Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality—A Multicentric Observational Study from the OutcomeRea Network
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Definitions and Study Procedures
2.3.1. Ventilator-Associated Pneumonia
2.3.2. Definitions
2.3.3. Antimicrobial Resistance
2.4. Data Collection
2.5. Case Management
2.6. Statistical Analysis
2.7. Ethics
3. Results
3.1. Main Characteristics and Comparison between Patients with and without VAP
3.2. Microbiological Results
3.3. VAP Incidence and Impact on Mortality
3.4. Risk Factors Associated with Treatment Failure
4. Discussion
4.1. Impact of Case Severity on VAP and Mortality
4.2. Impact of Organ Support and Pharmacokinetic Challenges
4.3. High Incidence of Treatment Failure and Clinical Implications
4.4. Limits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wicky, P.H.; d’Humières, C.; Timsit, J.F. How common is ventilator-associated pneumonia after coronavirus disease 2019? Curr. Opin. Infect. Dis. 2022, 35, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Vacheron, C.H.; Lepape, A.; Savey, A.; Machut, A.; Timsit, J.F.; Vanhems, P.; Le, Q.V.; Egbeola, J.; Martin, M.; Maxime, V.; et al. Increased Incidence of Ventilator-Acquired Pneumonia in Coronavirus Disease 2019 Patients: A Multicentric Cohort Study. Crit. Care Med. 2021, 50, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Boulle Geronimi, C.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021, 47, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef]
- Luyt, C.E.; Bouadma, L. Pulmonary Infections Complicating ARDS’. Intensive Care Med. 2020, 46, 2168–2183. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-Associated Pneumonia in Adults: A Narrative Review’. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Povoa, P.; Martin-Loeches, I.; Nseir, S. Secondary pneumonias in critically ill patients with COVID-19: Risk factors and outcomes. Curr. Opin. Crit. Care 2021, 27, 468–473. [Google Scholar] [CrossRef]
- Wicky, P.H.; Niedermann, M.S.; Timsit, J.F. Ventilator-associated pneumonia in the era of COVID-19 pandemic: How common and what is the impact? Crit. Care 2021, 25, 153. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar]
- Chang, R.; Elhusseiny, K.M.; Yeh, Y.C.; Sun, W.Z. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246318. [Google Scholar] [CrossRef]
- Giacobbe, D.R. Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study’. J. Clin. Med. 2021, 10, 555. [Google Scholar] [CrossRef]
- Nseir, S.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Makris, D.; Geronimi, C.B.; et al. Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: A planned ancillary analysis of the coVAPid cohort. Crit. Care 2021, 25, 177. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C. Incidence of Co-Infections and Superinfections in Hospitalized Patients with COVID-19: A Retrospective Cohort Study’. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Boyd, S.; Nseir, S.; Rodriguez, A.; Martin-Loeches, I. Ventilator-associated pneumonia in critically ill patients with COVID-19 infection: A narrative review. ERJ Open Res. 2022, 8, 00046. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.E.; Sahnoun, T.; Gautier, M.; Vidal, P.; Burrel, S.; Pineton de Chambrun, M.; Chommeloux, J.; Desnos, C.; Arzoine, J.; Nieszkowska, A.; et al. Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: A retrospective cohort study. Ann. Intensive Care 2020, 10, 158. [Google Scholar] [CrossRef]
