | 0.10 | 0.11 | 0.881 β = −0.25 | 0.11 | 0.11 | 0.667 β = 0 | 0.10 | 0.11 | 0.818 β = −0.25 |
G-CSF | 7.32 | 7.06 | 0.960 β = 0.07 | 7.07 | 7.26 | 0.711 β = −0.05 | 7.27 | 7.15 | 0.682 β = 0.03 | 7.45 | 7.16 | 0.645 β = 0.08 |
GM-CSF | 0.002 | 0.005 | 0.726 β = −0.75 | 0.002 | 0.003 | 0.756 β = −0.25 | 0.002 | 0.004 | 0.952 β = −0.50 | 0.002 | 0.003 | 0.667 β = −0.25 |
Granzyme B | 2.86 | 9.35 | 0.234 β = −0.49 | 3.02 | 5.24 | 0.726 β = −0.17 | 5.69 | 3.31 | 0.779 β = 0.18 | 1.28 | 6.30 | 0.810 β = −0.38 |
IFN-α | 1.03 | 1.01 | 0.379 β = 0.02 | 0.90 | 1.04 | 0.711 β = −0.14 | 0.93 | 1.24 | 0.555 β = −0.31 | 0.98 | 1.04 | 0.660 β = −0.06 |
IFN-γ | 0.31 | 7.79 | 0.779 β = −0.58 | 0.16 | 3.10 | 0.535 β = −0.24 | 1.81 | 5.04 | 0.741 β = −0.26 | 0.35 | 3.62 | 0.928 β = −0.27 |
IL-1-α/IL-1F1 | 0.61 | 0.24 | 0.516 β = 0.29 | 0.27 | 0.51 | 0.889 β = −0.20 | 0.58 | 0.25 | 0.610 β = 0.27 | 0.60 | 0.44 | 0.238 β = 0.13 |
IL-1-ß/IL-1F2 | 0.33 | 0.28 | 0.603 β = 0.12 | 0.55 | 0.28 | 0.303 β = 0.67 | 0.38 | 0.15 | 0.197 β = 0.57 | 0.33 | 0.30 | 0.631 β = 0.07 |
IL-1ra/IL-1F3 | 589.99 | 380.29 | 0.007 β = 0.57 | 497.34 | 524.34 | 0.674 β = −0.07 | 541.60 | 472.59 | 0.548 β = 0.18 | 628.38 | 483.14 | 0.509 β = 0.39 |
IL-2 | 1.07 | 1.26 | 0.610 β = −0.13 | 1.30 | 1.11 | 0.603 β = 0.13 | 1.03 | 1.38 | 0.569 β = −0.25 | 0.90 | 1.21 | 0.936 β = −0.22 |
IL-4 | 0.09 | 0.10 | 0.267 β = −0.05 | 0.04 | 0.10 | 0.873 β = −0.30 | 0.08 | 0.11 | 0.952 β = −0.15 | 0.07 | 0.10 | 0.516 β = −0.15 |
IL-6 | 3.13 | 1.97 | 0.603 β = 0.36 | 2.97 | 2.72 | 0.603 β = 0.08 | 2.87 | 2.46 | 0.535 β = 0.13 | 4.02 | 2.29 | 0.009 β = 0.55 |
IL-7 | 5.74 | 4.53 | 0.180 β = 0.39 | 5.00 | 5.39 | 0.478 β = −0.12 | 5.05 | 6.05 | 0.180 β = −0,32 | 4.55 | 5.63 | 0.128 β = −0.36 |
IL-8/CXCL8 | 46.07 | 58.39 | 0.936 β = −0.13 | 52.93 | 49.75 | 0.653 β = 0.03 | 53.94 | 40.98 | 0.726 β = 0.14 | 46.90 | 51.25 | 0.810 β = −0.04 |
IL-10 | 0.12 | 0.01 | 0.795 β = 0.21 | 0.004 | 0.09 | 0.024 β = −0.17 | 0.113 | 0.019 | 0.036 β = 0.18 | 0.267 | 0.020 | 0.889 β = 0.49 |
IL-13 | 0.02 | 0.01 | 0.043 β = 1.00 | 0.02 | 0.02 | 0.478 β = 0 | 0.01 | 0.02 | 0.289 β = 0.66 | 0.02 | 0.02 | 0.575 β = 0 |
IL-15 | 0.15 | 0.18 | 0.327 β = −0.10 | 0.22 | 0.16 | 0.542 β = 0.20 | 0.14 | 0.22 | 0.849 β = −0.26 | 0.15 | 0.17 | 0.496 β = −0.06 |
