Outcomes of Surgical Treatment for Graves’ Disease: A Single-Center Experience of 216 Cases
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, T.F.; Andersen, S.; Latif, R.; Nagayama, Y.; Barbesino, G.; Brito, M.; Eckstein, A.K.; Stagnaro-Green, A.; Kahaly, G.J. Graves’ disease. Nat. Rev. Dis. Prim. 2020, 6, 52. [Google Scholar] [CrossRef]
- Sjölin, G.; Holmberg, M.; Törring, O.; Byström, K.; Khamisi, S.; de Laval, D.; Abraham-Nordling, M.; Calissendorff, J.; Lantz, M.; Hallengren, B.; et al. The Long-Term Outcome of Treatment for Graves’ Hyperthyroidism. Thyroid 2019, 29, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wong, C.K.H.; Chan, W.W.L.; Tang, E.H.M.; Woo, Y.C.; Lam, C.L.K.; Lang, B.H.H. Outcomes of Graves’ Disease Patients Following Antithyroid Drugs, Radioactive Iodine, or Thyroidectomy as the First-line Treatment. Ann. Surg. 2021, 273, 1197–1206. [Google Scholar] [CrossRef]
- Rubio, G.A.; Koru-Sengul, T.; Vaghaiwalla, T.M.; Parikh, P.P.; Farra, J.C.; Lew, J.I. Postoperative Outcomes in Graves’ Disease Patients: Results from the Nationwide Inpatient Sample Database. Thyroid 2017, 27, 825–831. [Google Scholar] [CrossRef]
- Mohtashami, S.; Richardson, K.; Forest, V.I.; Mlynarek, A.; Payne, R.J.; Tamilia, M.; Pusztaszeri, M.P.; Hier, M.P.; Sadeghi, N.; Mascarella, M.A. Thyroidectomy for Graves’ Disease Predicts Postoperative Neck Hematoma and Hypocalcemia: A North American cohort study. Ann. Otol. Rhinol. Laryngol. 2022, 131, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef]
- Chen, Y.K.; Lin, C.L.; Chang, Y.J.; Cheng, F.T.; Peng, C.L.; Sung, F.C.; Cheng, Y.H.; Kao, C.H. Cancer risk in patients with Graves’ disease: A nationwide cohort study. Thyroid 2013, 23, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.P.; Schilz, S.; Singh Ospina, N.; Rodriguez-Gutierrez, R.; Maraka, S.; Sangaralingham, L.R.; Montori, V.M. Antithyroid Drugs-The Most Common Treatment for Graves’ Disease in the United States: A Nationwide Population-Based Study. Thyroid 2016, 26, 1144–1145. [Google Scholar] [CrossRef]
- Bartalena, L.; Burch, H.B.; Burman, K.D.; Kahaly, G.J. A 2013 European survey of clinical practice patterns in the management of Graves’ disease. Clin. Endocrinol. 2016, 84, 115–120. [Google Scholar] [CrossRef]
- Cohen, O.; Ronen, O.; Khafif, A.; Rodrigo, J.P.; Simo, R.; Pace-Asciak, P.; Randolph, G.; Mikkelsen, L.H.; Kowalski, L.P.; Olsen, K.D.; et al. Revisiting the role of surgery in the treatment of Graves’ disease. Clin. Endocrinol. 2022, 96, 747–757. [Google Scholar] [CrossRef]
- Brito, J.P.; Payne, S.; Singh Ospina, N.; Rodriguez-Gutierrez, R.; Maraka, S.; Sangaralingham, L.R.; Iñiguez-Ariza, N.M.; Montori, V.M.; Stan, M.N. Patterns of Use, Efficacy, and Safety of Treatment Options for Patients with Graves’ Disease: A Nationwide Population-Based Study. Thyroid 2020, 30, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yu, P.; Liu, Z.; Si, Y.; Jin, M. Total thyroidectomy vs. bilateral subtotal thyroidectomy in patients with Graves’ diseases: A meta-analysis of randomized clinical trials. Clin. Endocrinol. 2013, 79, 739–746. [Google Scholar] [CrossRef]