- Blonz, G.; Kouatchet, A.; Chudeau, N.; Pontis, E.; Lorber, J.; Lemeur, A.; Planche, L.; Lascarrou, J.-B.; Colin, G. Epidemiology and microbiology of ventilator-associated pneumonia in COVID-19 patients: A multicenter retrospective study in 188 patients in an un-inundated French region. Crit. Care 2021, 25, 72. [Google Scholar] [CrossRef] [PubMed]
- Beaucoté, V.; Plantefève, G.; Tirolien, J.A.; Desaint, P.; Fraissé, M.; Contou, D. Lung Abscess in Critically Ill Coronavirus Disease 2019 Patients with Ventilator-Associated Pneumonia: A French Monocenter Retrospective Study. Crit. Care Explor. 2021, 3, e0482. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Weiss, E.; Zahar, J.R.; Alder, J.; Asehnoune, K.; Bassetti, M.; Bonten, M.J.M.; Chastre, J.; De Waele, J.; Dimopoulos, G.; Eggimann, P.; et al. Elaboration of Consensus Clinical Endpoints to Evaluate Antimicrobial Treatment Efficacy in Future Hospital-acquired/Ventilator-associated Bacterial Pneumonia Clinical Trials. Clin. Infect. Dis. 2019, 69, 1912–1918. [Google Scholar] [CrossRef]
- Weiss, E.; Essaied, W.; Adrie, C.; Zahar, J.R.; Timsit, J.F. Treatment of severe hospital-acquired and ventilator-associated pneumonia: A systematic review of inclusion and judgment criteria used in randomized controlled trials. Crit. Care 2017, 21, 162. [Google Scholar] [CrossRef]
- Prevel, R.; Boyer, A.; M’Zali, F.; Lasheras, A.; Zahar, J.R.; Rogues, A.M.; Gruson, D. Is systematic fecal carriage screening of extended-spectrum beta-lactamase-producing Enterobacteriaceae still useful in intensive care unit: A systematic review. Crit. Care 2019, 23, 170. [Google Scholar] [CrossRef] [PubMed]
- Zahar, J.R.; Blot, S.; Nordmann, P.; Martischang, R.; Timsit, J.F.; Harbarth, S.; Barbier, F. Screening for Intestinal Carriage of Extended-spectrum Beta-lactamase-producing Enterobacteriaceae in Critically Ill Patients: Expected Benefits and Evidence-based Controversies. Clin. Infect. Dis. 2019, 68, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Torres, A. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Guidelines for the Management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European Respiratory Society (ERS). Eur Soc Intensive Care Med ESICM Eur Soc Clin Microbiol Infect Dis ESCMID Asoc Latinoam Tórax ALAT’ [Internet]. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- Andremont, O.; Armand-Lefevre, L.; Dupuis, C.; de Montmollin, E.; Ruckly, S.; Lucet, J.C.; Smonig, R.; Magalhaes, E.; Ruppé, E.; Mourvillier, B.; et al. Semi-quantitative cultures of throat and rectal swabs are efficient tests to predict ESBL-Enterobacterales ventilator-associated pneumonia in mechanically ventilated ESBL carriers. Intensive Care Med. 2020, 46, 1232–1242. [Google Scholar] [CrossRef]