PDGF-AA | 9144.1 | 11,312.6 | 0.131 β = −0.44 | 9753.3 | 9868.2 | 0.992 β = −0.02 | 9473.9 | 10,765.5 | 0.298 β = −0.26 | 8995.5 | 10,160.7 | 0.529 β = −0.23 |
PDGF-AB/BB | 9366.5 | 19,478.7 | 0.704 β = −0.35 | 38781.2 | 9298.8 | 0.928 β = 1.02 | 14,395.4 | 8589.0 | 0.756 β = 0,20 | 9290.1 | 13,888.0 | 0.912 β = −0.16 |
TGF-α | 2.27 | 2.79 | 0.610 β = −0.17 | 1.66 | 2.54 | 0.944 β = −0.23 | 2.44 | 2.46 | 0.889 β = −0.01 | 2.44 | 2.44 | 0.873 β = 0 |
TNF-α | 1.88 | 1.72 | 0.912 β = 0.05 | 2.18 | 1.78 | 0.936 β = 0.14 | 1.79 | 1.92 | 0.756 β = −0.04 | 2.23 | 1.68 | 0.764 β = 0.19 |
TRAIL | 0.02 | 0.02 | 0.667 β = 0 | 0.01 | 0.02 | 0.226 β = −0.55 | 0.02 | 0.02 | 0.516 β = 0 | 0.03 | 0.01 | 0.007 β = 2 |
VEGF | 145.73 | 112.69 | 0.928 β = 0.16 | 117.90 | 137.10 | 0.810 β = −0.10 | 139.15 | 124.72 | 0.719 β = 0.07 | 113.36 | 142.55 | 0.667 β = −0.14 |
Cytokine | 1 | 2 | 3 | ||
---|---|---|---|---|---|
OSA without Comorbidities | OSA + Obesity | OSA + Hypertension | 1 vs. 2 | 1 vs. 3 | |
N = 7 | N = 11 | N = 9 | p | p | |
CCL11/Eotaxin | 12.63 | 3.65 | 6.19 | 0.779 β = 1.07 | 0.064 β = 0.75 |
CCL19/MIP-3-beta | 175.40 | 232.44 | 213.74 | 0.015 β= −0.34 | 0.596 β = −0.33 |
CCL2/MCP-1 | 814.74 | 942.19 | 618.90 | 0.023 β= −0.40 | 0.342 β = 0.62 |
CCL20/MIP-3-alpha | 30.99 | 12.76 | 38.90 | 0.107 β = 0.56 | 0.674 β = −0.17 |
CCL3/MIP-1-alpha | 13.32 | 22.54 | 71.76 | 0.063 β = −0.34 | 0.030 β= −0.76 |
CCL4/MIP-1-beta | 0.28 | 0.27 | 0.28 | 0.976 β = 0.20 | 0.833 β = 0 |
CCL5/RANTES | 146.60 | 252.86 | 152.13 | 0.012 β= −0.59 | 0.912 β = −0.08 |
CD40 Ligand/TNFSF5 | 6.95 | 5.60 | 6.61 | 0.147 β = 0.42 | 0.913 β = 0.1 |
CX3CL1/Fractalkine | 0.02 | 0.07 | 0.06 | 0.976 β = −0.71 | 0.044 β= −0.88 |
CXCL1/GRO-alpha | 0.02 | 0.05 | 0.03 | 0.976 β = −0.75 | 0.749 β = −0.5 |
CXCL10/IP-10 | 79.36 | 62.88 | 43.96 | 0.056 β= 0.28 | 0.342 β = 0.68 |
CXCL2/GRO-beta | 139.60 | 263.39 | 154.86 | 0.007 β= −0.62 | 0.674 β = −0.15 |
EGF | 260.27 | 243.81 | 281.53 | 0.044 β= 0.16 | 0.748 β = −0.25 |
FGF-basic | 26.54 | 10.27 | 10.36 | 0.976 β = 0.62 | 0.912 β = 0.57 |
Flt-3 Ligand | 0.11 | 0.11 | 0.11 | 0.976 β = 0 | 0.834 β = 0 |
G-CSF | 8.13 | 6.53 | 5.99 | 0.298 β = 0.41 | 0.342 β = 0.64 |
GM-CSF | 0.02 | 0.02 | 0.02 | 0.976 β = 0 | 0.459 β = 0 |
Granzyme B | 6.69 | 1.16 | 12.95 | 0.322 β = 0.58 | 0.562 β = −0.32 |