- Maurer, E.; Maschuw, K.; Reuss, A.; Zieren, H.U.; Zielke, A.; Goretzki, P.; Simon, D.; Dotzenrath, C.; Steinmüller, T.; Jähne, J.; et al. Total Versus Near-total Thyroidectomy in Graves Disease: Results of the Randomized Controlled Multicenter TONIG-trial. Ann. Surg. 2019, 270, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, C.; Graceffa, G.; Calamia, S.; Fiorentino, E.; Pantuso, G.; Vieni, S.; Latteri, M. The value of total thyroidectomy as the definitive treatment for Graves’ disease: A single centre experience of 594 cases. J. Clin. Transl. Endocrinol. 2019, 16, 100183. [Google Scholar] [CrossRef] [PubMed]
- Harsløf, T.; Rolighed, L.; Rejnmark, L. Huge variations in definition and reported incidence of postsurgical hypoparathyroidism: A systematic review. Endocrine 2019, 64, 176–183. [Google Scholar] [CrossRef]
- Edafe, O.; Antakia, R.; Laskar, N.; Uttley, L.; Balasubramanian, S.P. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br. J. Surg. 2014, 101, 307–320. [Google Scholar] [CrossRef]
- Maurer, E.; Vorländer, C.; Zielke, A.; Dotzenrath, C.; von Frankenberg, M.; Köhler, H.; Lorenz, K.; Weber, T.; Jähne, J.; Hammer, A.; et al. Short-Term Outcomes of Surgery for Graves’ Disease in Germany. J. Clin. Med. 2020, 9, 4014. [Google Scholar] [CrossRef]
- Frank, E.D.; Park, J.S.; Watson, W.; Chong, E.; Yang, S.; Simental, A.A. Total thyroidectomy: Safe and curative treatment option for hyperthyroidism. Head Neck 2020, 42, 2123–2128. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, J.K.; Lim, W.; Moon, B.I.; Paik, N.S. Increased risk of postoperative complications after total thyroidectomy with Graves’ disease. Head Neck 2019, 41, 281–285. [Google Scholar] [CrossRef]
- Randolph, G.W.; Dralle, H.; Abdullah, H.; Barczynski, M.; Bellantone, R.; Brauckhoff, M.; Carnaille, B.; Cherenko, S.; Chiang, F.Y.; Dionigi, G.; et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: International standards guideline statement. Laryngoscope 2011, 121 (Suppl. S1), S1–S16. [Google Scholar] [CrossRef]
- Lu, I.C.; Chu, K.S.; Tsai, C.J.; Wu, C.W.; Kuo, W.R.; Chen, H.Y.; Lee, K.W.; Chiang, F.Y. Optimal depth of NIM EMG endotracheal tube for intraoperative neuromonitoring of the recurrent laryngeal nerve during thyroidectomy. World J. Surg. 2008, 32, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Bartalena, L.; Hegedüs, L.; Leenhardt, L.; Poppe, K.; Pearce, S.H. 2018 European Thyroid Association Guideline for the Management of Graves’ Hyperthyroidism. Eur. Thyroid J. 2018, 7, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Barczyński, M.; Konturek, A.; Hubalewska-Dydejczyk, A.; Gołkowski, F.; Nowak, W. Randomized clinical trial of bilateral subtotal thyroidectomy versus total thyroidectomy for Graves’ disease with a 5-year follow-up. Br. J. Surg. 2012, 99, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Järhult, J.; Rudberg, C.; Larsson, E.; Selvander, H.; Sjövall, K.; Winsa, B.; Rastad, J.; Karlsson, F.A. Graves’ disease with moderate-severe endocrine ophthalmopathy-long term results of a prospective, randomized study of total or subtotal thyroid resection. Thyroid 2005, 15, 1157–1164. [Google Scholar] [CrossRef]