- Ceccato, A.; Dominedò, C.; Ferrer, M.; Martin-Loeches, I.; Barbeta, E.; Gabarrús, A.; Smonig, R.; Magalhaes, E.; Ruppé, E.; Mourvillier, B.; et al. Prediction of ventilator-associated pneumonia outcomes according to the early microbiological response: A retrospective observational study. Eur. Respir. J. 2021, 59, 2100620. [Google Scholar] [CrossRef]
- Ibn Saied, W.; Souweine, B.; Garrouste-Orgeas, M.; Ruckly, S.; Darmon, M.; Bailly, S.; Cohen, Y.; Azoulay, E.; Schwebel, C.; Radjou, A.; et al. Respective impact of implementation of prevention strategies, colonization with multiresistant bacteria and antimicrobial use on the risk of early- and late-onset VAP: An analysis of the OUTCOMEREA network. PLoS ONE 2017, 12, e0187791. [Google Scholar] [CrossRef] [PubMed]
- Nguile-Makao, M.; Zahar, J.R.; Français, A.; Tabah, A.; Garrouste-Orgeas, M.; Allaouchiche, B.; Goldgran-Toledano, D.; Azoulay, E.; Adrie, C.; Jamali, S.; et al. Attributable mortality of ventilator-associated pneumonia: Respective impact of main characteristics at ICU admission and VAP onset using conditional logistic regression and multi-state models. Intensive Care Med. 2010, 36, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, M.; Timsit, J.F.; Vansteelandt, S.; Depuydt, P.; Vésin, A.; Garrouste-Orgeas, M.; Decruyenaere, J.; Clec’h, C.; Azoulay, E.; Benoit, D. Attributable mortality of ventilator-associated pneumonia: A reappraisal using causal analysis. Am. J. Respir. Crit. Care Med. 2011, 184, 1133–1139. [Google Scholar] [CrossRef]
- Lamouche-Wilquin, P.; Souchard, J.; Pere, M.; Raymond, M.; Asfar, P.; Darreau, C.; Reizine, F.; Hourmant, B.; Colin, G.; Rieul, G.; et al. Early steroids and ventilator-associated pneumonia in COVID-19-related ARDS. Crit. Care 2022, 26, 233. [Google Scholar] [CrossRef]
- Timsit, J.F.; Zahar, J.R.; Chevret, S. Attributable mortality of ventilator-associated pneumonia. Curr. Opin. Crit. Care 2011, 17, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Forel, J.M. Ventilator-Associated Pneumonia and ICU Mortality in Severe ARDS Patients Ventilated According to a Lung-Protective Strategy’. Crit. Care 2012, 16, R65. [Google Scholar] [CrossRef]
- Zampieri, F.G.; Póvoa, P.; Salluh, J.I.; Rodriguez, A.; Valade, S.; Andrade Gomes, J.; Reignier, J.; Molinos, E.; Almirall, J.; Boussekey, N. Lower Respiratory Tract Infection and Short-Term Outcome in Patients with Acute Respiratory Distress Syndrome. J. Intensive Care Med. 2020, 35, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Franchineau, G.; Luyt, C.E.; Combes, A.; Schmidt, M. Ventilator-associated pneumonia in extracorporeal membrane oxygenation-assisted patients. Ann. Transl. Med. 2018, 6, 427. [Google Scholar] [CrossRef]
- Bouglé, A.; Bombled, C.; Margetis, D.; Lebreton, G.; Vidal, C.; Coroir, M.; Hajage, D.; Amour, J. Ventilator-associated pneumonia in patients assisted by veno-arterial extracorporeal membrane oxygenation support: Epidemiology and risk factors of treatment failure. PLoS ONE 2018, 13, e0194976. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Wang, H.; Hou, X. Outcome and Clinical Characteristics of Nosocomial Infection in Adult Patients Undergoing Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 857873. [Google Scholar] [CrossRef] [PubMed]