IFN-alpha | 1.06 | 1.36 | 1.12 | 0.107 β = −0.18 | 0.091 β = −0.05 |
IFN-gamma | 12.22 | 0.42 | 7.68 | 0.779 β = 0.59 | 0.912 β = 0.18 |
IL-1-alpha/IL-1F1 | 0.18 | 0.31 | 0.26 | 0.976 β = −0.59 | 0.749 β = −0.47 |
IL-1-beta/IL-1F2 | 0.12 | 0.15 | 0.38 | 0.987 β = −0.21 | 0.596 β = −0.59 |
IL-1ra/IL-1F3 | 386.32 | 527.49 | 356.16 | 0.005 β= −0.54 | 0.834 β = 0.16 |
IL-2 | 1.09 | 1.55 | 1.14 | 0.230 β = −0.24 | 0.873 β = −0.03 |
IL-3 | 0.02 | 0.001 | 0.01 | 0.989 β = 0.95 | 0.912 β = 0.33 |
IL-4 | 0.02 | 0.17 | 0.20 | 0.987 β = −0.71 | 0.749 β = −0.60 |
IL-6 | 2.29 | 2.56 | 1.71 | 0.271 β = −0.15 | 0.222 β = 0.48 |
IL-7 | 3.36 | 7.76 | 5.72 | <0.001 β= −1.41 | 0.044 β= −0.94 |
IL-8/CXCL8 | 24.24 | 51.63 | 89.63 | 0.026 β= −0.40 | 0.167 β = −0.55 |
IL-10 | 0.01 | 0.02 | 0.01 | 0.976 β = −0.50 | 0.167 β = 0 |
IL-12 p70 | 0.001 | 0.002 | 0.001 | 0.976 β = 1 | 0.748 β = 0 |
IL-13 | 0.02 | 0.02 | 0.01 | 0.987 β = 0 | 0.395 β = 0.5 |
IL-15 | 0.47 | 0.04 | 0.01 | 0.978 β = 1.07 | 0.167 β = 1.06 |
IL-33 | 0.003 | 0.001 | 0.002 | 0.976 β = 0.66 | 0.912 β = 0.33 |
PDGF-AA | 10,438.84 | 10,973.37 | 12,565.74 | 0.070 β = −0.10 | 0.674 β = −0.40 |
PDGF-AB/BB | 10,774.76 | 7197.99 | 7242.01 | 0.342 β = 0.62 | 0.395 β = 0.57 |
TGF-alpha | 3.59 | 1.74 | 3.20 | 0.211 β = 0.46 | 0.711 β = 0.08 |
TNF-alpha | 1.67 | 2.07 | 1.83 | 0.177 β = −0.16 | 1.000 β = −0.05 |
TRAIL | 0.02 | 0.01 | 0.01 | 0.976 β = 0.76 | 0.749 β = 0.76 |
VEGF | 80.92 | 152.58 | 122.17 | 0.003 β= −0.78 | 0.204 β = −0.56 |
Chemokine/Cytokine | BMI | pO2 | pCO2 | AHI | Mean SaO2 | Minimal SaO2 | ODI |
---|---|---|---|---|---|---|---|
CCL11/Eotaxin | p = 0.553 rs = −0.103 | p = 0.019 rs = 0.419 | p = 0.331 rs = −0.180 | p = 0.103 rs = −0.280 | p = 0.714 rs = 0.064 | p = 0.636 rs = 0.062 | p = 0.350 rs = −0.162 |
CCL19/MIP-3-ß | p = 0.054 rs = 0.247 | p = 0.876 rs = −0.021 | p = 0.978 rs = 0.003 | p = 0.346 rs = 0.123 | p = 0.428 rs = 0.103 | p = 0.612 rs = 0.066 | p = 0.340 rs = 0.124 |
CCL2/MCP-1 | p = 0.745 rs = −0.042 | p = 0.066 rs = 0.249 | p = 0.089 rs = −0.230 | p = 0.470 rs = 0.094 | p = 0.697 rs = −0.050 | p = 0.524 rs = 0.083 | p = 0.242 rs = 0.152 |
CCL20/MIP-3-α | p = 0.167 rs = −0.182 | p = 0.950 rs = 0.008 | p = 0.098 rs = −0.229 | p = 0.726 rs = −0.046 | p = 0.122 rs = 0.203 | p = 0.143 rs = 0.189 | p = 0.483 rs = −0.092 |