- Yoon, J.H.; Jin, M.; Kim, M.; Hong, A.R.; Kim, H.K.; Kim, B.H.; Kim, W.B.; Shong, Y.K.; Jeon, M.J.; Kang, H.C. Clinical Characteristics and Prognosis of Coexisting Thyroid Cancer in Patients with Graves’ Disease: A Retrospective Multicenter Study. Endocrinol. Metab. 2021, 36, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Ji, J.; Li, X.; Sundquist, J.; Sundquist, K.; Hemminki, K. Cancer risk in patients hospitalised for Graves’ disease: A population-based cohort study in Sweden. Br. J. Cancer 2010, 102, 1397–1399. [Google Scholar] [CrossRef] [PubMed]
- Staniforth, J.U.L.; Erdirimanne, S.; Eslick, G.D. Thyroid carcinoma in Graves’ disease: A meta-analysis. Int. J. Surg. 2016, 27, 118–125. [Google Scholar] [CrossRef]
- Papanastasiou, A.; Sapalidis, K.; Goulis, D.G.; Michalopoulos, N.; Mareti, E.; Mantalovas, S.; Kesisoglou, I. Thyroid nodules as a risk factor for thyroid cancer in patients with Graves’ disease: A systematic review and meta-analysis of observational studies in surgically treated patients. Clin. Endocrinol. 2019, 91, 571–577. [Google Scholar] [CrossRef]
- You, E.; Mascarella, M.A.; Al Jassim, A.; Forest, V.I.; Hier, M.P.; Tamilia, M.; Pusztaszeri, M.; Payne, R.J. Prevalence and aggressiveness of papillary thyroid carcinoma in surgically-treated graves’ disease patients: A retrospective matched cohort study. J. Otolaryngol. Head Neck Surg. 2019, 48, 40. [Google Scholar] [CrossRef]
- Keskin, C.; Sahin, M.; Hasanov, R.; Aydogan, B.I.; Demir, O.; Emral, R.; Gullu, S.; Erdogan, M.F.; Gedik, V.; Uysal, A.R.; et al. Frequency of thyroid nodules and thyroid cancer in thyroidectomized patients with Graves’ disease. Arch. Med. Sci. 2020, 16, 302–307. [Google Scholar] [CrossRef]
- Casella, C.; Morandi, R.; Verrengia, A.; Galani, A.; Molfino, S.; Cuka, D.; Groppo, G.; Cappelli, C.; Portolani, N. Thyroid Cancer and Nodules in Graves’ Disease: A Single Center Experience. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 2028–2034. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Mulder, M.; Handelsman, R.S.; Lew, J.I.; Farra, J.C. High Rates of Underlying Thyroid Cancer in Patients Undergoing Thyroidectomy for Hyperthyroidism. J. Surg. Res. 2020, 245, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Sugitani, I.; Ito, Y.; Takeuchi, D.; Nakayama, H.; Masaki, C.; Shindo, H.; Teshima, M.; Horiguchi, K.; Yoshida, Y.; Kanai, T.; et al. Indications and Strategy for Active Surveillance of Adult Low-Risk Papillary Thyroid Microcarcinoma: Consensus Statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid 2021, 31, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyauchi, A.; Fujishima, M.; Noda, T.; Sano, T.; Sasaki, T.; Kishi, T.; Nakamura, T. Thyroid-Stimulating Hormone, Age, and Tumor Size are Risk Factors for Progression During Active Surveillance of Low-Risk Papillary Thyroid Microcarcinoma in Adults. World J. Surg. 2023, 47, 392–401. [Google Scholar] [CrossRef]