- Kühn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 664. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, C.; de Montmollin, E.; Buetti, N.; Goldgran-Toledano, D.; Reignier, J.; Schwebel, C.; Domitile, J.; Neuville, M.; Ursino, M.; Siami, S.; et al. Impact of early corticosteroids on 60-day mortality in critically ill patients with COVID-19: A multicenter cohort study of the OUTCOMEREA network. PLoS ONE 2021, 16, e0255644. [Google Scholar] [CrossRef]
- Gragueb-Chatti, I.; Lopez, A.; Hamidi, D.; Guervilly, C.; Loundou, A.; Daviet, F.; Cassir, N.; Papazian, L.; Forel, J.-M.; Leone, M.; et al. Impact of dexamethasone on the incidence of ventilator-associated pneumonia and blood stream infections in COVID-19 patients requiring invasive mechanical ventilation: A multicenter retrospective study. Ann. Intensive Care 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Razazi, K.; Arrestier, R.; Haudebourg, A.F.; Benelli, B.; Carteaux, G.; Decousser, J.W.; Fourati, S.; Woerther, P.L.; Schlemmer, F.; Charles-Nelson, A.; et al. Risks of ventilator-associated pneumonia and invasive pulmonary aspergillosis in patients with viral acute respiratory distress syndrome related or not to Coronavirus 19 disease. Crit. Care 2020, 24, 699. [Google Scholar] [CrossRef]
- Aarts, M.A.W.; Hancock, J.N.; Heyland, D.; McLeod, R.S.; Marshall, J.C. Empiric antibiotic therapy for suspected ventilator-associated pneumonia: A systematic review and meta-analysis of randomized trials. Crit. Care Med. 2008, 36, 108–117. [Google Scholar] [CrossRef]
- Shorr, A.F.; Cook, D.; Jiang, X.; Muscedere, J.; Heyland, D. Canadian Critical Care Trials Group. Correlates of clinical failure in ventilator-associated pneumonia: Insights from a large, randomized trial. J. Crit. Care 2008, 23, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
All n = 540 | No VAP n = 311 | VAP n = 229 | p-Value | |
---|---|---|---|---|
Period (before May 2020) | 284 (52.6) | 162 (52.1) | 122 (53.3) | 0.79 |
Age | 63.6 [54.6–71.8] | 65.2 [55.8–72.6] | 62.3 [52.5–71] | 0.02 |
Gender (Male) | 401 (74.2) | 223 (71.7) | 178 (77.7) | 0.11 |
Body mass index | 28.8 [25.4–32.6] | 28.4 [25–32.1] | 29.4 [26.2–33.6] | <0.01 |
At least one comorbidity | 357 (66.2) | 215 (69.1) | 142 (62) | 0.08 |
Chronic liver failure | 11 (2) | 7 (2.3) | 4 (1.7) | 0.68 |
Chronic cardiovascular disease | 151 (28) | 99 (31.8) | 52 (22.7) | 0.02 |
Chronic respiratory failure | 60 (11.2) | 36 (11.6) | 24 (10.5) | 0.69 |
Chronic kidney disease | 48 (8.8) | 33 (10.6) | 15 (6.6) | 0.10 |
Immunosuppression ¶ | 58 (10.8) | 44 (14.1) | 14 (6.1) | <0.01 |
Diabetes mellitus | 98 (18.2) | 57 (18.3) | 41 (17.9) | 0.90 |
Characteristics during ICU admission | ||||
Time from symptom onset (miss = 54) | 9 [7–12] | 9 [6–12] | 9 [7–12] | 0.67 |
SAPS II score | 38 [29–51] | 39 [31–53] | 38 [29–48] | 0.09 |
COVID-19 specific treatments during admission | ||||
Corticosteroids | 277 (51.2) | 148 (47.6) | 129 (56.3) | 0.04 |