CCL3/MIP-1-α | p = 0.333 rs = −0.144 | p = 0.711 rs = 0.057 | p = 0.641 rs = −0.072 | p = 0.795 rs = −0.039 | p = 0.310 rs = −0.151 | p = 0.969 rs = 0.005 | p = 0.921 rs = 0.014 |
CCL4/MIP-1-ß | p = 0.788 rs = 0.034 | p = 0.786 rs = −0.037 | p = 0.462 rs = −0.101 | p = 0.466 rs = −0.095 | p = 0.719 rs = −0.046 | p = 0.991 rs = −0.001 | p = 0.789 rs = −0.034 |
CCL5/RANTES | p = 0.548 rs = 0.083 | p = 0.487 rs = 0.100 | p = 0.650 rs = −0.109 | p = 0.930 rs = 0.012 | p = 0.910 rs = −0.015 | p = 0.842 rs = 0.026 | p = 0.952 rs = −0.008 |
CD40 Ligand/TNFSF5 | p = 0.885 rs = −0.018 | p = 0.352 rs = −0.127 | p = 0.383 rs = −0.119 | p = 0.664 rs = −0.057 | p = 0.697 rs = 0.050 | p = 0.522 rs = 0.083 | p = 0.447 rs = −0.099 |
CX3CL1/Fractalkine | p = 0.294 rs = 0.165 | p = 0.082 rs = −0.285 | p = 0.808 rs = 0.040 | p = 0.507 rs = 0.105 | p = 0.497 rs = −0.107 | p = 0.985 rs = 0.002 | p = 0.738 rs = 0.053 |
CXCL1/GRO-α | p = 0.259 rs = 0.393 | p = 0.149 rs = −0.490 | p = 0.048 rs = 0.636 | p = 0.579 rs = 0.200 | p = 0.683 rs = −0.147 | p = 0.078 rs = −0.227 | p = 0.579 rs = −0.200 |
CXCL10/IP-10 | p = 0.471 rs = 0.093 | p = 0.164 rs = −0.190 | p = 0.808 rs = 0.033 | p = 0.320 rs = 0.129 | p = 0.471 rs = −0.093 | p = 0.586 rs = −0.071 | p = 0.334 rs = 0.125 |
CXCL2/GRO-ß | p = 0.908 rs = 0.015 | p = 0.981 rs = 0.003 | p = 0.709 rs = 0.051 | p = 0.661 rs = 0.057 | p = 0.351 rs = −0.121 | p = 0.628 rs = −0.063 | p = 0.567 rs = 0.074 |
EGF | p = 0.810 rs = 0.031 | p = 0.608 rs = −0.070 | p = 0.160 rs = −0.191 | p = 0.508 rs = −0.086 | p = 0.229 rs = 0.156 | p = 0.657 rs = 0.058 | p = 0.479 rs = −0.092 |
FGF-basic | p = 0.284 rs = 0.600 | p = 0.800 rs = −0.200 | p = 0.051 rs = 0.948 | p = 0.747 rs = 0.200 | p = 0.218 rs = 0.666 | p = 0.722 rs = −0.046 | p = 0.747 rs = 0.200 |
Flt-3 Ligand | p = 0.455 rs = 0.097 | p = 0.354 rs = −0.127 | p = 0.457 rs = −0.102 | p = 0.454 rs = 0.097 | p = 0.800 rs = −0.032 | p = 0.284 rs = −0.139 | p = 0.329 rs = 0.126 |
G-CSF | p = 0.604 rs = 0.067 | p = 0.421 rs = −0.110 | p = 0.930 rs = 0.011 | p = 0.583 rs = −0.071 | p = 0.190 rs = 0.169 | p = 0.050 rs = 0.252 | p = 0.136 rs = −0.192 |
GM-CSF | p = 0.262 rs = −0.737 | p = 1.000 rs = 0.000 | p = 0.666 rs = 0.500 | p = 0.051 rs = −0.949 | - | p = 0.826 rs = 0.029 | p = 0.262 rs = −0.737 |