- Kim, H.I.; Jang, H.W.; Ahn, H.S.; Ahn, S.; Park, S.Y.; Oh, Y.L.; Hahn, S.Y.; Shin, J.H.; Kim, J.H.; Kim, J.S.; et al. High Serum TSH Level Is Associated With Progression of Papillary Thyroid Microcarcinoma During Active Surveillance. J. Clin. Endocrinol. Metab. 2018, 103, 446–451. [Google Scholar] [CrossRef]
- Paparodis, R.D.; Karvounis, E.; Bantouna, D.; Chourpiliadis, C.; Chourpiliadi, H.; Livadas, S.; Imam, S.; Jaume, J.C. Incidentally Discovered Papillary Thyroid Microcarcinomas Are More Frequently Found in Patients with Chronic Lymphocytic Thyroiditis Than with Multinodular Goiter or Graves’ Disease. Thyroid 2020, 30, 531–535. [Google Scholar] [CrossRef]
- Ippolito, S.; Piantanida, E.; Tanda, M.L.; Caturegli, P. Graves’ disease insights from a review of the Johns Hopkins surgical pathology archive. J. Endocrinol. Investig. 2020, 43, 1519–1522. [Google Scholar] [CrossRef]
- Premoli, P.; Tanda, M.L.; Piantanida, E.; Veronesi, G.; Gallo, D.; Masiello, E.; Rosetti, S.; Cusini, C.; Boi, F.; Bulla, J.; et al. Features and outcome of differentiated thyroid carcinoma associated with Graves’ disease: Results of a large, retrospective, multicenter study. J. Endocrinol. Investig. 2020, 43, 109–116. [Google Scholar] [CrossRef]
- Kikuchi, S.; Noguchi, S.; Yamashita, H.; Uchino, S.; Kawamoto, H. Prognosis of small thyroid cancer in patients with Graves’ disease. Br. J. Surg. 2006, 93, 434–439. [Google Scholar] [CrossRef]
Characteristics | n (%) |
---|---|
Age (years) | 43.9 ± 15.0 |
Sex | |
Male | 34 (15.7) |
Female | 182 (84.3) |
BMI | 22.9 ± 3.3 |
Duration of GD (months) | 72.2 ± 92.7 |
Follow-up (months) | 23.8 ± 20.3 |
Preoperation medication | |
ATDs | 211 (97.7) |
Iodine | 23 (10.6) |
Thyroid hormone status | |
Euthyroid | 121 (56.0) |
Hyperthyroid | 18 (8.3) |
Hypothyroid | 77 (35.6) |
Surgery extent | |
Total thyroidectomy | 162 (75.0) |
Near-total thyroidectomy | 51 (23.6) |
Sub-total thyroidectomy | 3 (1.4) |
Central compartment node dissection | 132 (61.1) |
Lateral lymph node dissection | 10 (4.6) |
Intraoperation neural monitoring | 37 (17.1) |
Gland size (maximum diameter) (cm) | 6.9 ± 2.5 |
Postoperative hospital stay (days) | 3.02 ± 1.94 |
Pathological result | |
Benign | 112 (51.9) |
Malignant | 104 (48.1) |
Surgery indications | |
Failure of ATDs (allergy/intolerant/persistent or recurrent hyperthyroidism) | 113 (52.3) |
Suspicion of a malignant nodule | 99 (45.8) |
Local compressive symptoms | 55 (25.5) |
Coexisting hyperparathyroidism | 1 (0.5) |
Moderate-to-severe orbitopathy | 21 (9.7) |
Patient preference (for pregnancy or other reasons) | 10 (4.6) |
Retrosternal goiter | 18 (8.3) |
Complications | n (%) |
---|---|
Hoarseness | 24 (11.1) |
Recurrent nerve paralysis | |
Transient | 15 (6.9) |
Permanent | 3 (1.4) |
Bilateral recurrent nerve paralysis | 0 (0) |