Dexamethasone † | 222 (41.2) | 114 (36.7) | 108 (47.4) | 0.01 |
High dose | 70 (13) | 36 (11.6) | 34 (14.9) | 0.25 |
Low dose | 158 (28.2) | 78 (25.1) | 80 (32.3) | 0.08 |
Hemisuccinate hydrocortisone | 32 (6) | 19 (6.1) | 13 (5.7) | 0.84 |
Methylprednisolone | 6 (1.2) | 4 (1.3) | 2 (0.9) | 0.65 |
Prednisone | 12 (2.2) | 7 (2.3) | 5 (2.2) | 0.96 |
Tocilizumab | 24 (4.4) | 13 (4.2) | 11 (4.8) | 0.72 |
Organ supports before the period at risk * | ||||
PEEP > 12 cm H2O | 166 (30.8) | 81 (26) | 85 (37.1) | <0.01 |
Prone position | 175 (32.4) | 84 (27) | 91 (39.7) | <0.01 |
Neuromuscular blockade | 436 (80.8) | 244 (78.5) | 192 (83.8) | 0.12 |
ECMO | 47 (8.8) | 16 (5.1) | 31 (13.5) | <0.01 |
Renal Replacement Therapy | 56 (10.4) | 35 (11.3) | 21 (9.2) | 0.43 |
Vasopressor | 306 (56.6) | 193 (62.1) | 113 (49.3) | <0.01 |
Enteral feeding | 332 (61.4) | 183 (58.8) | 149 (65.1) | 0.14 |
Parenteral feeding | 106 (19.6) | 64 (20.6) | 42 (18.3) | 0.52 |
Proton pump inhibitor | 314 (58.2) | 178 (57.2) | 136 (59.4) | 0.62 |
Organ supports during ICU stay | ||||
Prone position | 284 (52.6) | 123 (39.5) | 161 (70.3) | <0.01 |
ECMO | 80 (14.8) | 26 (8.4) | 54 (23.6) | <0.01 |
Renal replacement therapy | 178 (33) | 91 (29.3) | 87 (38) | 0.03 |
Vasopressor | 362 (67) | 215 (69.1) | 147 (64.2) | 0.23 |
Before the period at risk * | ||||
At least one antimicrobial therapy | ||||
Amoxicillin/clavulanic acid | 64 (11.8) | 29 (9.3) | 35 (15.3) | 0.03 |
Ureido-carboxypenicillins | 91 (16.8) | 42 (13.5) | 49 (21.4) | 0.02 |
3rd-generation cephalosporin | 316 (58.6) | 189 (60.8) | 127 (55.5) | 0.22 |
4th-generation cephalosporin | 89 (16.4) | 50 (16.1) | 39 (17) | 0.77 |
Carbapenem | 40 (7.4) | 28 (9) | 12 (5.2) | 0.10 |
Macrolide | 193 (35.8) | 111 (35.7) | 82 (35.8) | 0.98 |
Fluoroquinolone | 64 (11.8) | 34 (10.9) | 30 (13.1) | 0.44 |
MDR pathogen colonization | 45 (8.4) | 20 (6.4) | 25 (10.9) | 0.06 |
ESBL-producing Enterobacterales | 34 (6.2) | 17 (5.5) | 17 (7.4) | 0.35 |
Carbapenem-resistant Enterobacterales | 7 (1.2) | 1 (0.3) | 6 (2.6) | 0.02 |
MDR Pseudomonas aeruginosa | 2 (0.4) | 1 (0.3) | 1 (0.4) | 0.83 |
MRSA | 4 (0.8) | 2 (0.6) | 2 (0.9) | 0.76 |
All n = 540 | No VAP n = 311 | VAP n = 229 | p-Value | |
---|---|---|---|---|
At least one episode of early-onset VAP | 93 (17.2) | - | 93 (40.6) | - |
At least one episode of late-onset VAP | 179 (33.2) | - | 179 (78.2) | - |
1 episode of VAP | 143 (26.4) | - | 143 (62.4) | - |
2 episodes of VAP | 53 (9.8) | - | 53 (23.1) | - |
≥3 episodes of VAP | 33 (6.2) | - | 33 (14.4) | - |
At least one superinfection of VAP § | 58 (10.8) | - | 58 (25.3) | - |
1 superinfection of VAP | 46 (8.6) | - | 46 (20.1) | - |
≥2 superinfection of VAP | 12 (2.2) | - | 11 (4.7) | - |
At least one episode of relapse ‡ | 62 (11.4) | - | 62 (27.1) | - |
1 relapse episode of VAP | 39 (7.2) | - | 39 (17) | - |
≥2 relapse episode of VAP | 23 (4.2) | - | 22 (9.6) | - |
Invasive mechanical ventilation duration * | 13 [7–23.6] | 9 [5–14] | 21 [14–34] | <0.01 |
VFD at Day 60 * | 10 [0–47] | 29 [0–52] | 0 [0–36] | <0.01 |
ICU LOS * | 16 [10–29] | 13 [8–19] | 26 [17–41] | <0.01 |