Granzyme B | p = 0.104 rs = −0.355 | p = 0.550 rs = −0.134 | p = 0.582 rs = −0.123 | p = 0.261 rs = −0.250 | p = 0.144 rs = 0.321 | p = 0.314 rs = 0.131 | p = 0.300 rs = −0.231 |
IFN-α | p = 0.355 rs = 0.120 | p = 0.731 rs = −0.041 | p = 0.385 rs = 0.119 | p = 0.639 rs = 0.051 | p = 0.502 rs = −0.087 | p = 0.135 rs = −0.192 | p = 0.578 rs = 0.072 |
IFN-γ | p = 0.025 rs = −0.771 | p = 0.380 rs = −0.441 | p = 0.505 rs = −0.343 | p = 0.113 rs = −0.602 | p = 0.863 rs = 0.073 | p = 0.891 rs = −0.018 | p = 0.153 rs = −0.554 |
IL-1-α/IL-1F1 | p = 0.086 rs = 0.0568 | p = 0.943 rs = −0.027 | p = 0.887 rs = 0.055 | p = 0.748 rs = −0.116 | p = 0.237 rs = 0.411 | p = 0.955 rs = 0.007 | p = 0.529 rs = −0.226 |
IL-1-ß/IL-1F2 | p = 0.567 rs = 0.108 | p = 0.453 rs = −0.134 | p = 0.840 rs = 0.039 | p = 0.319 rs = 0.188 | p = 0.486 rs = −0.132 | p = 0.186 rs = −0.172 | p = 0.615 rs = 0.095 |
IL-1ra/IL-1F3 | p = 0.002 rs = 0.396 | p = 0.035 rs = −0.285 | p = 0.130 rs = 0.206 | p = 0.078 rs = 0.227 | p = 0.548 rs = −0.078 | p = 0.483 rs = −0.091 | p = 0.077 rs = 0.227 |
IL-2 | p = 0.811 rs = 0.033 | p = 0.291 rs = 0.153 | p = 0.812 rs = 0.034 | p = 0.827 rs = 0.030 | p = 0.864 rs = −0.023 | p = 0.225 rs = −0.158 | p = 0.726 rs = 0.048 |
IL-3 | p = 0.600 rs = −0.400 | - - | p = 1.000 rs = 0.000 | p = 0.200 rs = −0.800 | p = 0.200 rs = 0.800 | - - | p = 0.600 rs = −0.400 |
IL-4 | p = 0.178 rs = −0.342 | p = 0.217 rs = 0.326 | p = 0.883 rs = 0.038 | p = 0.138 rs = 0.374 | p = 0.355 rs = −0.239 | p = 0.392 rs = −0.111 | p = 0.241 rs = 0.300 |
IL-6 | p = 0.320 rs = 0.135 | p = 0.056 rs = −0.265 | p = 0.796 rs = −0.036 | p = 0.723 rs = −0.048 | p = 0.233 rs = −0.161 | p = 0.439 rs = −0.101 | p = 0.629 rs = 0.065 |
IL-7 | p = 0.069 rs = 0.236 | p = 0.946 rs = 0.009 | p = 0.672 rs = −0.058 | p = 0.113 rs = 0.206 | p = 0.368 rs = −0.118 | p = 0.184 rs = −0.172 | p = 0.057 rs = 0.246 |
IL-8/CXCL8 | p = 0.468 rs = −0.097 | p = 0.767 rs = 0.042 | p = 0.722 rs = −0.050 | p = 0.513 rs = 0.088 | p = 0.498 rs = −0.091 | p = 0.738 rs = −0.044 | p = 0.416 rs = 0.109 |
IL-10 | p = 0.721 rs = −0.049 | p = 0.608 rs = 0.074 | p = 0.816 rs = −0.033 | p = 0.20 rs = 0.174 | p = 0.362 rs = 0.125 | p = 0.749 rs = 0.042 | p = 0.276 rs = 0.149 |
IL-13 | p = 0.786 rs = 0.040 | p = 0.750 rs = 0.049 | p = 0.239 rs = −0.181 | p = 0.339 rs = −0.144 | p = 0.124 rs = 0.229 | p = 0.309 rs = −0.132 | p = 0.402 rs = −0.126 |