Hypoparathyroidism | |
Transient | 42 (19.4) |
Permanent | 3 (1.4) |
Hematoma (reoperation) | 2 (0.9) |
Tracheal injury | 0 (0) |
Thyroid storm | 0 (0) |
Factors | Univariate Analysis | |
---|---|---|
Odds Ratio (95% CI) | p-Value | |
Age (>50 years) | 1.30 (0.55, 3.05) | 0.552 |
Male | 0.22 (0.06, 0.83) | 0.017 |
BMI (>25) | 0.72 (0.28, 1.88) | 0.503 |
Benign/malignant | 0.54 (0.24, 1.22) | 0.137 |
Lymph node dissection | 0.70 (0.30, 1.64) | 0.409 |
Gland maximum diameter (>8 cm) | 1.19 (0.51, 2.77) | 0.695 |
Inadvertent parathyroidectomy | 1.02 (0.31, 3.30) | 0.975 |
Preoperative PTH (>70 pg/mL) | 0.79 (0.33, 1.89) | 0.593 |
Preoperative TR-Ab (>2 IU/L) | 2.04 (0.69, 6.03) | 0.192 |
Preoperative Vitamin D (<50 nmol/L) | 1.46 (0.55, 3.85) | 0.445 |
Characteristics | n (%) |
---|---|
Tumor size (cm) | 0.8 ± 0.6 |
Pathological diagnosis | |
Papillary thyroid carcinoma | 103 (99.0) |
Follicular thyroid carcinoma | 1 (1.0) |
Other | 0 |
Tumor focus | |
Unifocal | 76 (73.1) |
Multifocal | 28 (26.9) |
T stage | |
T1a | 75 (72.1) |
T1b | 29 (27.9) |
Other | 0 |
Number of lymph nodes dissected | 7.3 ± 8.6 |
Lymph node metastasis | |
Central compartment node metastasis | 38 (36.5) |
Lateral lymph node metastasis | 10 (9.6) |
Incidentally discovered thyroid carcinomas | 7 (6.7) |
Factors | No Thyroid Cancer (n = 112) | Concomitant Thyroid Cancer (n = 104) | p-Value |
---|---|---|---|
Age (years) | 44.63 ± 16.61 | 43.08 ± 13.08 | 0.703 † |
BMI | 22.17 ± 3.27 | 23.57 ± 3.24 | 0.003 ‡ |
Duration of GD (months) | 106.52 ± 106.96 | 35.51 ± 54.89 | 0.000 ‡ |
Gland maximum diameter (cm) | 8.16 ± 2.60 | 5.57 ± 1.58 | 0.000 ‡ |
Preoperative TR-Ab (IU/L) | 17.96 ± 15.81 | 6.95 ± 10.87 | 0.000 ‡ |
Gender (male/female) | 18/94 | 16/88 | 0.890 |
Nodule(s) detected before surgery | 63/112 | 101/104 | 0.009 |
Chronic lymphocytic thyroiditis | 10/112 | 19/104 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Tong, H.; Shen, X.; Gao, H.; Kuang, J.; Chen, X.; Li, Q.; Qiu, W.; Liu, Z.; Yan, J. Outcomes of Surgical Treatment for Graves’ Disease: A Single-Center Experience of 216 Cases. J. Clin. Med. 2023, 12, 1308. https://doi.org/10.3390/jcm12041308
Sun H, Tong H, Shen X, Gao H, Kuang J, Chen X, Li Q, Qiu W, Liu Z, Yan J. Outcomes of Surgical Treatment for Graves’ Disease: A Single-Center Experience of 216 Cases. Journal of Clinical Medicine. 2023; 12(4):1308. https://doi.org/10.3390/jcm12041308
Chicago/Turabian StyleSun, Hanxing, Hui Tong, Xiaohui Shen, Haoji Gao, Jie Kuang, Xi Chen, Qinyu Li, Weihua Qiu, Zhuoran Liu, and Jiqi Yan. 2023. "Outcomes of Surgical Treatment for Graves’ Disease: A Single-Center Experience of 216 Cases" Journal of Clinical Medicine 12, no. 4: 1308. https://doi.org/10.3390/jcm12041308
APA StyleSun, H., Tong, H., Shen, X., Gao, H., Kuang, J., Chen, X., Li, Q., Qiu, W., Liu, Z., & Yan, J. (2023). Outcomes of Surgical Treatment for Graves’ Disease: A Single-Center Experience of 216 Cases. Journal of Clinical Medicine, 12(4), 1308. https://doi.org/10.3390/jcm12041308