Hospital LOS * | 22 [13.6–40] | 17 [10–30] | 31 [19–50] | <0.01 |
ICU death | 248 (46) | 138 (44.7) | 110 (47.6) | 0.49 |
Death at Day 60 | 263 (48.8) | 143 (46.3) | 110 (47.6) | 0.76 |
Number of patients still in ICU at Day 60 | 18 (3.4) | 3 (1) | 15 (6.5) | <0.01 |
Hazard Ratio | HR 95% CI | p-Value | |
---|---|---|---|
Age | |||
<50 | 1 | - | - |
50–60 | 1.54 | [0.87–2.7] | 0.14 |
60–70 | 2.88 | [1.68–4.94] | <0.01 |
>70 | 3.69 | [2.15–6.25] | <0.01 |
Cardiovascular comorbidities | 1.43 | [1.1–1.87] | <0.01 |
Immunosuppression | 1.76 | [1.25–2.49] | <0.01 |
Renal replacement therapy * | 1.44 | [0.99–2.10] | 0.06 |
Parenteral feeding | 1.51 | [1.06–2.17] | 0.02 |
Lymphocyte/neutrophil ratio > 0.1 | 0.68 | [0.49–0.94] | 0.02 |
Ventilator-associated pneumonia | 1.36 | [1.03–1.8] | 0.03 |
Hazard Ratio | HR IC 95% | p-Value | ||
---|---|---|---|---|
Model 1 | VAP | 1.36 | [1.03–1.8] | 0.03 |
Model 2 | Early-onset VAP | 1.04 | [0.77–1.43] | 0.78 |
Late-onset VAP | 1.56 | [1.14–2.13] | <0.01 | |
Among 229 patients with at least one episode of VAP | ||||
Model 3 | Superinfection | 1.04 | [0.57–1.9] | 0.91 |
Model 4 | Relapse | 1.12 | [0.64–1.97] | 0.70 |
Hazard Ratio | HR 95% IC | p-Value | |
---|---|---|---|
Superinfection | |||
Period admission before May 2020 | 0.40 | [0.22–0.71] | <0.01 |
ECMO * | 2.13 | [1.13–4.00] | 0.02 |
Non-fermentative bacteria | 0.37 | [0.17–0.79] | 0.01 |
Treatment failure | |||
Age > 70 y | 1.91 | [1.36–2.68] | <0.01 |
Steroids * | 1.54 | [1.09–2.16] | 0.01 |
Renal replacement therapy * | 1.43 | [1.06–1.93] | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wicky, P.-H.; Dupuis, C.; Cerf, C.; Siami, S.; Cohen, Y.; Laurent, V.; Mourvillier, B.; Reignier, J.; Goldgran-Toledano, D.; Schwebel, C.; et al. Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality—A Multicentric Observational Study from the OutcomeRea Network. J. Clin. Med. 2023, 12, 1298. https://doi.org/10.3390/jcm12041298
Wicky P-H, Dupuis C, Cerf C, Siami S, Cohen Y, Laurent V, Mourvillier B, Reignier J, Goldgran-Toledano D, Schwebel C, et al. Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality—A Multicentric Observational Study from the OutcomeRea Network. Journal of Clinical Medicine. 2023; 12(4):1298. https://doi.org/10.3390/jcm12041298
Chicago/Turabian StyleWicky, Paul-Henri, Claire Dupuis, Charles Cerf, Shidasp Siami, Yves Cohen, Virginie Laurent, Bruno Mourvillier, Jean Reignier, Dany Goldgran-Toledano, Carole Schwebel, and et al. 2023. "Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality—A Multicentric Observational Study from the OutcomeRea Network" Journal of Clinical Medicine 12, no. 4: 1298. https://doi.org/10.3390/jcm12041298
APA StyleWicky, P. -H., Dupuis, C., Cerf, C., Siami, S., Cohen, Y., Laurent, V., Mourvillier, B., Reignier, J., Goldgran-Toledano, D., Schwebel, C., Ruckly, S., de Montmollin, E., Buetti, N., & Timsit, J. -F. (2023). Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality—A Multicentric Observational Study from the OutcomeRea Network. Journal of Clinical Medicine, 12(4), 1298. https://doi.org/10.3390/jcm12041298