IL-15 | p = 0.702 rs = −0.090 | p = 0.498 rs = −0.170 | p = 0.691 rs = −0.100 | p = 0.938 rs = −0.018 | p = 0.045 rs = 0.452 | p = 0.982 rs = −0.003 | p = 0.705 rs = −0.090 |
IL-33 | - - | p = 0.666 rs = −0.500 | p = 0.666 rs = −0.500 | p = 0.666 rs = −0.500 | p = 0.666 rs = 0.500 | - - | p = 0.666 rs = −0.500 |
PDGF-AA | p = 0.600 rs = −0.068 | p = 0.902 rs = 0.016 | p = 0.738 rs = 0.046 | p = 0.183 rs = −0.172 | p = 0.117 rs = 0.202 | p = 0.691 rs = 0.052 | p = 0.120 rs = −0.200 |
PDGF-AB/BB | p = 0.934 rs = −0.011 | p = 0.055 rs = −0.290 | p = 0.007 rs = 0.398 | p = 0.542 rs = 0.089 | p = 0.235 rs = −0.172 | p = 0.577 rs = −0.073 | p = 0.626 rs = 0.071 |
TGF-α | p = 0.243 rs = 0.215 | p = 0.504 rs = −0.131 | p = 0.844 rs = 0.038 | p = 0.653 rs = 0.083 | p = 0.581 rs = −0.102 | p = 0.199 rs = −0.166 | p = 0.496 rs = 0.126 |
TNF-α | p = 0.377 rs = 0.170 | p = 0.692 rs = 0.083 | p = 0.149 rs = 0.296 | p = 0.110 rs = 0.303 | p = 0.387 rs = −0.166 | p = 0.462 rs = 0.096 | p = 0.023 rs = 0.422 |
TRAIL | p = 0.828 rs = −0.031 | p = 0.002 rs = 0.438 | p = 0.040 rs = −0.303 | p = 0.192 rs = −0.187 | p = 0.539 rs = 0.088 | p = 0.285 rs = 0.139 | p = 0.343 rs = −0.136 |
VEGF | p = 0.548 rs = 0.078 | p = 0.789 rs = −0.036 | p = 0.695 rs = 0.054 | p = 0.587 rs = 0.070 | p = 0.889 rs = 0.018 | p = 0.659 rs = −0.057 | p = 0.429 rs = 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaszczewska-Markowska, M.; Górna, K.; Bogunia-Kubik, K.; Brzecka, A.; Kosacka, M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J. Clin. Med. 2023, 12, 801. https://doi.org/10.3390/jcm12030801
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. Journal of Clinical Medicine. 2023; 12(3):801. https://doi.org/10.3390/jcm12030801
Chicago/Turabian StyleChaszczewska-Markowska, Monika, Katarzyna Górna, Katarzyna Bogunia-Kubik, Anna Brzecka, and Monika Kosacka. 2023. "The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results" Journal of Clinical Medicine 12, no. 3: 801. https://doi.org/10.3390/jcm12030801
APA StyleChaszczewska-Markowska, M., Górna, K., Bogunia-Kubik, K., Brzecka, A., & Kosacka, M. (2023). The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. Journal of Clinical Medicine, 12(3), 801. https://doi.org/10.3390/jcm12030801